Multimedia. Sape J. Mullender. Huygens Systems Research Laboratory Universiteit Twente Enschede

Size: px
Start display at page:

Download "Multimedia. Sape J. Mullender. Huygens Systems Research Laboratory Universiteit Twente Enschede"

Transcription

1 Multimedia Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1

2 What is Multimedia? Videophone CD Interactive One socket, many services (video) phone TV video on demand Teletext Computer Computer-supported cooperative work 2

3 Good Multimedia Two classes of media Static: text, images, 3D graphics Continuous: audio, video, sensor data Media are integrated Operating system supports all media Applications can process all media 3

4 Continuous Media Issues in processing continuous media Minimize Latency Minimize Jitter Achieve necessary Throughput Late data is useless data 4

5 Bad data Corrupted data (transmission errors) or late data (retransmissions) is useless and will be dropped on the floor. But if the amount of data lost is small, e.g., one video frame or 20 ms of audio, It is barely noticeable. 5

6 Small Data Units There are two reasons for using small units of data: Reduction of end-to-end latency Loss of an occasional unit is not noticed Error recovery through retransmission is not useful: retransmitted data would arrive too late 6

7 Some Numbers Acceptable end-to-end latency for audio Acceptable length of missing audio unit Acceptable end-to-end latency for video Acceptable length of missing video (one frame) 40 ms 10 ms 40 ms 25 ms Telephone-grade audio, 8-bit samples at 8 KHz CD-quality stereo, 2 16-bit samples at 44.1 KHz Uncompressed video, 25 fps, bit pixels JPEG-compressed video, 25 frames per second MPEG-compressed video, 25 frames per second 64 Kbp 1.4 Mb 200 Mb 8 Mb 4 Mb 7

8 Audio and Video over ATM networks An ATM cell contains 48 bytes Telephone-grade audio audio CD-quality stereophonic audio Uncompressed full-colour video JPEG-compressed video, 25 frames per second MPEG-compressed video, 25 frames per second 6 ms/cell 275 µs/cell 2 µs/cell 60 µs/cell 200 µs/cell 8

9 Cells and Frames If cells were sent separately, hosts might have to deal with up to half a million interrupts per second. Not a good idea. ATM Adaptation Layers group cells in larger units called frames. There were four types of AAL: AAL1: Continuous bit-rate transmission AAL2: Variable bit-rate transmission AAL3: Connection-oriented data AAL4: Connection-less data AAL3 and AAL4 have been merged: AAL3/4. AAL5, the Simple and Efficient Adaptation Layer (SEAL) has been standardized. The need for AAL2 is unclear so it never got standardized. 9

10 Buffering Necessary for jitter elimination Smaller buffers improve latency Bigger buffers improve throughput 10

11 Workstation Architecture 11

12 Problems with bus-based architectures Processing audio and video implies very low cache hit rates Memory is a bottleneck (Pegasus File Server) CPU is involved in all data transfers 12

13 The Desk-Area Network 13

14 Using the Desk-Area Network Memory no longer a central resource CPU manages connections, not transfers Devices can interact directly, without CPU mediation 14

15 The Pegasus Project Sept 1993 Sept 1996: Pegasus I University of Twente and University of Cambridge Nov 1996 Nov 1999: Pegasus II University of Cambridge, University of Glasgow, University of Twente, Swedish Institute for Computer Science, APM Ltd. Cambridge 15

16 Pegasus Architecture 16

17 ATM Camera 17

18 ATM Camera CCD Arrary Scan / Digitise Output Buffers Optional Compress ATM fabric 18

19 Tiles 19

20 ATM Display 20

21 ATM Display 160Mbps 960Mbps Video Frame Buffer ATM fabric CPU Memory 21

22 Display Management 22

23 Experience with ATM Devices All positive: Simple, potentially cheap hardware Does not interfere with processors on the bus Window management mechanisms in hardware, policies still under control of the user Integrates well with existing systems (using ATM networks) ATM will become more standardized than processor buses 23

24 Multimedia and Real time Real-time systems Hard deadlines Bounded load Run times known (and bounded) Schedule guarantees deadlines Multimedia systems Soft deadlines Load is not known a priori Run times often estimated Statistical guarantees at best 24

25 Example Application Federico is an application that runs on Nemesis and shows its capabilities: Process Multimedia Streams in Real Time Synchronize Multimedia Streams Provide Quality-of-Service ( ) Control to Applications Capture, Transport and Render Multimedia Streams with No Discernible Latencies 25

26 Goal Federico is an application that controls multiple cameras in a room. Based on the camera input and the input from several microphones, Federico controls the cameras (pan/tilt/zoom) and, in a continuous process, selects one of the camera outputs for transmission to a remote site. It is Federico s goal to provide to remote viewers, through the lenses of alternating cameras, an effective overview of what is happening in the room. To achieve this goal, Federico tracks people as they move about and locates speakers in space by analysing the microphone inputs. 26

27 Situation 27

28 Federico Architecture 4 ATM audio streams Audio filtering & timing Stream of sightings Audio skeptic Better stream of sightings Geometry queries Geometry queries Geometry server Federico Camera selection Stream of sightings Better stream of sightings Camera tracker Video skeptic Camera control Camera commands Pan/tilt/zoom control... Geometry queries Camera control Pan/tilt/zoom control Camera tracker Stream of sightings Video skeptic MM stream Data stream RPC 28

29 Face Tracking 29

30 Face Tracking 30

31 Face Tracking 31

32 Quality of Service Applications tell the system what resources they need as a function of the quality they can deliver. The system provides resources to applications. The allocation may change over time, but the applications are notified of these changes beforehand. Applications adapt to the resources allocated to them. 32

33 Adaptation Minor: frame rate, frame size, stereo/mono. Major: compression, hardware support Continuous adaptation is hardly useful 33

34 Multimedia Streams A multimedia stream is usually composed of synchronized substreams, e.g., lip-synchronized audio + video. These can be coded in a single data stream. But that makes adaptation to changing resources harder 34

35 Separate Streams Pegasus encodes a set of synchronized multimedia data streams separately and adds a single control/synchronization stream. 35

36 How applications adapt Typically, each stream type has just a few QoS settings, audio, for example, could have 44 KHz stereo, 20 KHz mono, and 8 KHz mono. The applications have code for each setting and switch between them when QoS settings change. Applications consist of management threads that are scheduled conventionally and media threads that are scheduled periodically 36

37 Resource Allocation Each application has a small number of QoS settings. Each QoS setting has a value indicating its QoS and a list of resource quantities necessary to achieve that QoS. Typical resources: CPU bandwidth, Network bandwidth, Special devices (compression device, rendering device, etc.) and device bandwidth (e.g., for an ATM camera). The best resource allocation is that which maximizes the sum of the Qualities of Service of the applications. 37

38 Calculating Resource Allocation Typically, a machine will have no more than eight applications with, perhaps, three or four QoS setting each. Calculating the optimal resource allocation for a machine is straightforward. However, in a distributed setting, there are complicating factors. 38

39 Resource Allocation in a Distributed System Different resource allocators linked together by applications. Closure may become very large and may involve multiple management domains. 39

40 Deliverable and Desirable Applications operating under different resource allocators are responsible for obtaining allocations in each allocation domain that can be combined. A setting in an allocation domain is deliverable if the resource allocator can provide it (given its obligations to other applications) A setting is desirable if the application can make of that setting, given what is deliverable in the other allocation domains of concern. Application tells allocator which settings are desirable; allocator tells application which settings are deliverable (and which one is currently delivered). 40

41 Deliverable and Desirable A setting is desirable in an allocation domain if it is deliverable in all of the others. A setting is deliverable in an allocation domain if the requested resources can be made available to the application. The resources actually allocated are the maxima of the settings that are both desirable and deliverable. 41

42 Matchmaking between theory and practice Here, the choice of a resource-allocation algorithm was dictated to a large extent by practical factors: QoS settings are discrete rather than continuous. A few settings suffice. Separate audio and video streams make separate QoS management possible Each management domain wants to have its own QoS manager (aka, resource allocator). The system must end up with reasonable APIs. 42

Lecture 17: Distributed Multimedia

Lecture 17: Distributed Multimedia 06-06798 Distributed Systems Lecture 17: Distributed Multimedia Distributed Systems 1 Overview Characteristics of multimedia systems audio, video, etc delivery in real time, on time Quality of service

More information

Distributed Multimedia Systems. Introduction

Distributed Multimedia Systems. Introduction Distributed Multimedia Systems Introduction Introducing Multimedia Systems Example target applications networked video libraries, Internet telephony and video conferencing Real time systems performing

More information

Communication in Distributed Systems

Communication in Distributed Systems Communication in Distributed Systems Sape J. Mullender Huygens Systems Research Laboratory Universiteit Twente Enschede 1 Introduction Functions of Communication Transport data between processes, machines,

More information

CS 457 Multimedia Applications. Fall 2014

CS 457 Multimedia Applications. Fall 2014 CS 457 Multimedia Applications Fall 2014 Topics Digital audio and video Sampling, quantizing, and compressing Multimedia applications Streaming audio and video for playback Live, interactive audio and

More information

CS 856 Latency in Communication Systems

CS 856 Latency in Communication Systems CS 856 Latency in Communication Systems Winter 2010 Latency Challenges CS 856, Winter 2010, Latency Challenges 1 Overview Sources of Latency low-level mechanisms services Application Requirements Latency

More information

Multimedia Networking

Multimedia Networking CE443 Computer Networks Multimedia Networking Behnam Momeni Computer Engineering Department Sharif University of Technology Acknowledgments: Lecture slides are from Computer networks course thought by

More information

Multimedia Systems 2011/2012

Multimedia Systems 2011/2012 Multimedia Systems 2011/2012 System Architecture Prof. Dr. Paul Müller University of Kaiserslautern Department of Computer Science Integrated Communication Systems ICSY http://www.icsy.de Sitemap 2 Hardware

More information

3. Quality of Service

3. Quality of Service 3. Quality of Service Usage Applications Learning & Teaching Design User Interfaces Services Content Process ing Security... Documents Synchronization Group Communi cations Systems Databases Programming

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 29 Multimedia Department of Information Technology Eastern Mediterranean University 2/75 Objectives After completing this chapter you should be able to do the following:

More information

Networking Applications

Networking Applications Networking Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab Academy for Science & Technology and Maritime Transport Multimedia Multimedia 1 Outline Audio and Video Services

More information

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach

Chapter 9. Multimedia Networking. Computer Networking: A Top Down Approach Chapter 9 Multimedia Networking A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Distributed Video Systems Chapter 3 Storage Technologies

Distributed Video Systems Chapter 3 Storage Technologies Distributed Video Systems Chapter 3 Storage Technologies Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong Contents 3.1 Introduction 3.2 Magnetic Disks 3.3 Video

More information

CS 218 F Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness. References:

CS 218 F Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness. References: CS 218 F 2003 Nov 3 lecture: Streaming video/audio Adaptive encoding (eg, layered encoding) TCP friendliness References: J. Padhye, V.Firoiu, D. Towsley, J. Kurose Modeling TCP Throughput: a Simple Model

More information

Data Communication Prof.A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 36 Multimedia Networks

Data Communication Prof.A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 36 Multimedia Networks Data Communication Prof.A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture 36 Multimedia Networks Hello and welcome to today s lecture on multimedia networks.

More information

Streaming (Multi)media

Streaming (Multi)media Streaming (Multi)media Overview POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks 1 POTS, IN SIP, H.323 Circuit Switched Networks Packet Switched Networks Circuit Switching Connection-oriented

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Performance of Multimedia Delivery on the Internet Today

COMP 249 Advanced Distributed Systems Multimedia Networking. Performance of Multimedia Delivery on the Internet Today COMP 249 Advanced Distributed Systems Multimedia Networking Performance of Multimedia Delivery on the Internet Today Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill

More information

Communication Problems. Flow Control

Communication Problems. Flow Control Communication Problems Flow, loss, congestion, policing Messages get lost due to several factors, including collisions, lack of buffer space, lack of computing power, etc To allow the flow of data at a

More information

Module 10 MULTIMEDIA SYNCHRONIZATION

Module 10 MULTIMEDIA SYNCHRONIZATION Module 10 MULTIMEDIA SYNCHRONIZATION Lesson 36 Packet architectures and audio-video interleaving Instructional objectives At the end of this lesson, the students should be able to: 1. Show the packet architecture

More information

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets Cell Switching (ATM) Connection-oriented packet-switched network Used in both WAN and LAN settings Signaling (connection setup) Protocol: Q2931 Specified by ATM forum Packets are called cells 5-byte header

More information

Delay Constrained ARQ Mechanism for MPEG Media Transport Protocol Based Video Streaming over Internet

Delay Constrained ARQ Mechanism for MPEG Media Transport Protocol Based Video Streaming over Internet Delay Constrained ARQ Mechanism for MPEG Media Transport Protocol Based Video Streaming over Internet Hong-rae Lee, Tae-jun Jung, Kwang-deok Seo Division of Computer and Telecommunications Engineering

More information

Digital Asset Management 5. Streaming multimedia

Digital Asset Management 5. Streaming multimedia Digital Asset Management 5. Streaming multimedia 2015-10-29 Keys of Streaming Media Algorithms (**) Standards (*****) Complete End-to-End systems (***) Research Frontiers(*) Streaming... Progressive streaming

More information

Chapter 20: Multimedia Systems

Chapter 20: Multimedia Systems Chapter 20: Multimedia Systems, Silberschatz, Galvin and Gagne 2009 Chapter 20: Multimedia Systems What is Multimedia? Compression Requirements of Multimedia Kernels CPU Scheduling Disk Scheduling Network

More information

Chapter 20: Multimedia Systems. Operating System Concepts 8 th Edition,

Chapter 20: Multimedia Systems. Operating System Concepts 8 th Edition, Chapter 20: Multimedia Systems, Silberschatz, Galvin and Gagne 2009 Chapter 20: Multimedia Systems What is Multimedia? Compression Requirements of Multimedia Kernels CPU Scheduling Disk Scheduling Network

More information

Chapter 28. Multimedia

Chapter 28. Multimedia Chapter 28. Multimedia 28-1 Internet Audio/Video Streaming stored audio/video refers to on-demand requests for compressed audio/video files Streaming live audio/video refers to the broadcasting of radio

More information

Multimedia Networking

Multimedia Networking Multimedia Networking Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse473-09/

More information

CS640: Introduction to Computer Networks. Application Classes. Application Classes (more) 11/20/2007

CS640: Introduction to Computer Networks. Application Classes. Application Classes (more) 11/20/2007 CS640: Introduction to Computer Networks Aditya Akella Lecture 21 - Multimedia Networking Application Classes Typically sensitive to delay, but can tolerate packet loss (would cause minor glitches that

More information

Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy

Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy Modeling of an MPEG Audio Layer-3 Encoder in Ptolemy Patrick Brown EE382C Embedded Software Systems May 10, 2000 $EVWUDFW MPEG Audio Layer-3 is a standard for the compression of high-quality digital audio.

More information

Transporting audio-video. over the Internet

Transporting audio-video. over the Internet Transporting audio-video over the Internet Key requirements Bit rate requirements Audio requirements Video requirements Delay requirements Jitter Inter-media synchronization On compression... TCP, UDP

More information

ETSF10 Internet Protocols Transport Layer Protocols

ETSF10 Internet Protocols Transport Layer Protocols ETSF10 Internet Protocols Transport Layer Protocols 2012, Part 2, Lecture 2.1 Kaan Bür, Jens Andersson Transport Layer Protocols Process-to-process delivery [ed.4 ch.23.1] [ed.5 ch.24.1] Transmission Control

More information

15: OS Scheduling and Buffering

15: OS Scheduling and Buffering 15: OS Scheduling and ing Mark Handley Typical Audio Pipeline (sender) Sending Host Audio Device Application A->D Device Kernel App Compress Encode for net RTP ed pending DMA to host (~10ms according to

More information

ELEC 691X/498X Broadcast Signal Transmission Winter 2018

ELEC 691X/498X Broadcast Signal Transmission Winter 2018 ELEC 691X/498X Broadcast Signal Transmission Winter 2018 Instructor: DR. Reza Soleymani, Office: EV 5.125, Telephone: 848 2424 ext.: 4103. Office Hours: Wednesday, Thursday, 14:00 15:00 Slide 1 In this

More information

QUALITY of SERVICE. Introduction

QUALITY of SERVICE. Introduction QUALITY of SERVICE Introduction There are applications (and customers) that demand stronger performance guarantees from the network than the best that could be done under the circumstances. Multimedia

More information

Overview of Networks

Overview of Networks CMPT765/408 08-1 Overview of Networks Qianping Gu 1 Overview of Networks This note is mainly based on Chapters 1-2 of High Performance of Communication Networks by J. Walrand and P. Pravin, 2nd ed, and

More information

Multimedia Storage Servers

Multimedia Storage Servers Multimedia Storage Servers Cyrus Shahabi shahabi@usc.edu Computer Science Department University of Southern California Los Angeles CA, 90089-0781 http://infolab.usc.edu 1 OUTLINE Introduction Continuous

More information

ES623 Networked Embedded Systems

ES623 Networked Embedded Systems ES623 Networked Embedded Systems Introduction to Network models & Data Communication 16 th April 2013 OSI Models An ISO standard that covers all aspects of network communication is the Open Systems Interconnection

More information

Changing your point of view SNC-P5. Sony Network Camera.

Changing your point of view SNC-P5. Sony Network Camera. Changing your point of view SNC-P5 Sony Network Camera www.sonybiz.net/networkvideo To meet the growing demand for high quality, affordable remote monitoring systems, Sony has introduced a new addition

More information

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet

CS519: Computer Networks. Lecture 9: May 03, 2004 Media over Internet : Computer Networks Lecture 9: May 03, 2004 Media over Internet Media over the Internet Media = Voice and Video Key characteristic of media: Realtime Which we ve chosen to define in terms of playback,

More information

Extensions to RTP to support Mobile Networking: Brown, Singh 2 within the cell. In our proposed architecture [3], we add a third level to this hierarc

Extensions to RTP to support Mobile Networking: Brown, Singh 2 within the cell. In our proposed architecture [3], we add a third level to this hierarc Extensions to RTP to support Mobile Networking Kevin Brown Suresh Singh Department of Computer Science Department of Computer Science University of South Carolina Department of South Carolina Columbia,

More information

L2: Bandwidth and Latency. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

L2: Bandwidth and Latency. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 L2: Bandwidth and Latency Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 1 Acknowledgements Some pictures used in this presentation were obtained

More information

Module Introduction. Content 15 pages 2 questions. Learning Time 25 minutes

Module Introduction. Content 15 pages 2 questions. Learning Time 25 minutes Purpose The intent of this module is to introduce you to the multimedia features and functions of the i.mx31. You will learn about the Imagination PowerVR MBX- Lite hardware core, graphics rendering, video

More information

Multimedia Applications. Classification of Applications. Transport and Network Layer

Multimedia Applications. Classification of Applications. Transport and Network Layer Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Communication Protocols Quality of Service and Resource Management

More information

Recommended Readings

Recommended Readings Lecture 11: Media Adaptation Scalable Coding, Dealing with Errors Some slides, images were from http://ip.hhi.de/imagecom_g1/savce/index.htm and John G. Apostolopoulos http://www.mit.edu/~6.344/spring2004

More information

NTSC/PAL. Network Camera SNC-P1

NTSC/PAL. Network Camera SNC-P1 NTSC/PAL Network Camera SNC-P1 FEATURES All-in-One Network Camera Enter the World of IP Monitoring with the Sony SNC-P1 MPEG-4/JPEG Network Camera Sony introduces its new SNC-P1 MPEG-4/JPEG network color

More information

Chapter 6: Congestion Control and Resource Allocation

Chapter 6: Congestion Control and Resource Allocation Chapter 6: Congestion Control and Resource Allocation CS/ECPE 5516: Comm. Network Prof. Abrams Spring 2000 1 Section 6.1: Resource Allocation Issues 2 How to prevent traffic jams Traffic lights on freeway

More information

Transport Layer Protocols TCP

Transport Layer Protocols TCP Transport Layer Protocols TCP Gail Hopkins Introduction Features of TCP Packet loss and retransmission Adaptive retransmission Flow control Three way handshake Congestion control 1 Common Networking Issues

More information

Lecture 13: Transportation layer

Lecture 13: Transportation layer Lecture 13: Transportation layer Contents Goals of transportation layer UDP TCP Port vs. Socket QoS AE4B33OSS Lecture 12 / Page 2 Goals of transportation layer End-to-end communication Distinguish different

More information

CineLink HD-D IP Decoder

CineLink HD-D IP Decoder CineLink HD-D IP Decoder [product image] We are receiving data on a moment-to-moment basis from all of our programs, and the video wall gives us a snapshot of events happening globally. - Ed Shubert, Senior

More information

Assuring Media Quality in IP Video Networks. Jim Welch IneoQuest Technologies

Assuring Media Quality in IP Video Networks. Jim Welch IneoQuest Technologies Assuring Media Quality in IP Video Networks Jim Welch IneoQuest Technologies Agenda The challenge: Viewer satisfaction requires High Program Availability High Availability metric - what about five 9s?

More information

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks

Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Modelling a Video-on-Demand Service over an Interconnected LAN and ATM Networks Kok Soon Thia and Chen Khong Tham Dept of Electrical Engineering National University of Singapore Tel: (65) 874-5095 Fax:

More information

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms

Chapter 13 TRANSPORT. Mobile Computing Winter 2005 / Overview. TCP Overview. TCP slow-start. Motivation Simple analysis Various TCP mechanisms Overview Chapter 13 TRANSPORT Motivation Simple analysis Various TCP mechanisms Distributed Computing Group Mobile Computing Winter 2005 / 2006 Distributed Computing Group MOBILE COMPUTING R. Wattenhofer

More information

CODING METHOD FOR EMBEDDING AUDIO IN VIDEO STREAM. Harri Sorokin, Jari Koivusaari, Moncef Gabbouj, and Jarmo Takala

CODING METHOD FOR EMBEDDING AUDIO IN VIDEO STREAM. Harri Sorokin, Jari Koivusaari, Moncef Gabbouj, and Jarmo Takala CODING METHOD FOR EMBEDDING AUDIO IN VIDEO STREAM Harri Sorokin, Jari Koivusaari, Moncef Gabbouj, and Jarmo Takala Tampere University of Technology Korkeakoulunkatu 1, 720 Tampere, Finland ABSTRACT In

More information

How to achieve low latency audio/video streaming over IP network?

How to achieve low latency audio/video streaming over IP network? February 2018 How to achieve low latency audio/video streaming over IP network? Jean-Marie Cloquet, Video Division Director, Silex Inside Gregory Baudet, Marketing Manager, Silex Inside Standard audio

More information

Mobile Transport Layer

Mobile Transport Layer Mobile Transport Layer 1 Transport Layer HTTP (used by web services) typically uses TCP Reliable transport between TCP client and server required - Stream oriented, not transaction oriented - Network friendly:

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode ATM Asynchronous Transfer Mode CS420/520 Axel Krings Page 1 Protocol Architecture (diag) CS420/520 Axel Krings Page 2 1 Reference Model Planes User plane Provides for user information transfer Control

More information

Introduction to LAN/WAN. Application Layer 4

Introduction to LAN/WAN. Application Layer 4 Introduction to LAN/WAN Application Layer 4 Multimedia Multimedia: Audio + video Human ear: 20Hz 20kHz, Dogs hear higher freqs DAC converts audio waves to digital E.g PCM uses 8-bit samples 8000 times

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

MA5400 IP Video Gateway. Introduction. Summary of Features

MA5400 IP Video Gateway. Introduction. Summary of Features MA5400 IP Video Gateway Introduction The MA5400 IP Video Gateway bridges the gap between the MPEG-2 and IP domains providing an innovative solution to the need to transport real-time broadcast quality

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics

More information

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15

Introduction to Real-Time Communications. Real-Time and Embedded Systems (M) Lecture 15 Introduction to Real-Time Communications Real-Time and Embedded Systems (M) Lecture 15 Lecture Outline Modelling real-time communications Traffic and network models Properties of networks Throughput, delay

More information

Multimedia Networking Introduction

Multimedia Networking Introduction Multimedia Networking Introduction What is Multimedia? How does Multimedia Communication Differ? Multimedia Data Exchange Multimedia Communication Aspects Multimedia Network Requirements What is Multimedia?

More information

SNC-DF40P High Resolution Minidome Color Camera with 10/100 Base T Ethernet

SNC-DF40P High Resolution Minidome Color Camera with 10/100 Base T Ethernet ARCHITECT & ENGINEER SPECIFICATIONS SECTION 16780 VIDEO SURVEILLANCE SYSTEMS SNC-DF40P High Resolution Minidome Color Camera with 10/100 Base T Ethernet PART 2 PRODUCTS 2.01 CCTV / NETWORK CAMERA SPECIFICATIONS

More information

Multimedia Networking Research at UNC. University of North Carolina at Chapel Hill. Multimedia Networking Research at UNC

Multimedia Networking Research at UNC. University of North Carolina at Chapel Hill. Multimedia Networking Research at UNC University of North Carolina at Chapel Hill Multimedia Networking Research at UNC Adaptive, Best-Effort Congestion Control Mechanisms for Real-Time Communications on the Internet Kevin Jeffay F. Donelson

More information

Multimedia. Multimedia Networks and Applications

Multimedia. Multimedia Networks and Applications Course Code 005636 (Fall 2017) Multimedia Multimedia Networks and Applications Prof. S. M. Riazul Islam, Dept. of Computer Engineering, Sejong University, Korea E-mail: riaz@sejong.ac.kr Contents Synchronization

More information

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria

A Predictable RTOS. Mantis Cheng Department of Computer Science University of Victoria A Predictable RTOS Mantis Cheng Department of Computer Science University of Victoria Outline I. Analysis of Timeliness Requirements II. Analysis of IO Requirements III. Time in Scheduling IV. IO in Scheduling

More information

LIVE MUSIC PERFORMANCES OVER HIGH- SPEED IP NETWORKS

LIVE MUSIC PERFORMANCES OVER HIGH- SPEED IP NETWORKS LIVE MUSIC PERFORMANCES OVER HIGH- SPEED IP NETWORKS Stefan Karapetkov Polycom, Inc. e-mail: Stefan.Karapetkov@polycom.com ABSTRACT High-speed IP networks are creating opportunities for new kinds of real-time

More information

Multimedia Communications

Multimedia Communications Multimedia Communications Directions and Innovations Introduction István Beszteri istvan.beszteri@hut.fi Multimedia Communications: Source Representations, Networks and Applications! Introduction! Networks

More information

Multimedia Applications over Packet Networks

Multimedia Applications over Packet Networks Multimedia Networking and Quality of Service Mario Baldi Technical Univeristy of Torino Computer Engineering Department mario.baldi@polito.it +39 011 564 7067 staff.polito.it/mario.baldi Nota di Copyright

More information

MODELING AND SIMULATION OF MPEG-2 VIDEO TRANSPORT OVER ATM NETWOR.KS CONSIDERING THE JITTER EFFECT

MODELING AND SIMULATION OF MPEG-2 VIDEO TRANSPORT OVER ATM NETWOR.KS CONSIDERING THE JITTER EFFECT MODELING AND SIMULATION OF MPEG-2 VIDEO TRANSPORT OVER ATM NETWOR.KS CONSIDERING THE JITTER EFFECT Wenwu Zhu: Yiwei Thomas Hou, and Yao Wang Polytechnic University Brooklyn, NY 11201 Ya-Qin Zhang David

More information

COMP 249 Advanced Distributed Systems Multimedia Networking. Multimedia Applications & User Requirements

COMP 249 Advanced Distributed Systems Multimedia Networking. Multimedia Applications & User Requirements COMP 249 Advanced Distributed Systems Multimedia Networking Multimedia Applications & User Requirements Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs.unc.edu

More information

Module 6 STILL IMAGE COMPRESSION STANDARDS

Module 6 STILL IMAGE COMPRESSION STANDARDS Module 6 STILL IMAGE COMPRESSION STANDARDS Lesson 19 JPEG-2000 Error Resiliency Instructional Objectives At the end of this lesson, the students should be able to: 1. Name two different types of lossy

More information

Agenda. Introduction Market trend and application 1394 Market Analysis Data 1394 and industry Applications. Other Technologies USB DVI

Agenda. Introduction Market trend and application 1394 Market Analysis Data 1394 and industry Applications. Other Technologies USB DVI Agenda Introduction Market trend and application 1394 Market Analysis Data 1394 and industry Applications Technology What is 1394? Why 1394? Applications 1394 Protocol PHY Link Layer Transaction Layer

More information

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review

Administrivia. CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Disks (cont.) Disks - review Administrivia CMSC 411 Computer Systems Architecture Lecture 19 Storage Systems, cont. Homework #4 due Thursday answers posted soon after Exam #2 on Thursday, April 24 on memory hierarchy (Unit 4) and

More information

Megapixel Networking 101. Why Megapixel?

Megapixel Networking 101. Why Megapixel? Megapixel Networking 101 Ted Brahms Director Field Applications, Arecont Vision Why Megapixel? Most new surveillance projects are IP Megapixel cameras are IP Megapixel provides incentive driving the leap

More information

Quality of Service (QoS)

Quality of Service (QoS) Quality of Service (QoS) The Internet was originally designed for best-effort service without guarantee of predictable performance. Best-effort service is often sufficient for a traffic that is not sensitive

More information

OPERATING SYSTEMS CS136

OPERATING SYSTEMS CS136 OPERATING SYSTEMS CS136 Jialiang LU Jialiang.lu@sjtu.edu.cn Based on Lecture Notes of Tanenbaum, Modern Operating Systems 3 e, 1 Chapter 5 INPUT/OUTPUT 2 Overview o OS controls I/O devices => o Issue commands,

More information

Image and video processing

Image and video processing Image and video processing Digital video Dr. Pengwei Hao Agenda Digital video Video compression Video formats and codecs MPEG Other codecs Web video - 2 - Digital Video Until the arrival of the Pentium

More information

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols

Module objectives. Integrated services. Support for real-time applications. Real-time flows and the current Internet protocols Integrated services Reading: S. Keshav, An Engineering Approach to Computer Networking, chapters 6, 9 and 4 Module objectives Learn and understand about: Support for real-time applications: network-layer

More information

Multimedia Networking and Quality of Service

Multimedia Networking and Quality of Service Multimedia Networking and Quality of Service Mario Baldi Politecnico di Torino (Technical Univeristy of Torino) Department of Computer Engineering mario.baldi [at] polito.it +39 011 564 7067 staff.polito.it/mario.baldi

More information

Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder. Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India

Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder. Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India Scalable Multi-DM642-based MPEG-2 to H.264 Transcoder Arvind Raman, Sriram Sethuraman Ittiam Systems (Pvt.) Ltd. Bangalore, India Outline of Presentation MPEG-2 to H.264 Transcoding Need for a multiprocessor

More information

Implementing Real-Time Transport Services over an Ossified Network

Implementing Real-Time Transport Services over an Ossified Network Implementing Real-Time Transport Services over an Ossified Network Stephen McQuistin and Colin Perkins University of Glasgow Marwan Fayed University of Stirling TAPS WG IETF 96, July 2016, Berlin Approach

More information

Real-time scheduling of a tertiary-storage jukebox

Real-time scheduling of a tertiary-storage jukebox Real-time scheduling of a tertiary-storage jukebox Maria Eva Lijding, Pierre Jansen, Sape Mullender Distributed and Embedded Systems University of Twente, Netherlands lijding@cs.utwente.nl Abstract We

More information

CS 528 Mobile and Ubiquitous Computing Lecture 4a: Playing Sound and Video Emmanuel Agu

CS 528 Mobile and Ubiquitous Computing Lecture 4a: Playing Sound and Video Emmanuel Agu CS 528 Mobile and Ubiquitous Computing Lecture 4a: Playing Sound and Video Emmanuel Agu Reminder: Final Project 1-slide from group in 2 weeks Thursday October 11: 2/30 of final project grade Slide should

More information

CS4700/CS5700 Fundamentals of Computer Networks

CS4700/CS5700 Fundamentals of Computer Networks CS4700/CS5700 Fundamentals of Computer Networks Lecture 14: TCP Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Alan Mislove amislove at ccs.neu.edu Northeastern

More information

CSE 461 MIDTERM REVIEW

CSE 461 MIDTERM REVIEW CSE 461 MIDTERM REVIEW NETWORK LAYERS & ENCAPSULATION Application Application Transport Transport Network Network Data Link/ Physical Data Link/ Physical APPLICATION LAYER Application Application Used

More information

Congestion Manager. Nick Feamster Computer Networks. M.I.T. Laboratory for Computer Science. October 24, 2001

Congestion Manager. Nick Feamster Computer Networks. M.I.T. Laboratory for Computer Science. October 24, 2001 Congestion Manager Nick Feamster M.I.T. Laboratory for Computer Science 6.829 Computer Networks October 24, 2001 Outline Motivation (problem CM solves?) Sharing info on concurrent flows Enable application

More information

Fast RTP Retransmission for IPTV - Implementation and Evaluation

Fast RTP Retransmission for IPTV - Implementation and Evaluation Fast RTP Retransmission for IPTV - Implementation and Evaluation M.J. Prins, M. Brunner, G. Karagiannis, H. Lundqvist, and G. Nunzi Abstract With the deployment of IPTV reliability for multicast is becoming

More information

VMDC Version 7.0 Performance Guide

VMDC Version 7.0 Performance Guide VMDC Version 7.0 Performance Guide General With the release of the VMDC version 7.0 Vicon has introduced an improved display performance algorithm. As before, using multiple monitors and maximizing the

More information

Async Programming & Networking. CS 475, Spring 2018 Concurrent & Distributed Systems

Async Programming & Networking. CS 475, Spring 2018 Concurrent & Distributed Systems Async Programming & Networking CS 475, Spring 2018 Concurrent & Distributed Systems Review: Resource Metric Processes images Camera Sends images Image Service 2 Review: Resource Metric Processes images

More information

Outline 9.2. TCP for 2.5G/3G wireless

Outline 9.2. TCP for 2.5G/3G wireless Transport layer 9.1 Outline Motivation, TCP-mechanisms Classical approaches (Indirect TCP, Snooping TCP, Mobile TCP) PEPs in general Additional optimizations (Fast retransmit/recovery, Transmission freezing,

More information

Making IP Networks Voice Enabled

Making IP Networks Voice Enabled Human Echo Human CSMA/CD Human Patience Making IP Networks Voice Enabled A 1999 White Paper Updated This is a white paper that was originally written in June of 1999 when IP was just beginning to be used

More information

Security Management System Camera Configuration Guidelines (Document Version )

Security Management System Camera Configuration Guidelines (Document Version ) Security Management System Camera Configuration Guidelines (Document Version 12.12.15.01) Note Camera in this document related to all video streaming devices like video cameras, encoders etc. Security

More information

Fundamentals of Video Compression. Video Compression

Fundamentals of Video Compression. Video Compression Fundamentals of Video Compression Introduction to Digital Video Basic Compression Techniques Still Image Compression Techniques - JPEG Video Compression Introduction to Digital Video Video is a stream

More information

Hardware. Multimedia computers. Embedded devices. Mobile Phones. Multimedia PC (MPC) Current equipment

Hardware. Multimedia computers. Embedded devices. Mobile Phones. Multimedia PC (MPC) Current equipment Hardware Multimedia computers Video and graphics Audio Telephone, video conference, and networks CD and DVD USB and FireWire Processors Video for Windows, DirectX, and ActiveMovie Petri Vuorimaa 1 Multimedia

More information

Adaptive Playout Buffering for H.323 Voice over IP Applications

Adaptive Playout Buffering for H.323 Voice over IP Applications Adaptive Playout Buffering for H.323 Voice over IP Applications M. Narbutt and L. Murphy Department of Computer Science University College Dublin Belfield, Dublin 4 Abstract In this paper we investigate

More information

SE300 SWE Practices. Lecture 10 Introduction to Event- Driven Architectures. Tuesday, March 17, Sam Siewert

SE300 SWE Practices. Lecture 10 Introduction to Event- Driven Architectures. Tuesday, March 17, Sam Siewert SE300 SWE Practices Lecture 10 Introduction to Event- Driven Architectures Tuesday, March 17, 2015 Sam Siewert Copyright {c} 2014 by the McGraw-Hill Companies, Inc. All rights Reserved. Four Common Types

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

A Scalable Multiprocessor for Real-time Signal Processing

A Scalable Multiprocessor for Real-time Signal Processing A Scalable Multiprocessor for Real-time Signal Processing Daniel Scherrer, Hans Eberle Institute for Computer Systems, Swiss Federal Institute of Technology CH-8092 Zurich, Switzerland {scherrer, eberle}@inf.ethz.ch

More information

Multimedia: video ... frame i+1

Multimedia: video ... frame i+1 Multimedia: video video: sequence of images displayed at constant rate e.g. 24 images/sec digital image: array of pixels each pixel represented by bits coding: use redundancy within and between images

More information

Streaming Video and Throughput Uplink and Downlink

Streaming Video and Throughput Uplink and Downlink Streaming Video and Throughput Uplink and Downlink IPTV IPTV - Digital TV delivered using technologies used for computer network. Internet Protocols (HTTP, RTP, RTSP, IGMP) Copyright 2017 Cambium Networks,

More information

Application and Desktop Sharing. Omer Boyaci November 1, 2007

Application and Desktop Sharing. Omer Boyaci November 1, 2007 Application and Desktop Sharing Omer Boyaci November 1, 2007 Overview Introduction Demo Architecture Challenges Features Conclusion Application Sharing Models Application specific + Efficient - Participants

More information