Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta

Size: px
Start display at page:

Download "Encoder-Decoder Networks for Semantic Segmentation. Sachin Mehta"

Transcription

1 Encoder-Decoder Networks for Semantic Segmentation Sachin Mehta

2 Outline > Overview of Semantic Segmentation > Encoder-Decoder Networks > Results

3 What is Semantic Segmentation? Input: RGB Image Output: A segmentation Mask

4 Encoder-Decoder Networks Encoder Decoder Encoder Takes an input image and generates a high-dimensional feature vector Aggregate features at multiple levels Decoder Takes a highdimensional feature vector and generates a semantic segmentation mask Decode features aggregated by encoder at multiple levels

5 Building Blocks of CNNs > Convolution > Down-Sampling > Up-Sampling

6 Convolution Filter weights are learned from data a0 a1 a2 a3 a4 a5 a6 a7 a8 x0 x1 x2 x3 x4 X5 x6 x7 x8

7 Down-Sampling > Max-pooling > Average Pooling > Strided Convolution a0 a1 b0 b1 a0 c1 b1 d3 Max-Pooling a2 a3 b2 b3 c0 c1 d0 d1 c2 c3 d2 d3 a c b d Avg. Pooling xx xx xx xx Strided Convolution (stride = 2)

8 Up-Sampling > Un-pooling > Deconvolution Un-Pooling a0 0 0 b a0 a1 b0 b1 a2 a3 b2 b3 a0 b1 0 c d3 c0 c1 d0 d1 c2 c3 d2 d3 Maxpooling c1 d3 Deconvolution x0 x1 x2 x3 0 a0 b1 0 x4 x5 x6 x7 0 c1 d3 0 x8 x9 x10 x x12 x13 x14 x15

9 Encoder-Decoder Networks Encoder Decoder

10 Encoder-Decoder Networks Different Encoding Block Types VGG Inception ResNet

11 Encoder-Decoder Networks Different Encoding Block Types Input Max-Pool VGG Inception ResNetd Conv 3x3 Conv 3x3 Conv 3x3 Output

12 Encoder-Decoder Networks Different Encoding Block Types Input Max-Pool VGG Inception ResNet Max-Pool Conv 1x1 Conv 1x1 Conv 3x3 Conv 1x1 Conv 5x5 Conv 1x1 Concat Output

13 Encoder-Decoder Networks Different Encoding Block Types Input VGG Inception ResNet Conv 3x3 Conv 3x3 Sum Output

14 Different Encoding Block Types Performance on the ImageNet 2012 Validation Dataset Memory (in MB) Memory per image Parameters (in Million) Parameters 0 0 Inference Time (in ms) Inference Time Error (in %) Classification Error VGG Inception ResNet-18

15 Encoder-Decoder Networks Encoder Decoder

16 Encoder-Decoder Networks Encoder Decoder

17 Encoder-Decoder Networks Different Decoding Block Types VGG Inception ResNet

18 Encoder-Decoder Networks Different Decoding Block Types Input Un-Pool VGG Inception ResNet Conv 3x3 Conv 3x3 Conv 3x3 Output

19 Encoder-Decoder Networks Different Decoding Block Types Input Deconv 1x1 VGG Inception ResNet Max-Pool Conv 1x1 Conv 1x1 Conv 3x3 Conv 1x1 Conv 5x5 Conv 1x1 Concat Output

20 Encoder-Decoder Networks Different Decoding Block Types Input VGG Inception ResNet DeConv 3x3 Sum Output

21 Classification vs Segmentation Error (in %) Top-5 Classification Error Accuracy (in %) FCN-32s Segmentation Accuracy 9.05 VGG Inception 30 VGG Inception (a) ImageNet Classificaiton Validation Set (b) PASCAL VOC 2011 Validation Set VGG Inception Source: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." TPAMI

22 Our Work on Segmenting GigaPixel Breast Biopsy Images

23 Challenges with the dataset > Limited computational resources > Sliding window approach is promising but Size of patch determines the context Some biological structures may cover several patches

24 Challenges with the dataset > Some biological structures are rare Necrosis and Secretion have less than 1% of all the pixels

25 Training details > Training Set: 30 ROIs 25,992 patches of size 256x256 with augmentation Split into training and validation set using 90:10 ratio > Test Set: 28 ROIs > Stochastic Gradient Descent for optimization > Implemented in Torch

26 Segmentation Results RGB Image Ground Truth Label

27 Segmentation Results Encoder-Decoder Network with skip connection RGB Image Prediction

28 Segmentation Results Multi-Resolution Encoder- Decoder Network RGB Image Prediction

29 Segmentation Results RGB Image Ground Truth Plain Multi-Resolution

30 Segmentation Results F1-Score

31 Why Segmentation? Results on Diagnosis > Segmented whole dataset (428 ROIs) with the model trained on 30 ROIs > Extracted histograms from segmentation masks and then trained different classifiers > Weak classifiers are as good as strong classifiers

32 Thank You!!

33 References 1. Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." TPAMI (FCN-8s) 2. Noh, Hyeonwoo, Seunghoon Hong, and Bohyung Han. "Learning deconvolution network for semantic segmentation." ICCV (DeConvNet) 3. V. Badrinarayanan; A. Kendall; R. Cipolla, "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Scene Segmentation," TPAMI, 2017 (SegNet) 4. Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions., ICLR, 2016 (Dilation) 5. Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." arxiv preprint arxiv: (2016). (DeepLab) 6. Zheng, Shuai, et al. "Conditional random fields as recurrent neural networks." ICCV (CRFasRNN) 7. Hariharan, Bharath, et al. "Hypercolumns for object segmentation and fine-grained localization." CVPR (HyperColumn)

34 Two 3x3 filters are same as one 5x5 filter Source: Rethinking the Inception Architecture for Computer Vision by Szegedy et al.

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Presentation Outline. Semantic Segmentation. Overview. Presentation Outline CNN. Learning Deconvolution Network for Semantic Segmentation 6/6/16

Presentation Outline. Semantic Segmentation. Overview. Presentation Outline CNN. Learning Deconvolution Network for Semantic Segmentation 6/6/16 6/6/16 Learning Deconvolution Network for Semantic Segmentation Hyeonwoo Noh, Seunghoon Hong,Bohyung Han Department of Computer Science and Engineering, POSTECH, Korea Shai Rozenberg 6/6/2016 1 2 Semantic

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Deconvolutions in Convolutional Neural Networks

Deconvolutions in Convolutional Neural Networks Overview Deconvolutions in Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Deconvolutions in CNNs Applications Network visualization

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

Efficient Segmentation-Aided Text Detection For Intelligent Robots

Efficient Segmentation-Aided Text Detection For Intelligent Robots Efficient Segmentation-Aided Text Detection For Intelligent Robots Junting Zhang, Yuewei Na, Siyang Li, C.-C. Jay Kuo University of Southern California Outline Problem Definition and Motivation Related

More information

RGBd Image Semantic Labelling for Urban Driving Scenes via a DCNN

RGBd Image Semantic Labelling for Urban Driving Scenes via a DCNN RGBd Image Semantic Labelling for Urban Driving Scenes via a DCNN Jason Bolito, Research School of Computer Science, ANU Supervisors: Yiran Zhong & Hongdong Li 2 Outline 1. Motivation and Background 2.

More information

Martian lava field, NASA, Wikipedia

Martian lava field, NASA, Wikipedia Martian lava field, NASA, Wikipedia Old Man of the Mountain, Franconia, New Hampshire Pareidolia http://smrt.ccel.ca/203/2/6/pareidolia/ Reddit for more : ) https://www.reddit.com/r/pareidolia/top/ Pareidolia

More information

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA

JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS. Zhao Chen Machine Learning Intern, NVIDIA JOINT DETECTION AND SEGMENTATION WITH DEEP HIERARCHICAL NETWORKS Zhao Chen Machine Learning Intern, NVIDIA ABOUT ME 5th year PhD student in physics @ Stanford by day, deep learning computer vision scientist

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang

SSD: Single Shot MultiBox Detector. Author: Wei Liu et al. Presenter: Siyu Jiang SSD: Single Shot MultiBox Detector Author: Wei Liu et al. Presenter: Siyu Jiang Outline 1. Motivations 2. Contributions 3. Methodology 4. Experiments 5. Conclusions 6. Extensions Motivation Motivation

More information

AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING

AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING AUTOMATED DETECTION AND CLASSIFICATION OF CANCER METASTASES IN WHOLE-SLIDE HISTOPATHOLOGY IMAGES USING DEEP LEARNING F. Ghazvinian Zanjani, S. Zinger, P. H. N. de With Electrical Engineering Department,

More information

A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION

A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION A MULTI-RESOLUTION FUSION MODEL INCORPORATING COLOR AND ELEVATION FOR SEMANTIC SEGMENTATION Wenkai Zhang a, b, Hai Huang c, *, Matthias Schmitz c, Xian Sun a, Hongqi Wang a, Helmut Mayer c a Key Laboratory

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation : Multi-Path Refinement Networks for High-Resolution Semantic Segmentation Guosheng Lin 1,2, Anton Milan 1, Chunhua Shen 1,2, Ian Reid 1,2 1 The University of Adelaide, 2 Australian Centre for Robotic

More information

Advanced Video Analysis & Imaging

Advanced Video Analysis & Imaging Advanced Video Analysis & Imaging (5LSH0), Module 09B Machine Learning with Convolutional Neural Networks (CNNs) - Workout Farhad G. Zanjani, Clint Sebastian, Egor Bondarev, Peter H.N. de With ( p.h.n.de.with@tue.nl

More information

Real-Time Semantic Segmentation Benchmarking Framework

Real-Time Semantic Segmentation Benchmarking Framework Real-Time Semantic Segmentation Benchmarking Framework Mennatullah Siam University of Alberta mennatul@ualberta.ca Mostafa Gamal Cairo University mostafa.gamal95@eng-st.cu.edu.eg Moemen Abdel-Razek Cairo

More information

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington

3D Object Recognition and Scene Understanding from RGB-D Videos. Yu Xiang Postdoctoral Researcher University of Washington 3D Object Recognition and Scene Understanding from RGB-D Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World

More information

Predicting ground-level scene Layout from Aerial imagery. Muhammad Hasan Maqbool

Predicting ground-level scene Layout from Aerial imagery. Muhammad Hasan Maqbool Predicting ground-level scene Layout from Aerial imagery Muhammad Hasan Maqbool Objective Given the overhead image predict its ground level semantic segmentation Predicted ground level labeling Overhead/Aerial

More information

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation : Multi-Path Refinement Networks for High-Resolution Semantic Segmentation Guosheng Lin 1 Anton Milan 2 Chunhua Shen 2,3 Ian Reid 2,3 1 Nanyang Technological University 2 University of Adelaide 3 Australian

More information

Learning Fully Dense Neural Networks for Image Semantic Segmentation

Learning Fully Dense Neural Networks for Image Semantic Segmentation Learning Fully Dense Neural Networks for Image Semantic Segmentation Mingmin Zhen 1, Jinglu Wang 2, Lei Zhou 1, Tian Fang 3, Long Quan 1 1 Hong Kong University of Science and Technology, 2 Microsoft Research

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

R-FCN: Object Detection with Really - Friggin Convolutional Networks

R-FCN: Object Detection with Really - Friggin Convolutional Networks R-FCN: Object Detection with Really - Friggin Convolutional Networks Jifeng Dai Microsoft Research Li Yi Tsinghua Univ. Kaiming He FAIR Jian Sun Microsoft Research NIPS, 2016 Or Region-based Fully Convolutional

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

Detecting cars in aerial photographs with a hierarchy of deconvolution nets

Detecting cars in aerial photographs with a hierarchy of deconvolution nets Detecting cars in aerial photographs with a hierarchy of deconvolution nets Satyaki Chakraborty Daniel Maturana Sebastian Scherer CMU-RI-TR-16-60 November 2016 Robotics Institute Carnegie Mellon University

More information

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations

Paper Motivation. Fixed geometric structures of CNN models. CNNs are inherently limited to model geometric transformations Paper Motivation Fixed geometric structures of CNN models CNNs are inherently limited to model geometric transformations Higher-level features combine lower-level features at fixed positions as a weighted

More information

Instance-aware Semantic Segmentation via Multi-task Network Cascades

Instance-aware Semantic Segmentation via Multi-task Network Cascades Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai, Kaiming He, Jian Sun Microsoft research 2016 Yotam Gil Amit Nativ Agenda Introduction Highlights Implementation Further

More information

Pixel Offset Regression (POR) for Single-shot Instance Segmentation

Pixel Offset Regression (POR) for Single-shot Instance Segmentation Pixel Offset Regression (POR) for Single-shot Instance Segmentation Yuezun Li 1, Xiao Bian 2, Ming-ching Chang 1, Longyin Wen 2 and Siwei Lyu 1 1 University at Albany, State University of New York, NY,

More information

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington

Perceiving the 3D World from Images and Videos. Yu Xiang Postdoctoral Researcher University of Washington Perceiving the 3D World from Images and Videos Yu Xiang Postdoctoral Researcher University of Washington 1 2 Act in the 3D World Sensing & Understanding Acting Intelligent System 3D World 3 Understand

More information

arxiv: v3 [cs.cv] 8 May 2017

arxiv: v3 [cs.cv] 8 May 2017 Convolutional Random Walk Networks for Semantic Image Segmentation Gedas Bertasius 1, Lorenzo Torresani 2, Stella X. Yu 3, Jianbo Shi 1 1 University of Pennsylvania, 2 Dartmouth College, 3 UC Berkeley

More information

SEMANTIC segmentation has a wide array of applications

SEMANTIC segmentation has a wide array of applications IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017 2481 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation Vijay Badrinarayanan,

More information

arxiv: v1 [cs.cv] 31 Mar 2016

arxiv: v1 [cs.cv] 31 Mar 2016 Object Boundary Guided Semantic Segmentation Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu and C.-C. Jay Kuo arxiv:1603.09742v1 [cs.cv] 31 Mar 2016 University of Southern California Abstract.

More information

Spatial Localization and Detection. Lecture 8-1

Spatial Localization and Detection. Lecture 8-1 Lecture 8: Spatial Localization and Detection Lecture 8-1 Administrative - Project Proposals were due on Saturday Homework 2 due Friday 2/5 Homework 1 grades out this week Midterm will be in-class on Wednesday

More information

Fuzzy Set Theory in Computer Vision: Example 3

Fuzzy Set Theory in Computer Vision: Example 3 Fuzzy Set Theory in Computer Vision: Example 3 Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Purpose of these slides are to make you aware of a few of the different CNN architectures

More information

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation

Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation Md Atiqur Rahman and Yang Wang Department of Computer Science, University of Manitoba, Canada {atique, ywang}@cs.umanitoba.ca

More information

Thinking Outside the Box: Spatial Anticipation of Semantic Categories

Thinking Outside the Box: Spatial Anticipation of Semantic Categories GARBADE, GALL: SPATIAL ANTICIPATION OF SEMANTIC CATEGORIES 1 Thinking Outside the Box: Spatial Anticipation of Semantic Categories Martin Garbade garbade@iai.uni-bonn.de Juergen Gall gall@iai.uni-bonn.de

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation

LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation Abhishek Chaurasia School of Electrical and Computer Engineering Purdue University West Lafayette, USA Email: aabhish@purdue.edu

More information

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR

Object Detection. CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Object Detection CS698N Final Project Presentation AKSHAT AGARWAL SIDDHARTH TANWAR Problem Description Arguably the most important part of perception Long term goals for object recognition: Generalization

More information

Team G-RMI: Google Research & Machine Intelligence

Team G-RMI: Google Research & Machine Intelligence Team G-RMI: Google Research & Machine Intelligence Alireza Fathi (alirezafathi@google.com) Nori Kanazawa, Kai Yang, George Papandreou, Tyler Zhu, Jonathan Huang, Vivek Rathod, Chen Sun, Kevin Murphy, et

More information

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018

CS 1674: Intro to Computer Vision. Object Recognition. Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 CS 1674: Intro to Computer Vision Object Recognition Prof. Adriana Kovashka University of Pittsburgh April 3, 5, 2018 Different Flavors of Object Recognition Semantic Segmentation Classification + Localization

More information

arxiv: v1 [cs.cv] 7 Jun 2016

arxiv: v1 [cs.cv] 7 Jun 2016 ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation arxiv:1606.02147v1 [cs.cv] 7 Jun 2016 Adam Paszke Faculty of Mathematics, Informatics and Mechanics University of Warsaw, Poland

More information

Object Detection Based on Deep Learning

Object Detection Based on Deep Learning Object Detection Based on Deep Learning Yurii Pashchenko AI Ukraine 2016, Kharkiv, 2016 Image classification (mostly what you ve seen) http://tutorial.caffe.berkeleyvision.org/caffe-cvpr15-detection.pdf

More information

Semantic Segmentation with Scarce Data

Semantic Segmentation with Scarce Data Semantic Segmentation with Scarce Data Isay Katsman * 1 Rohun Tripathi * 1 Andreas Veit 1 Serge Belongie 1 Abstract Semantic segmentation is a challenging vision problem that usually necessitates the collection

More information

arxiv: v1 [cs.cv] 8 Mar 2017 Abstract

arxiv: v1 [cs.cv] 8 Mar 2017 Abstract Large Kernel Matters Improve Semantic Segmentation by Global Convolutional Network Chao Peng Xiangyu Zhang Gang Yu Guiming Luo Jian Sun School of Software, Tsinghua University, {pengc14@mails.tsinghua.edu.cn,

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Convolutional Networks in Scene Labelling

Convolutional Networks in Scene Labelling Convolutional Networks in Scene Labelling Ashwin Paranjape Stanford ashwinpp@stanford.edu Ayesha Mudassir Stanford aysh@stanford.edu Abstract This project tries to address a well known problem of multi-class

More information

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague

CNNS FROM THE BASICS TO RECENT ADVANCES. Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague CNNS FROM THE BASICS TO RECENT ADVANCES Dmytro Mishkin Center for Machine Perception Czech Technical University in Prague ducha.aiki@gmail.com OUTLINE Short review of the CNN design Architecture progress

More information

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma

Mask R-CNN. presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN presented by Jiageng Zhang, Jingyao Zhan, Yunhan Ma Mask R-CNN Background Related Work Architecture Experiment Mask R-CNN Background Related Work Architecture Experiment Background From left

More information

arxiv: v4 [cs.cv] 6 Jul 2016

arxiv: v4 [cs.cv] 6 Jul 2016 Object Boundary Guided Semantic Segmentation Qin Huang, Chunyang Xia, Wenchao Zheng, Yuhang Song, Hao Xu, C.-C. Jay Kuo (qinhuang@usc.edu) arxiv:1603.09742v4 [cs.cv] 6 Jul 2016 Abstract. Semantic segmentation

More information

Lecture 5: Object Detection

Lecture 5: Object Detection Object Detection CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 5: Object Detection Bohyung Han Computer Vision Lab. bhhan@postech.ac.kr 2 Traditional Object Detection Algorithms Region-based

More information

DeepBIBX: Deep Learning for Image Based Bibliographic Data Extraction

DeepBIBX: Deep Learning for Image Based Bibliographic Data Extraction DeepBIBX: Deep Learning for Image Based Bibliographic Data Extraction Akansha Bhardwaj 1,2, Dominik Mercier 1, Sheraz Ahmed 1, Andreas Dengel 1 1 Smart Data and Services, DFKI Kaiserslautern, Germany firstname.lastname@dfki.de

More information

Feature-Fused SSD: Fast Detection for Small Objects

Feature-Fused SSD: Fast Detection for Small Objects Feature-Fused SSD: Fast Detection for Small Objects Guimei Cao, Xuemei Xie, Wenzhe Yang, Quan Liao, Guangming Shi, Jinjian Wu School of Electronic Engineering, Xidian University, China xmxie@mail.xidian.edu.cn

More information

arxiv: v1 [cs.cv] 11 Sep 2017

arxiv: v1 [cs.cv] 11 Sep 2017 SHABAN, BANSAL, LIU, ESSA, BOOTS: ONE-SHOT SEMANTIC SEGMENTATION 1 arxiv:1709.03410v1 [cs.cv] 11 Sep 2017 One-Shot Learning for Semantic Segmentation Amirreza Shaban amirreza@gatech.edu Shray Bansal sbansal34@gatech.edu

More information

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL IMAGE DESCRIPTIONS IN THE WILD (IDW-CNN) LARGE KERNEL MATTERS (GCN) DEEP LEARNING SEMINAR, TAU NOVEMBER 2017 TOPICS IDW-CNN: Improving Semantic Segmentation

More information

Dense Image Labeling Using Deep Convolutional Neural Networks

Dense Image Labeling Using Deep Convolutional Neural Networks Dense Image Labeling Using Deep Convolutional Neural Networks Md Amirul Islam, Neil Bruce, Yang Wang Department of Computer Science University of Manitoba Winnipeg, MB {amirul, bruce, ywang}@cs.umanitoba.ca

More information

Places Challenge 2017

Places Challenge 2017 Places Challenge 2017 Scene Parsing Task CASIA_IVA_JD Jun Fu, Jing Liu, Longteng Guo, Haijie Tian, Fei Liu, Hanqing Lu Yong Li, Yongjun Bao, Weipeng Yan National Laboratory of Pattern Recognition, Institute

More information

Hand-Object Interaction Detection with Fully Convolutional Networks

Hand-Object Interaction Detection with Fully Convolutional Networks Hand-Object Interaction Detection with Fully Convolutional Networks Matthias Schröder Helge Ritter Neuroinformatics Group, Bielefeld University {maschroe,helge}@techfak.uni-bielefeld.de Abstract Detecting

More information

arxiv: v1 [cs.cv] 11 Apr 2018

arxiv: v1 [cs.cv] 11 Apr 2018 arxiv:1804.03821v1 [cs.cv] 11 Apr 2018 ExFuse: Enhancing Feature Fusion for Semantic Segmentation Zhenli Zhang 1, Xiangyu Zhang 2, Chao Peng 2, Dazhi Cheng 3, Jian Sun 2 1 Fudan University, 2 Megvii Inc.

More information

arxiv: v2 [cs.cv] 18 Jul 2017

arxiv: v2 [cs.cv] 18 Jul 2017 PHAM, ITO, KOZAKAYA: BISEG 1 arxiv:1706.02135v2 [cs.cv] 18 Jul 2017 BiSeg: Simultaneous Instance Segmentation and Semantic Segmentation with Fully Convolutional Networks Viet-Quoc Pham quocviet.pham@toshiba.co.jp

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation Net: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation Sachin Mehta 1[0000 0002 5420 4725], Mohammad Rastegari 2, Anat Caspi 1, Linda Shapiro 1, and Hannaneh Hajishirzi 1 1 University

More information

arxiv: v3 [cs.cv] 25 Jul 2018

arxiv: v3 [cs.cv] 25 Jul 2018 arxiv:1803.06815v3 [cs.cv] 25 Jul 2018 Net: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation Sachin Mehta 1, Mohammad Rastegari 2, Anat Caspi 1, Linda Shapiro 1, and Hannaneh

More information

arxiv: v1 [cs.cv] 26 May 2017

arxiv: v1 [cs.cv] 26 May 2017 arxiv:1705.09587v1 [cs.cv] 26 May 2017 J. JEONG, H. PARK AND N. KWAK: UNDER REVIEW IN BMVC 2017 1 Enhancement of SSD by concatenating feature maps for object detection Jisoo Jeong soo3553@snu.ac.kr Hyojin

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang

Unsupervised Deep Learning. James Hays slides from Carl Doersch and Richard Zhang Unsupervised Deep Learning James Hays slides from Carl Doersch and Richard Zhang Recap from Previous Lecture We saw two strategies to get structured output while using deep learning With object detection,

More information

Object detection with CNNs

Object detection with CNNs Object detection with CNNs 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before CNNs After CNNs 0% 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 year Region proposals

More information

HIERARCHICAL JOINT-GUIDED NETWORKS FOR SEMANTIC IMAGE SEGMENTATION

HIERARCHICAL JOINT-GUIDED NETWORKS FOR SEMANTIC IMAGE SEGMENTATION HIERARCHICAL JOINT-GUIDED NETWORKS FOR SEMANTIC IMAGE SEGMENTATION Chien-Yao Wang, Jyun-Hong Li, Seksan Mathulaprangsan, Chin-Chin Chiang, and Jia-Ching Wang Department of Computer Science and Information

More information

Cascade Region Regression for Robust Object Detection

Cascade Region Regression for Robust Object Detection Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Cascade Region Regression for Robust Object Detection Jiankang Deng, Shaoli Huang, Jing Yang, Hui Shuai, Zhengbo Yu, Zongguang Lu, Qiang Ma, Yali

More information

Real-time Object Detection CS 229 Course Project

Real-time Object Detection CS 229 Course Project Real-time Object Detection CS 229 Course Project Zibo Gong 1, Tianchang He 1, and Ziyi Yang 1 1 Department of Electrical Engineering, Stanford University December 17, 2016 Abstract Objection detection

More information

arxiv: v1 [cs.cv] 5 Apr 2017

arxiv: v1 [cs.cv] 5 Apr 2017 Not All Pixels Are Equal: Difficulty-Aware Semantic Segmentation via Deep Layer Cascade Xiaoxiao Li 1 Ziwei Liu 1 Ping Luo 2,1 Chen Change Loy 1,2 Xiaoou Tang 1,2 1 Department of Information Engineering,

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information

Object Detection on Self-Driving Cars in China. Lingyun Li

Object Detection on Self-Driving Cars in China. Lingyun Li Object Detection on Self-Driving Cars in China Lingyun Li Introduction Motivation: Perception is the key of self-driving cars Data set: 10000 images with annotation 2000 images without annotation (not

More information

All You Want To Know About CNNs. Yukun Zhu

All You Want To Know About CNNs. Yukun Zhu All You Want To Know About CNNs Yukun Zhu Deep Learning Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image

More information

Deep Residual Learning

Deep Residual Learning Deep Residual Learning MSRA @ ILSVRC & COCO 2015 competitions Kaiming He with Xiangyu Zhang, Shaoqing Ren, Jifeng Dai, & Jian Sun Microsoft Research Asia (MSRA) MSRA @ ILSVRC & COCO 2015 Competitions 1st

More information

Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation

Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation Efficient Yet Deep Convolutional Neural Networks for Semantic Segmentation Sharif Amit Kamran Center for Cognitive Skill Enhancement Independent University Bangladesh Dhaka, Bangladesh sharifamit@iub.edu.bd

More information

arxiv: v1 [cs.cv] 24 May 2016

arxiv: v1 [cs.cv] 24 May 2016 Dense CNN Learning with Equivalent Mappings arxiv:1605.07251v1 [cs.cv] 24 May 2016 Jianxin Wu Chen-Wei Xie Jian-Hao Luo National Key Laboratory for Novel Software Technology, Nanjing University 163 Xianlin

More information

Large-scale tissue histopathology image segmentation based on feature pyramid

Large-scale tissue histopathology image segmentation based on feature pyramid Qin et al. EURASIP Journal on Image and Video Processing (2018) 2018:75 https://doi.org/10.1186/s13640-018-0320-8 EURASIP Journal on Image and Video Processing RESEARCH Large-scale tissue histopathology

More information

YOLO9000: Better, Faster, Stronger

YOLO9000: Better, Faster, Stronger YOLO9000: Better, Faster, Stronger Date: January 24, 2018 Prepared by Haris Khan (University of Toronto) Haris Khan CSC2548: Machine Learning in Computer Vision 1 Overview 1. Motivation for one-shot object

More information

Deconvolution Networks

Deconvolution Networks Deconvolution Networks Johan Brynolfsson Mathematical Statistics Centre for Mathematical Sciences Lund University December 6th 2016 1 / 27 Deconvolution Neural Networks 2 / 27 Image Deconvolution True

More information

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION

REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION REGION AVERAGE POOLING FOR CONTEXT-AWARE OBJECT DETECTION Kingsley Kuan 1, Gaurav Manek 1, Jie Lin 1, Yuan Fang 1, Vijay Chandrasekhar 1,2 Institute for Infocomm Research, A*STAR, Singapore 1 Nanyang Technological

More information

TEXT SEGMENTATION ON PHOTOREALISTIC IMAGES

TEXT SEGMENTATION ON PHOTOREALISTIC IMAGES TEXT SEGMENTATION ON PHOTOREALISTIC IMAGES Valery Grishkin a, Alexander Ebral b, Nikolai Stepenko c, Jean Sene d Saint Petersburg State University, 7 9 Universitetskaya nab., Saint Petersburg, 199034,

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Study of Residual Networks for Image Recognition

Study of Residual Networks for Image Recognition Study of Residual Networks for Image Recognition Mohammad Sadegh Ebrahimi Stanford University sadegh@stanford.edu Hossein Karkeh Abadi Stanford University hosseink@stanford.edu Abstract Deep neural networks

More information

Return of the Devil in the Details: Delving Deep into Convolutional Nets

Return of the Devil in the Details: Delving Deep into Convolutional Nets Return of the Devil in the Details: Delving Deep into Convolutional Nets Ken Chatfield - Karen Simonyan - Andrea Vedaldi - Andrew Zisserman University of Oxford The Devil is still in the Details 2011 2014

More information

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab.

Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab. [ICIP 2017] Direct Multi-Scale Dual-Stream Network for Pedestrian Detection Sang-Il Jung and Ki-Sang Hong Image Information Processing Lab., POSTECH Pedestrian Detection Goal To draw bounding boxes that

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

Deep Fully Convolutional Networks with Random Data Augmentation for Enhanced Generalization in Road Detection

Deep Fully Convolutional Networks with Random Data Augmentation for Enhanced Generalization in Road Detection Deep Fully Convolutional Networks with Random Data Augmentation for Enhanced Generalization in Road Detection Jesu s Mun oz-bulnes, Carlos Fernandez, Ignacio Parra, David Ferna ndez-llorca, Miguel A. Sotelo

More information

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018

Mask R-CNN. Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 Mask R-CNN Kaiming He, Georgia, Gkioxari, Piotr Dollar, Ross Girshick Presenters: Xiaokang Wang, Mengyao Shi Feb. 13, 2018 1 Common computer vision tasks Image Classification: one label is generated for

More information

Squeeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation

Squeeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation Squeeze-SegNet: A new fast Deep Convolutional Neural Network for Semantic Segmentation ¹Geraldin NANFACK, ²Azeddine ELHASSOUNY, ³Rachid OULAD HAJ THAMI IRDA Team, ADMIR LAB, RABAT IT CENTER, ENSIAS, University

More information

Understand Amazon Deforestation using Neural Network

Understand Amazon Deforestation using Neural Network Understand Amazon Deforestation using Neural Network Chao Liang Department of Geophysics chao2@stanford.edu Meng Tang Energy Resources Engineering mengtang@stanford.edu Abstract We investigate a detection

More information

Rich feature hierarchies for accurate object detection and semantic segmentation

Rich feature hierarchies for accurate object detection and semantic segmentation Rich feature hierarchies for accurate object detection and semantic segmentation BY; ROSS GIRSHICK, JEFF DONAHUE, TREVOR DARRELL AND JITENDRA MALIK PRESENTER; MUHAMMAD OSAMA Object detection vs. classification

More information

UAV Navigation above Roads Using Convolutional Neural Networks

UAV Navigation above Roads Using Convolutional Neural Networks UAV Navigation above Roads Using Convolutional Neural Networks Thomas Ayoul Toby Buckley Felix Crevier tayoul@stanford.edu tobyb@stanford.edu fcrevier@stanford.edu Abstract In this project a UAV is used

More information

HYBRIDNET FOR DEPTH ESTIMATION AND SEMANTIC SEGMENTATION

HYBRIDNET FOR DEPTH ESTIMATION AND SEMANTIC SEGMENTATION HYBRIDNET FOR DEPTH ESTIMATION AND SEMANTIC SEGMENTATION Dalila Sánchez-Escobedo, Xiao Lin, Josep R. Casas, Montse Pardàs Universitat Politècnica de Catalunya. BARCELONATECH Image and Video Processing

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 21st, 2016 Today Administrivia Free parameters in an approach, model, or algorithm? Egocentric videos by Aisha

More information

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro

Ryerson University CP8208. Soft Computing and Machine Intelligence. Naive Road-Detection using CNNS. Authors: Sarah Asiri - Domenic Curro Ryerson University CP8208 Soft Computing and Machine Intelligence Naive Road-Detection using CNNS Authors: Sarah Asiri - Domenic Curro April 24 2016 Contents 1 Abstract 2 2 Introduction 2 3 Motivation

More information