Random-Access Memory (RAM) CISC 360. The Memory Hierarchy Nov 24, Conventional DRAM Organization. SRAM vs DRAM Summary.

Size: px
Start display at page:

Download "Random-Access Memory (RAM) CISC 360. The Memory Hierarchy Nov 24, Conventional DRAM Organization. SRAM vs DRAM Summary."

Transcription

1 CISC 36 Random-ccess Memory (RM) The Memory Hierarchy Nov 24, 29 class12.ppt 2 CISC 36 Fa9 SRM vs DRM Summary Conventional DRM Organization Tran. ccess per bit time Persist?Sensitive? Cost pplications SRM 6 1X Yes No 1x cache memories DRM 1 1X No Yes 1X Main memories, frame buffers (to CPU) 2 bits addr 8 bits data 16 x 8 DRM chip cols rows 2 3 supercell (2,1) 3 CISC 36 Fa9 4 internal row buffer CISC 36 Fa9 Page 1

2 Reading DRM Supercell (2,1) Reading DRM Supercell (2,1) RS = 2 2 addr 8 data 16 x 8 DRM chip 1 rows 2 3 cols To CPU supercell (2,1) CS = 1 2 addr 8 data 16 x 8 DRM chip 1 rows 2 3 cols internal row buffer CISC 36 Fa9 supercell 6 internal row buffer (2,1) CISC 36 Fa9 Memory Modules Enhanced DRMs addr (row = i, col = j) DRM 7 DRM : supercell (i,j) 64 MB module consisting of eight 8Mx8 DRMs bits bits bits bits bits bits bits bits bit doubleword at main address 8 7 Memory 64-bit doubleword 7 CISC 36 Fa9 8 CISC 36 Fa9 Page 2

3 Nonvolatile Memories Typical Bus Structure Connecting CPU and Memory CPU chip system bus bus IO bridge main 9 CISC 36 Fa9 1 CISC 36 Fa9 Memory Read Transaction (1) Memory Read Transaction (2) Load operation: movl, Load operation: movl, IO bridge main x IO bridge x main x 11 CISC 36 Fa9 12 CISC 36 Fa9 Page 3

4 Memory Read Transaction (3) Memory Write Transaction (1) Load operation: movl, Store operation: movl, x y IO bridge main x IO bridge main 13 CISC 36 Fa9 14 CISC 36 Fa9 Memory Write Transaction (2) Memory Write Transaction (3) Store operation: movl, Store operation: movl, y y IO bridge y main IO bridge main y 15 CISC 36 Fa9 16 CISC 36 Fa9 Page 4

5 Disk Geometry Disk Geometry (Muliple-Platter View) cylinder k tracks surface track k gaps surface surface 1 surface 2 surface 3 surface 4 surface 5 platter platter 1 platter 2 sectors 17 CISC 36 Fa9 18 CISC 36 Fa9 Disk Capacity Computing Disk Capacity 19 CISC 36 Fa9 2 CISC 36 Fa9 Page 5

6 Disk Operation (Single-Platter View) Disk Operation (Multi-Platter View) The surface spins at a fixed rotational rate The readwrite head is attached to the end of the arm and flies over the surface on a thin cushion of air. readwrite heads move in unison from cylinder to cylinder arm By moving radially, the arm can position the readwrite head over any track. 21 CISC 36 Fa9 22 CISC 36 Fa9 Disk ccess Time Disk ccess Time Example 23 CISC 36 Fa9 24 CISC 36 Fa9 Page 6

7 Logical Disk Blocks IO Bus CPU chip system bus bus IO bridge main USB graphics adapter IO bus Expansion slots for other devices such as network adapters. 25 CISC 36 Fa9 mousekeyboard monitor 26 CISC 36 Fa9 Reading a Disk Sector (1) CPU chip CPU initiates a read by writing a command, logical block number, and destination address to a port (address) associated with. Reading a Disk Sector (2) CPU chip Disk reads the sector and performs a direct access (DM) transfer into main. main main IO bus IO bus USB graphics adapter USB graphics adapter mousekeyboard monitor 27 CISC 36 Fa9 mousekeyboard monitor 28 CISC 36 Fa9 Page 7

8 Reading a Disk Sector (3) CPU chip When the DM transfer completes, the notifies the CPU with an interrupt (i.e., asserts a special interrupt pin on the CPU) Storage Trends metric :198 SRM $MB 19,2 2, access (ns) IO bus main DRM metric :198 $MB 8, , access (ns) typical size(mb) , metric :198 USB mousekeyboard graphics adapter monitor 29 CISC 36 Fa9 Disk $MB , access (ms) typical size(mb) , 9, 9, 3 (Culled from back issues of Byte and PC Magazine) CISC 36 Fa9 CPU Clock Rates The CPU-Memory Gap :198 processor Pent P-III clock rate(mhz) cycle time(ns) 1, ns 1,, 1,, 1,, 1, 1, 1, year Disk seek time DRM access time SRM access time CPU cycle time 31 CISC 36 Fa9 32 CISC 36 Fa9 Page 8

9 Locality Locality Example Locality Example: Data sum = ; for (i = ; i < n; i++) sum += a[i]; Reference array elements in succession return sum; (stride-1 reference pattern): Spatial locality Reference sum each iteration: Temporal locality Instructions Reference instructions in sequence:spatial locality Cycle through loop repeatedly: Temporal locality 33 CISC 36 Fa9 int sumarrayrows(int a[m][n]) { int i, j, sum = ; } for (i = ; i < M; i++) for (j = ; j < N; j++) sum += a[i][j]; return sum 34 CISC 36 Fa9 Locality Example Locality Example int sumarraycols(int a[m][n]) { int i, j, sum = ; } for (j = ; j < N; j++) for (i = ; i < M; i++) sum += a[i][j]; return sum int sumarray3d(int a[m][n][n]) { int i, j, k, sum = ; } for (i = ; i < M; i++) for (j = ; j < N; j++) for (k = ; k < N; k++) sum += a[k][i][j]; return sum 35 CISC 36 Fa9 36 CISC 36 Fa9 Page 9

10 Memory Hierarchies n Example Memory Hierarchy Smaller, faster, and costlier (per byte) storage devices Larger, slower, and cheaper (per byte) storage devices L5: L4: L3: L2: L: registers L1: on-chip L1 cache (SRM) off-chip L2 cache (SRM) main (DRM) local secondary storage (local s) remote secondary storage (distributed file systems, Web servers) CPU registers hold words retrieved from L1 cache. L1 cache holds cache lines retrieved from the L2 cache. L2 cache holds cache lines retrieved from main. Main holds blocks retrieved from local s. Local s hold files retrieved from s on remote network servers. 37 CISC 36 Fa9 38 CISC 36 Fa9 Caches Caching in a Memory Hierarchy Level k: Smaller, faster, more expensive device at level k caches a subset of the blocks from level k Data is copied between levels in block-sized transfer units Level k+1: Larger, slower, cheaper storage device at level k+1 is partitioned into blocks. 39 CISC 36 Fa9 4 CISC 36 Fa9 Page 1

11 General Caching Concepts General Caching Concepts Request Level k: * * Request 12 Level k+1: * CISC 36 Fa9 42 CISC 36 Fa9 Examples of Caching in the Hierarchy Cache Type Registers TLB L1 cache L2 cache Virtual Memory Buffer cache ddress translations 32-byte block Network buffer Parts of files cache Browser cache Web pages Web cache What Cached 4-byte word 32-byte block 4-KB page Parts of files Web pages Where Cached CPU registers On-Chip TLB On-Chip L1 Off-Chip L2 Main Main Local Local Remote server s Latency (cycles) Managed By Compiler Hardware 1 Hardware 1 Hardware 1 Hardware +OS 1 OS 1,, FSNFS client 1,, Web browser 1,,, Web proxy server 43 CISC 36 Fa9 Page 11

Key features. ! RAM is packaged as a chip.! Basic storage unit is a cell (one bit per cell).! Multiple RAM chips form a memory.

Key features. ! RAM is packaged as a chip.! Basic storage unit is a cell (one bit per cell).! Multiple RAM chips form a memory. class12.ppt 15-213 The course that gives CMU its Zip! The Memory Hierarchy Oct. 3, 22 Topics! Storage technologies and trends! Locality of reference! Caching in the hierarchy Random-ccess Memory (RM) Key

More information

Random-Access Memory (RAM) Lecture 13 The Memory Hierarchy. Conventional DRAM Organization. SRAM vs DRAM Summary. Topics. d x w DRAM: Key features

Random-Access Memory (RAM) Lecture 13 The Memory Hierarchy. Conventional DRAM Organization. SRAM vs DRAM Summary. Topics. d x w DRAM: Key features Random-ccess Memory (RM) Lecture 13 The Memory Hierarchy Topics Storage technologies and trends Locality of reference Caching in the hierarchy Key features RM is packaged as a chip. Basic storage unit

More information

CISC 360. The Memory Hierarchy Nov 13, 2008

CISC 360. The Memory Hierarchy Nov 13, 2008 CISC 360 The Memory Hierarchy Nov 13, 2008 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class12.ppt Random-Access Memory (RAM) Key features RAM is packaged

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization The Memory Hierarchy Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, SPRING 2013 TOPICS TODAY End of the Semester Stuff Homework 5 Memory Hierarchy Storage Technologies (RAM & Disk) Caching END OF

More information

The Memory Hierarchy Sept 29, 2006

The Memory Hierarchy Sept 29, 2006 15-213 The Memory Hierarchy Sept 29, 2006 Topics Storage technologies and trends Locality of reference Caching in the memory hierarchy class10.ppt Random-Access Memory (RAM) Key features RAM is traditionally

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, FALL 2012

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, FALL 2012 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 26, FALL 2012 TOPICS TODAY Homework 5 RAM in Circuits Memory Hierarchy Storage Technologies (RAM & Disk) Caching HOMEWORK 5 RAM IN

More information

Announcements. Outline

Announcements. Outline 15-13 The course that gives CMU its Zip! The Memory Hierarchy Feb. 14, 8 Topics Storage technologies and trends Locality of reference Caching in the hierarchy nnouncements Recitation room changes C (Nate)

More information

Giving credit where credit is due

Giving credit where credit is due CSCE J Computer Organization The Memor Hierarch Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created b Drs. Brant and O Hallaron,

More information

Random-Access Memory (RAM) CS429: Computer Organization and Architecture. SRAM and DRAM. Flash / RAM Summary. Storage Technologies

Random-Access Memory (RAM) CS429: Computer Organization and Architecture. SRAM and DRAM. Flash / RAM Summary. Storage Technologies Random-ccess Memory (RM) CS429: Computer Organization and rchitecture Dr. Bill Young Department of Computer Science University of Texas at ustin Key Features RM is packaged as a chip The basic storage

More information

Today. The Memory Hierarchy. Random-Access Memory (RAM) Nonvolatile Memories. Traditional Bus Structure Connecting CPU and Memory

Today. The Memory Hierarchy. Random-Access Memory (RAM) Nonvolatile Memories. Traditional Bus Structure Connecting CPU and Memory Today The Hierarchy Storage technologies and trends Locality of reference Caching in the hierarchy CSci 1: Machine rchitecture and Organization November 5th-7th, 18 Your instructor: Stephen McCamant Based

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 12: The Memory Hierarchy John Shen & Zhiyi Yu October 10, 2016 Required Reading Assignment: Chapter 6 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron

More information

Computer Systems. Memory Hierarchy. Han, Hwansoo

Computer Systems. Memory Hierarchy. Han, Hwansoo Computer Systems Memory Hierarchy Han, Hwansoo Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip. Basic storage unit is normally a cell (one bit per cell). Multiple RAM chips

More information

Random Access Memory (RAM)

Random Access Memory (RAM) Random Access Memory (RAM) Key features RAM is traditionally packaged as a chip. Basic storage unit is normally a cell (one bit per cell). Multiple RAM chips form a memory. Static RAM (SRAM) Each cell

More information

The Memory Hierarchy. Computer Organization 2/12/2015. CSC252 - Spring Memory. Conventional DRAM Organization. Reading DRAM Supercell (2,1)

The Memory Hierarchy. Computer Organization 2/12/2015. CSC252 - Spring Memory. Conventional DRAM Organization. Reading DRAM Supercell (2,1) Computer Organization 115 The Hierarch Kai Shen Random access memor (RM) RM is traditionall packaged as a chip. Basic storage unit is normall a cell (one bit per cell). Multiple RM chips form a memor.

More information

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313.

NEXT SET OF SLIDES FROM DENNIS FREY S FALL 2011 CMSC313. NEXT SET OF SLIDES FROM DENNIS FREY S FALL 211 CMSC313 http://www.csee.umbc.edu/courses/undergraduate/313/fall11/" The Memory Hierarchy " Topics" Storage technologies and trends" Locality of reference"

More information

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University

CS 201 The Memory Hierarchy. Gerson Robboy Portland State University CS 201 The Memory Hierarchy Gerson Robboy Portland State University memory hierarchy overview (traditional) CPU registers main memory (RAM) secondary memory (DISK) why? what is different between these

More information

The Memory Hierarchy /18-213/15-513: Introduction to Computer Systems 11 th Lecture, October 3, Today s Instructor: Phil Gibbons

The Memory Hierarchy /18-213/15-513: Introduction to Computer Systems 11 th Lecture, October 3, Today s Instructor: Phil Gibbons The Memory Hierarchy 15-213/18-213/15-513: Introduction to Computer Systems 11 th Lecture, October 3, 2017 Today s Instructor: Phil Gibbons 1 Today Storage technologies and trends Locality of reference

More information

+ Random-Access Memory (RAM)

+ Random-Access Memory (RAM) + Memory Subsystem + Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip. Basic storage unit is normally a cell (one bit per cell). Multiple RAM chips form a memory. RAM comes

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: November 28, 2017 at 14:31 CS429 Slideset 18: 1 Random-Access Memory

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 9, 2018 at 12:16 CS429 Slideset 17: 1 Random-Access Memory

More information

The Memory Hierarchy / : Introduction to Computer Systems 10 th Lecture, Feb 12, 2015

The Memory Hierarchy / : Introduction to Computer Systems 10 th Lecture, Feb 12, 2015 The Memory Hierarchy 15-213 / 18-213: Introduction to Computer Systems 10 th Lecture, Feb 12, 2015 Instructors: Seth Copen Goldstein, Franz Franchetti, Greg Kesden 1 Today The Memory Abstraction DRAM :

More information

Storage Technologies and the Memory Hierarchy

Storage Technologies and the Memory Hierarchy Storage Technologies and the Memory Hierarchy 198:231 Introduction to Computer Organization Lecture 12 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Slides courtesy of R. Bryant and D. O Hallaron,

More information

Today. The Memory Hierarchy. Byte Oriented Memory Organization. Simple Memory Addressing Modes

Today. The Memory Hierarchy. Byte Oriented Memory Organization. Simple Memory Addressing Modes Today The Memory Hierarchy 15 213 / 18 213: Introduction to Computer Systems 1 th Lecture, Feb 14, 213 DRAM as building block for main memory Locality of reference Caching in the memory hierarchy Storage

More information

CS 33. Memory Hierarchy I. CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved.

CS 33. Memory Hierarchy I. CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. CS 33 Memory Hierarchy I CS33 Intro to Computer Systems XVI 1 Copyright 2016 Thomas W. Doeppner. All rights reserved. Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip basic

More information

Problem: Processor- Memory Bo<leneck

Problem: Processor- Memory Bo<leneck Storage Hierarchy Instructor: Sanjeev Se(a 1 Problem: Processor- Bo

More information

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( )

Lecture 15: Caches and Optimization Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 15: Caches and Optimization Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Last time Program

More information

Read-only memory (ROM): programmed during production Programmable ROM (PROM): can be programmed once SRAM (Static RAM)

Read-only memory (ROM): programmed during production Programmable ROM (PROM): can be programmed once SRAM (Static RAM) Memory Hierarchy Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Storage: Memory and Disk (and other I/O Devices) Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and

More information

CSE 153 Design of Operating Systems Fall 2018

CSE 153 Design of Operating Systems Fall 2018 CSE 153 Design of Operating Systems Fall 2018 Lecture 12: File Systems (1) Disk drives OS Abstractions Applications Process File system Virtual memory Operating System CPU Hardware Disk RAM CSE 153 Lecture

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective A Programmer's Perspective Computer Architecture and The Memory Hierarchy Gal A. Kaminka galk@cs.biu.ac.il Typical Computer Architecture CPU chip PC (Program Counter) register file ALU Main Components

More information

CSCI-UA.0201 Computer Systems Organization Memory Hierarchy

CSCI-UA.0201 Computer Systems Organization Memory Hierarchy CSCI-UA.0201 Computer Systems Organization Memory Hierarchy Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Programmer s Wish List Memory Private Infinitely large Infinitely fast Non-volatile

More information

Computer Organization: A Programmer's Perspective

Computer Organization: A Programmer's Perspective Computer Architecture and The Memory Hierarchy Oren Kapah orenkapah.ac@gmail.com Typical Computer Architecture CPU chip PC (Program Counter) register file AL U Main Components CPU Main Memory Input/Output

More information

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example

Locality. CS429: Computer Organization and Architecture. Locality Example 2. Locality Example Locality CS429: Computer Organization and Architecture Dr Bill Young Department of Computer Sciences University of Texas at Austin Principle of Locality: Programs tend to reuse data and instructions near

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 3.1: Memory Hierarchy: What and Why? Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design, Patterson

More information

Large and Fast: Exploiting Memory Hierarchy

Large and Fast: Exploiting Memory Hierarchy CSE 431: Introduction to Operating Systems Large and Fast: Exploiting Memory Hierarchy Gojko Babić 10/5/018 Memory Hierarchy A computer system contains a hierarchy of storage devices with different costs,

More information

The. Memory Hierarchy. Chapter 6

The. Memory Hierarchy. Chapter 6 The Memory Hierarchy Chapter 6 1 Outline! Storage technologies and trends! Locality of reference! Caching in the memory hierarchy 2 Random- Access Memory (RAM)! Key features! RAM is tradi+onally packaged

More information

A Computer. Computer organization - Recap. The Memory Hierarchy... Brief Overview of Memory Design. CPU has two components: Memory

A Computer. Computer organization - Recap. The Memory Hierarchy... Brief Overview of Memory Design. CPU has two components: Memory The Memory Hierarchy... CS 135: Computer Architecture 1 Instructor: Prof. Bhagi Narahari Dept. of Computer Science Course URL: www.seas.gwu.edu/~narahari/cs135/ Brief Overview of Memory Design What is

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Caches 1 16: Caches Computer Architecture

More information

Carnegie Mellon. Carnegie Mellon

Carnegie Mellon. Carnegie Mellon Today The Memory Hierarchy Storage technologies and trends Locality of reference Caching in the memory hierarchy 15-213/18-243: Introduc3on to Computer Systems 1 th Lecture, Feb. 13, 214 Instructors: Anthony

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Lecture 20: File Systems (1) Disk drives OS Abstractions Applications Process File system Virtual memory Operating System CPU Hardware Disk RAM CSE 153 Lecture

More information

The Memory Hierarchy 10/25/16

The Memory Hierarchy 10/25/16 The Memory Hierarchy 10/25/16 Transition First half of course: hardware focus How the hardware is constructed How the hardware works How to interact with hardware Second half: performance and software

More information

CS 2461: Computer Architecture 1 The Memory Hierarchy and impact on program performance

CS 2461: Computer Architecture 1 The Memory Hierarchy and impact on program performance Next CS 2461: The Memory Hierarchy and impact on program performance Instructor: Prof. Bhagi Narahari Performance of programs What to measure Model? Technology trends real processors how to improve performance

More information

Review: Assembly Programmer s View. The Memory Hierarchy. Random- Access Memory (RAM) Today. NonvolaHle Memories. SRAM vs DRAM Summary

Review: Assembly Programmer s View. The Memory Hierarchy. Random- Access Memory (RAM) Today. NonvolaHle Memories. SRAM vs DRAM Summary Review: ssembly Programmer s View The Hierarchy CSCI 1: Machine rchitecture and OrganizaHon Pen- Chung Yew Department Computer Science and Engineering University of Minnesota PC CPU Registers Condition

More information

Memory Hierarchy. Instructor: Adam C. Champion, Ph.D. CSE 2431: Introduction to Operating Systems Reading: Chap. 6, [CSAPP]

Memory Hierarchy. Instructor: Adam C. Champion, Ph.D. CSE 2431: Introduction to Operating Systems Reading: Chap. 6, [CSAPP] Memory Hierarchy Instructor: Adam C. Champion, Ph.D. CSE 2431: Introduction to Operating Systems Reading: Chap. 6, [CSAPP] Motivation Up to this point we have relied on a simple model of a computer system

More information

CS 240 Stage 3 Abstractions for Practical Systems

CS 240 Stage 3 Abstractions for Practical Systems CS 240 Stage 3 Abstractions for Practical Systems Caching and the memory hierarchy Operating systems and the process model Virtual memory Dynamic memory allocation Victory lap Memory Hierarchy: Cache Memory

More information

Denison University. Cache Memories. CS-281: Introduction to Computer Systems. Instructor: Thomas C. Bressoud

Denison University. Cache Memories. CS-281: Introduction to Computer Systems. Instructor: Thomas C. Bressoud Cache Memories CS-281: Introduction to Computer Systems Instructor: Thomas C. Bressoud 1 Random-Access Memory (RAM) Key features RAM is traditionally packaged as a chip. Basic storage unit is normally

More information

General Cache Mechanics. Memory Hierarchy: Cache. Cache Hit. Cache Miss CPU. Cache. Memory CPU CPU. Cache. Cache. Memory. Memory

General Cache Mechanics. Memory Hierarchy: Cache. Cache Hit. Cache Miss CPU. Cache. Memory CPU CPU. Cache. Cache. Memory. Memory Hierarchy: hierarchy basics Locality organization -aware programming General Mechanics CP 8 9 4 Data is moved in units 4 5 6 7 8 9 4 5 Block: unit of data in cache and memory. (a.k.a. line) Smaller, faster,

More information

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks.

Module 1: Basics and Background Lecture 4: Memory and Disk Accesses. The Lecture Contains: Memory organisation. Memory hierarchy. Disks. The Lecture Contains: Memory organisation Example of memory hierarchy Memory hierarchy Disks Disk access Disk capacity Disk access time Typical disk parameters Access times file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture4/4_1.htm[6/14/2012

More information

CS 261 Fall Mike Lam, Professor. Memory

CS 261 Fall Mike Lam, Professor. Memory CS 261 Fall 2016 Mike Lam, Professor Memory Topics Memory hierarchy overview Storage technologies SRAM DRAM PROM / flash Disk storage Tape and network storage I/O architecture Storage trends Latency comparisons

More information

Problem: Processor Memory BoJleneck

Problem: Processor Memory BoJleneck Today Memory hierarchy, caches, locality Cache organiza:on Program op:miza:ons that consider caches CSE351 Inaugural Edi:on Spring 2010 1 Problem: Processor Memory BoJleneck Processor performance doubled

More information

CS241 Computer Organization Spring Principle of Locality

CS241 Computer Organization Spring Principle of Locality CS241 Computer Organization Spring 2015 Principle of Locality 4-21 2015 Outline! Optimization! Memory Hierarchy Locality temporal spatial Cache Readings: CSAPP2: Chapter 5, sections 5.1-5.6; 5.13 CSAPP2:

More information

CS 33. Architecture and Optimization (3) CS33 Intro to Computer Systems XVI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

CS 33. Architecture and Optimization (3) CS33 Intro to Computer Systems XVI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. CS 33 Architecture and Optimization (3) CS33 Intro to Computer Systems XVI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Hyper Threading Instruction Control Instruction Control Retirement Unit

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp 0111010000011000

More information

Where Have We Been? Ch. 6 Memory Technology

Where Have We Been? Ch. 6 Memory Technology Where Have We Been? Combinational and Sequential Logic Finite State Machines Computer Architecture Instruction Set Architecture Tracing Instructions at the Register Level Building a CPU Pipelining Where

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 18: Memory Hierarchy Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

CS 261 Fall Mike Lam, Professor. Memory

CS 261 Fall Mike Lam, Professor. Memory CS 261 Fall 2017 Mike Lam, Professor Memory Topics Memory hierarchy overview Storage technologies I/O architecture Storage trends Latency comparisons Locality Memory Until now, we've referred to memory

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Memory Hierarchy. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Memory Hierarchy Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Time (ns) The CPU-Memory Gap The gap widens between DRAM, disk, and CPU speeds

More information

CS 31: Intro to Systems Storage and Memory. Kevin Webb Swarthmore College March 17, 2015

CS 31: Intro to Systems Storage and Memory. Kevin Webb Swarthmore College March 17, 2015 CS 31: Intro to Systems Storage and Memory Kevin Webb Swarthmore College March 17, 2015 Transition First half of course: hardware focus How the hardware is constructed How the hardware works How to interact

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

CISC 360. Cache Memories Nov 25, 2008

CISC 360. Cache Memories Nov 25, 2008 CISC 36 Topics Cache Memories Nov 25, 28 Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Cache Memories Cache memories are small, fast SRAM-based

More information

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative

Chapter 6 Caches. Computer System. Alpha Chip Photo. Topics. Memory Hierarchy Locality of Reference SRAM Caches Direct Mapped Associative Chapter 6 s Topics Memory Hierarchy Locality of Reference SRAM s Direct Mapped Associative Computer System Processor interrupt On-chip cache s s Memory-I/O bus bus Net cache Row cache Disk cache Memory

More information

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6.

Cache Memories. From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Cache Memories From Bryant and O Hallaron, Computer Systems. A Programmer s Perspective. Chapter 6. Today Cache memory organization and operation Performance impact of caches The memory mountain Rearranging

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Assembly Programming Storage - Assembly Programming: Recap - project2 - Structure/ Array Representation - Structure Alignment Rutgers University Liu

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Assembly Programming Storage - Assembly Programming: Recap - Call-chain - Factorial - Storage: - RAM - Caching - Direct - Mapping Rutgers University

More information

Memory Management! Goals of this Lecture!

Memory Management! Goals of this Lecture! Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Why it works: locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware and

More information

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook

CS356: Discussion #9 Memory Hierarchy and Caches. Marco Paolieri Illustrations from CS:APP3e textbook CS356: Discussion #9 Memory Hierarchy and Caches Marco Paolieri (paolieri@usc.edu) Illustrations from CS:APP3e textbook The Memory Hierarchy So far... We modeled the memory system as an abstract array

More information

Cache Memories. Topics. Next time. Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance

Cache Memories. Topics. Next time. Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Cache Memories Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance Next time Dynamic memory allocation and memory bugs Fabián E. Bustamante,

More information

Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy

Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Chapter 6 The

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Memory hierarchy, locality, caches Instructor: Markus Püschel TA: Daniele Spampinato & Alen Stojanov Left alignment Attractive font (sans serif, avoid Arial) Calibri,

More information

Memory hierarchy Outline

Memory hierarchy Outline Memory hierarchy Outline Performance impact Principles of memory hierarchy Memory technology and basics 2 Page 1 Performance impact Memory references of a program typically determine the ultimate performance

More information

Memory Hierarchy. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska

Memory Hierarchy. Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3. Instructor: Joanna Klukowska Memory Hierarchy Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran (NYU)

More information

Cache Memories October 8, 2007

Cache Memories October 8, 2007 15-213 Topics Cache Memories October 8, 27 Generic cache memory organization Direct mapped caches Set associative caches Impact of caches on performance The memory mountain class12.ppt Cache Memories Cache

More information

Memory Hierarchy. Cache Memory Organization and Access. General Cache Concept. Example Memory Hierarchy Smaller, faster,

Memory Hierarchy. Cache Memory Organization and Access. General Cache Concept. Example Memory Hierarchy Smaller, faster, Memory Hierarchy Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Cache Memory Organization and Access Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O

More information

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg

Computer Architecture and System Software Lecture 09: Memory Hierarchy. Instructor: Rob Bergen Applied Computer Science University of Winnipeg Computer Architecture and System Software Lecture 09: Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Midterm returned + solutions in class today SSD

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Computer Organization Chapter 5 Large and Fast: Exploiting Memory Hierarchy Chansu Yu Table of Contents Ch.1 Introduction Ch. 2 Instruction: Machine Language Ch. 3-4 CPU Implementation Ch. 5 Cache

More information

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy Memory Management Goals of this Lecture Help you learn about: The memory hierarchy Spatial and temporal locality of reference Caching, at multiple levels Virtual memory and thereby How the hardware and

More information

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories

Agenda Cache memory organization and operation Chapter 6 Performance impact of caches Cache Memories Agenda Chapter 6 Cache Memories Cache memory organization and operation Performance impact of caches The memory mountain Rearranging loops to improve spatial locality Using blocking to improve temporal

More information

Caches Concepts Review

Caches Concepts Review Caches Concepts Review What is a block address? Why not bring just what is needed by the processor? What is a set associative cache? Write-through? Write-back? Then we ll see: Block allocation policy on

More information

Today. Cache Memories. General Cache Concept. General Cache Organization (S, E, B) Cache Memories. Example Memory Hierarchy Smaller, faster,

Today. Cache Memories. General Cache Concept. General Cache Organization (S, E, B) Cache Memories. Example Memory Hierarchy Smaller, faster, Today Cache Memories CSci 2021: Machine Architecture and Organization November 7th-9th, 2016 Your instructor: Stephen McCamant Cache memory organization and operation Performance impact of caches The memory

More information

CMSC 313 Lecture 26 DigSim Assignment 3 Cache Memory Virtual Memory + Cache Memory I/O Architecture

CMSC 313 Lecture 26 DigSim Assignment 3 Cache Memory Virtual Memory + Cache Memory I/O Architecture CMSC 313 Lecture 26 DigSim Assignment 3 Cache Memory Virtual Memory + Cache Memory I/O Architecture UMBC, CMSC313, Richard Chang CMSC 313, Computer Organization & Assembly Language Programming

More information

Memory Management! How the hardware and OS give application pgms:" The illusion of a large contiguous address space" Protection against each other"

Memory Management! How the hardware and OS give application pgms: The illusion of a large contiguous address space Protection against each other Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Spatial and temporal locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware

More information

ν Hold frequently accessed blocks of main memory 2 CISC 360, Fa09 Cache is an array of sets. Each set contains one or more lines.

ν Hold frequently accessed blocks of main memory 2 CISC 360, Fa09 Cache is an array of sets. Each set contains one or more lines. Topics CISC 36 Cache Memories Dec, 29 ν Generic cache memory organization ν Direct mapped caches ν Set associatie caches ν Impact of caches on performance Cache Memories Cache memories are small, fast

More information

Virtual Memory. Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Virtual Memory. Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Virtual Memory Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] Virtual Memory Usemain memory asa cache a for secondarymemory

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2014 Lecture 14

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2014 Lecture 14 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2014 Lecture 14 LAST TIME! Examined several memory technologies: SRAM volatile memory cells built from transistors! Fast to use, larger memory cells (6+ transistors

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage

CSCI-GA Database Systems Lecture 8: Physical Schema: Storage CSCI-GA.2433-001 Database Systems Lecture 8: Physical Schema: Storage Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com View 1 View 2 View 3 Conceptual Schema Physical Schema 1. Create a

More information

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University

Lecture 12. Memory Design & Caches, part 2. Christos Kozyrakis Stanford University Lecture 12 Memory Design & Caches, part 2 Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements HW3 is due today PA2 is available on-line today Part 1 is due on 2/27

More information

CS 33. Caches. CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Caches. CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Caches CS33 Intro to Computer Systems XVIII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Cache Performance Metrics Miss rate fraction of memory references not found in cache (misses

More information

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory

Princeton University. Computer Science 217: Introduction to Programming Systems. The Memory/Storage Hierarchy and Virtual Memory Princeton University Computer Science 27: Introduction to Programming Systems The Memory/Storage Hierarchy and Virtual Memory Goals of this Lecture Help you learn about: Locality and caching The memory

More information

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory

Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory Cache Memories Cache memories are small, fast SRAM-based memories managed automatically in hardware. Hold frequently accessed blocks of main memory CPU looks first for data in caches (e.g., L1, L2, and

More information

Cache Memories. EL2010 Organisasi dan Arsitektur Sistem Komputer Sekolah Teknik Elektro dan Informatika ITB 2010

Cache Memories. EL2010 Organisasi dan Arsitektur Sistem Komputer Sekolah Teknik Elektro dan Informatika ITB 2010 Cache Memories EL21 Organisasi dan Arsitektur Sistem Komputer Sekolah Teknik Elektro dan Informatika ITB 21 Topics Generic cache memory organization Direct mapped caches Set associative caches Impact of

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 23J Computer Organization Cache Memories Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce23j Giving credit where credit is due Most of slides for this lecture are based

More information

F28HS Hardware-Software Interface: Systems Programming

F28HS Hardware-Software Interface: Systems Programming F28HS Hardware-Software Interface: Systems Programming Hans-Wolfgang Loidl School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh Semester 2 2016/17 0 No proprietary software has

More information

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1

Memory Technology. Chapter 5. Principle of Locality. Chapter 5 Large and Fast: Exploiting Memory Hierarchy 1 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 5 Large and Fast: Exploiting Memory Hierarchy 5 th Edition Memory Technology Static RAM (SRAM) 0.5ns 2.5ns, $2000 $5000 per GB Dynamic

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

Memory Hierarchy. Announcement. Computer system model. Reference

Memory Hierarchy. Announcement. Computer system model. Reference Announcement Memory Hierarchy Computer Organization and Assembly Languages Yung-Yu Chuang 26//5 Grade for hw#4 is online Please DO submit homework if you haen t Please sign up a demo time on /6 or /7 at

More information

Mass-Storage Structure

Mass-Storage Structure CS 4410 Operating Systems Mass-Storage Structure Summer 2011 Cornell University 1 Today How is data saved in the hard disk? Magnetic disk Disk speed parameters Disk Scheduling RAID Structure 2 Secondary

More information

Cache Memories. Cache Memories Oct. 10, Inserting an L1 Cache Between the CPU and Main Memory. General Org of a Cache Memory

Cache Memories. Cache Memories Oct. 10, Inserting an L1 Cache Between the CPU and Main Memory. General Org of a Cache Memory 5-23 The course that gies CMU its Zip! Topics Cache Memories Oct., 22! Generic cache memory organization! Direct mapped caches! Set associatie caches! Impact of caches on performance Cache Memories Cache

More information