Chapter 4: Network Layer

Size: px
Start display at page:

Download "Chapter 4: Network Layer"

Transcription

1 hapter 4: Network Layer hapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, multicast instantiation and implementation in the Internet Overview: layer services routing principle: path selection hierarchical routing IP Internet routing protocols reliable transfer intra-domain inter-domain what s inside a router? IPv6 multicast routing 4: Network Layer 4a- Network layer functions transport packet from sending to receiving hosts layer protocols in every host, router application transport three important functions: path determination: route taken by packets from source to dest. Routing algorithms switching: move packets from router s input to appropriate router output call setup: some architectures require router call setup along path before data flows application transport 4: Network Layer 4a-

2 Network service model service abstraction Q: What service model for channel transporting packets from sender to receiver? guaranteed bandwidth? preservation of inter-packet timing (no jitter)? loss-free delivery? in-order delivery? congestion feedback to sender? The most important abstraction provided by layer:??? virtual circuit or datagram? 4: Network Layer 4a-3 Virtual circuits source-to-dest path behaves much like telephone circuit performance-wise actions along source-to-dest path call setup, teardown for each call before data can flow each packet carries V identifier (not destination host OD) every router on source-dest path s maintain state for each passing connection transport-layer connection only involved two end systems link, router resources (bandwidth, buffers) may be allocated to V to get circuit-like perf. 4: Network Layer 4a-4

3 Virtual circuits: signaling protocols used to setup, maintain teardown V used in TM, frame-relay,.5 not used in today s Internet application transport 5. Data flow begins 6. Receive data 4. all connected 3. ccept call. Initiate call. incoming call application transport 4: Network Layer 4a-5 Datagram s: the Internet model no call setup at layer routers: no state about end-to-end connections no -level concept of connection packets typically routed using destination host ID packets between same source-dest pair may take different paths application transport. Send data. Receive data application transport 4: Network Layer 4a-6

4 Network layer service models: Network rchitecture Service Model andwidth Guarantees? Loss Order Timing ongestion feedback Internet TM TM TM TM best effort R VR R UR none constant rate guaranteed rate guaranteed minimum none no yes yes no no no yes yes yes yes no yes yes no no no (inferred via loss) no congestion no congestion yes no Internet model being extented: Intserv, Diffserv hapter 6 4: Network Layer 4a-7 Datagram or V : why? Internet data exchange among computers elastic service, no strict timing req. smart end systems (computers) can adapt, perform control, error recovery simple inside, complexity at edge many link types different characteristics uniform service difficult TM evolved from telephony human conversation: strict timing, reliability requirements need for guaranteed service dumb end systems telephones complexity inside 4: Network Layer 4a-8

5 Routing Routing protocol Goal: determine good path (sequence of routers) thru from source to dest. Graph abstraction for routing algorithms: graph nodes are routers graph edges are links link cost: delay, $ cost, or congestion level 5 D 3 3 good path: E 5 F typically means minimum cost path other def s possible 4: Network Layer 4a-9 Routing lgorithm classification Global or decentralized information? Global: all routers have complete topology, link cost info link state algorithms Decentralized: router knows lyconnected neighbors, link costs to neighbors iterative process of computation, exchange of info with neighbors distance vector algorithms Static or dynamic? Static: routes change slowly over time Dynamic: routes change more quickly periodic update in response to link cost changes 4: Network Layer 4a-0

6 Link-State Routing lgorithm Dijkstra s algorithm net topology, link costs known to all nodes accomplished via link state broadcast all nodes have same info computes least cost paths from one node ( source ) to all other nodes gives routing table for that node iterative: after k iterations, know least cost path to k dest. s Notation: c(i,j): link cost from node i to j. cost infinite if not direct neighbors D(v): current value of cost of path from source to dest. V p(v): predecessor node along path from source to v, that is next v N: set of nodes whose least cost path definitively known 4: Network Layer 4a- Dijsktra s lgorithm Initialization: N = {} 3 for all nodes v 4 if v adjacent to 5 then D(v) = c(,v) 6 else D(v) = infty 7 8 Loop 9 find w not in N such that D(w) is a minimum 0 add w to N update D(v) for all v adjacent to w and not in N: D(v) = min( D(v), D(w) + c(w,v) ) 3 /* new cost to v is either old cost to v or known 4 shortest path cost to w plus cost from w to v */ 5 until all nodes in N 4: Network Layer 4a-

7 Dijkstra s algorithm: example Step start N D DE DE DE DEF D(),p(),,, D(),p() 5, 4,D 3,E 3,E D(D),p(D), D(E),p(E) infinity,d D(F),p(F) infinity infinity 4,E 4,E 4,E 5 D 3 3 E 5 F 4: Network Layer 4a-3 Dijkstra s algorithm, discussion lgorithm complexity: n nodes each iteration: need to check all nodes, w, not in N n*(n+)/ comparisons: O(n**) more efficient implementations possible: O(nlogn) Oscillations possible: e.g., link cost = amount of carried traffic +e D e e initially +e 0 D 0 +e 0 recompute routing 0 +e D 0 0 +e recompute +e 0 D 0 +e e recompute 4: Network Layer 4a-4

8 Distance Vector Routing lgorithm iterative: continues until no nodes exchange info. self-terminating: no signal to stop asynchronous: nodes need not exchange info/iterate in lock step! distributed: each node communicates only with directly-attached neighbors Distance Table data structure each node has its own row for each possible destination column for each directlyattached neighbor to node example: in node, for dest. Y via neighbor Z: D (Y,Z) = = distance from to Y, via Z as next hop Z c(,z) + min {D (Y,w)} w 4: Network Layer 4a-5 Distance Table: example 7 E D (,D) E D (,D) E D (,) E 8 D D = c(e,d) + min {D (,w)} w = + = 4 D = c(e,d) + min {D (,w)} w = +3 = 5 loop! = c(e,) + min {D (,w)} w = 8+6 = 4 loop! destination E D () D cost to destination via D : Network Layer 4a-6

9 Distance table gives routing table E D () cost to destination via D Outgoing link to use, cost 4 5, destination destination D,5 D,4 D 4 D D,4 Distance table Routing table 4: Network Layer 4a-7 Distance Vector Routing: overview Iterative, asynchronous: each local iteration caused by: local link cost change message from neighbor: its least cost path change from neighbor Distributed: each node notifies neighbors only when its least cost path to any destination changes neighbors then notify their neighbors if necessary Each node: wait for (change in local link cost of msg from neighbor) recompute distance table if least cost path to any dest has changed, notify neighbors 4: Network Layer 4a-8

10 Distance Vector lgorithm: t all nodes, : Initialization: for all adjacent nodes v: 3 D (*,v) = infty /* the * operator means "for all rows" */ 4 D (v,v) = c(,v) 5 for all destinations, y 6 send min D (y,w) to each neighbor /* w over all 's neighbors */ w 4: Network Layer 4a-9 Distance Vector lgorithm (cont.): 8 loop 9 wait (until I see a link cost change to neighbor V 0 or until I receive update from neighbor V) if (c(,v) changes by d) 3 /* change cost to all dest's via neighbor v by d */ 4 /* note: d could be positive or negative */ 5 for all destinations y: D (y,v) = D (y,v) + d 6 7 else if (update received from V wrt destination Y) 8 /* shortest path from V to some Y has changed */ 9 /* V has sent a new value for its min wdv(y,w) */ 0 /* call this received new value is "newval" */ for the single destination y: D (Y,V) = c(,v) + newval 3 if we have a new min w D (Y,w)for any destination Y 4 send new value of min D (Y,w) to all neighbors w 5 6 forever 4: Network Layer 4a-0

11 Distance Vector lgorithm: example Y 7 Z 4: Network Layer 4a- Distance Vector lgorithm: example Y 7 Z Z D (Y,Z) = c(,z) + min {D (Y,w)} w = 7+ = 8 Y D (Z,Y) = c(,y) + min {D (Z,w)} w = + = 3 4: Network Layer 4a-

12 Distance Vector: link cost changes Link cost changes: node detects local link cost change updates distance table (line 5) if cost change in least cost path, notify neighbors (lines 3,4) 4 Y 50 Z good news travels fast algorithm terminates 4: Network Layer 4a-3 Distance Vector: link cost changes Link cost changes: good news travels fast bad news travels slow - count to infinity problem! 60 4 Y 50 Z algorithm continues on! 4: Network Layer 4a-4

13 Distance Vector: poisoned reverse If Z routes through Y to get to : Z tells Y its (Z s) distance to is infinite (so Y won t route to via Z) will this completely solve count to infinity problem? 60 4 Y 50 Z algorithm terminates 4: Network Layer 4a-5 omparison of LS and DV algorithms Message complexity LS: with n nodes, E links, O(nE) msgs sent each DV: exchange between neighbors only convergence time varies Speed of onvergence LS: O(n**) algorithm requires O(nE) msgs may have oscillations DV: convergence time varies may be routing loops count-to-infinity problem Robustness: what happens if router malfunctions? LS: node can advertise incorrect link cost each node computes only its own table DV: DV node can advertise incorrect path cost each node s table used by others error propagate thru 4: Network Layer 4a-6

14 Hierarchical Routing Our routing study thus far - idealization all routers identical flat nottrue in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing table exchange would swamp links! administrative autonomy internet = of s each admin may want to control routing in its own 4: Network Layer 4a-7 Hierarchical Routing aggregate routers into regions, autonomous systems (S) routers in same S run same routing protocol intra-s routing protocol routers in different S can run different intra- S routing protocol gateway routers special routers in S run intra-s routing protocol with all other routers in S also responsible for routing to destinations outside S run inter-s routing protocol with other gateway routers 4: Network Layer 4a-8

15 Intra-S and Inter-S routing a.b b d.a a b.c c.a a c Gateways: perform inter-s routing amongst themselves b perform intra-s routers with other routers in their S inter-s, intra-s routing in gateway.c layer link layer layer 4: Network Layer 4a-9 Intra-S and Inter-S routing a Host h.b b.a Inter-S routing between and.c a d b c Intra-S routing within S.a Host c h a b Intra-S routing within S We ll examine specific inter-s and intra-s Internet routing protocols shortly 4: Network Layer 4a-30

16 The Internet Network layer Host, router layer functions: Transport layer: TP, UDP Network layer Routing protocols path selection RIP, OSPF, GP routing table IP protocol addressing conventions datagram format packet handling conventions IMP protocol error reporting router signaling Link layer layer 4: Network Layer 4a-3 IP ddressing: introduction IP address: 3-bit identifier for host, router interface interface: connection between host, router and link router s typically have multiple interfaces host may have multiple interfaces IP addresses associated with interface, not host, router = : Network Layer 4a-3

17 IP ddressing IP address: part (high order bits) host part (low order bits) What s a? (from IP address perspective) device interfaces with same part of IP address can ly reach each other without intervening router LN consisting of 3 IP s (for IP addresses starting with 3, first 4 bits are address) 4: Network Layer 4a-33 IP ddressing How to find the s? Detach each interface from router, host create islands of isolated s Interconnected system consisting of six s : Network Layer 4a-34

18 IP ddresses given notion of, let s re-examine IP addresses: class-full addressing: class 0 host 0 host 0 host D 0 multicast address to to to to bits 4: Network Layer 4a-35 IP addressing: IDR classful addressing: inefficient use of address space, address space exhaustion e.g., class net allocated enough addresses for 65K hosts, even if only K hosts in that IDR: lassless InterDomain Routing portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in portion of address part /3 host part 4: Network Layer 4a-36

19 IP addresses: how to get one? Hosts (host portion): hard-coded by system admin in a file DHP: Dynamic Host onfiguration Protocol: dynamically get address: plug-and-play host broadcasts DHP discover msg DHP server responds with DHP offer msg host requests IP address: DHP request msg DHP server sends address: DHP ack msg 4: Network Layer 4a-37 IP addresses: how to get one? Network ( portion): get allocated portion of ISP s address space: ISP's block /0 Organization /3 Organization /3 Organization / Organization /3 4: Network Layer 4a-38

20 Hierarchical addressing: route aggregation Hierarchical addressing allows efficient advertisement of routing information: Organization /3 Organization /3 Organization /3 Organization /3.... Fly-y-Night-ISP Send me anything with addresses beginning /0 Internet ISPs-R-Us Send me anything with addresses beginning /6 4: Network Layer 4a-39 Hierarchical addressing: more specific routes ISPs-R-Us has a more specific route to Organization Organization /3 Organization /3 Organization /3.... Organization /3 Fly-y-Night-ISP ISPs-R-Us Send me anything with addresses beginning /0 Send me anything with addresses beginning /6 or /3 Internet 4: Network Layer 4a-40

21 IP addressing: the last word... Q: How does an ISP get block of addresses? : INN: Internet orporation for ssigned Names and Numbers allocates addresses manages DNS assigns domain names, resolves disputes 4: Network Layer 4a-4 Getting a datagram from source to dest. IP datagram: misc fields source IP addr dest IP addr data datagram remains unchanged, as it travels source to destination addr fields of interest here routing table in Dest. Net. next router Nhops E 4: Network Layer 4a-4

22 Getting a datagram from source to dest. misc fields data Starting at, given IP datagram addressed to : look up net. address of find is on same net. as link layer will send datagram directly to inside link-layer frame and are directly connected Dest. Net. next router Nhops E 4: Network Layer 4a-43 Getting a datagram from source to dest. misc fields data Starting at, dest. E: look up address of E E on different, E not directly attached routing table: next hop router to E is link layer sends datagram to router inside linklayer frame datagram arrives at continued.. Dest. Net. next router Nhops E 4: Network Layer 4a-44

23 Getting a datagram from source to dest. Dest. next misc fields data router Nhops interface rriving at 3..4, destined for 3... look up address of E 3... E on same as router s 3... interface router, E directly attached link layer sends datagram to inside link-layer E frame via interface datagram arrives at 3...!!! (hooray!) 4: Network Layer 4a-45

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer Chapter goals: understand principles behind layer services: routing (path selection) dealing with scale how a router works advanced topics: IPv6, mobility instantiation and implementation

More information

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online

Announcement. Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Announcement Project 2 extended to 2/20 midnight Project 3 available this weekend Homework 3 available today, will put it online Outline Introduction and Network Service Models Routing Principles Link

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

What s a protocol? CE80N Introduction to Networks & The Internet. Communication Protocol. Protocol Layers. Dr. Chane L. Fullmer UCSC Winter 2002

What s a protocol? CE80N Introduction to Networks & The Internet. Communication Protocol. Protocol Layers. Dr. Chane L. Fullmer UCSC Winter 2002 E80N Introduction to Networks & The Internet Reading hapter 15 IP: Software To reate A Virtual Network Dr. hane L. Fullmer US Winter 2002 January 22 2002 E80N -- Lecture #6 1 January 22 2002 E80N -- Lecture

More information

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture

Network Routing. Packet Routing, Routing Algorithms, Routers, Router Architecture Network Routing Packet Routing, Routing Algorithms, Routers, Router Architecture Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction

More information

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan

Internet Protocol: Routing Algorithms. Srinidhi Varadarajan Internet Protocol: Routing Algorithms Srinidhi Varadarajan Routing Routing protocol Goal: determine good path (sequence of routers) thru network from source to dest. Graph abstraction for routing algorithms:

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Routing Algorithm Classification. A Link-State Routing Algorithm

Routing Algorithm Classification. A Link-State Routing Algorithm Routing Algorithm lassification Global or decentralied information? Global: All routers have complete topolog, link cost info Link state algorithms Decentralied: Router knows phsicallconnected neighbors,

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009

Internet Architecture. Network Layer Overview. Fundamental Network Layer Function. Protocol Layering and Data. Computer Networks 9/23/2009 omputer Networks 9//9 Network Layer Overview Kai Shen Internet rchitecture ottom-up: : electromagnetic signals on the wire : data transfer between neighboring elements encoding, framing, error correction,

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy Hierarchical Routing Our routing study thus far - idealization all routers identical network flat no true in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

Network layer functions

Network layer functions Network layer functions transport packet from sending to receiving hosts network layer protocols in every host, router application transport network data link physical network data link physical network

More information

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Dipartimento di Informatica Rome University La Sapienza G205: Fundamentals of Computer Engineering

More information

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links Network Layer: Routing A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks OMP/ELE 49/6 Introduction to omputer Networks Intra-domain routing Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at cs.rice.edu

More information

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Network Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it IP datagram format IP protocol version number header length (bytes) type of data max number remaining

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communication & Networks G22.2262-001 Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science

More information

Foundations of Telematics

Foundations of Telematics Foundations of Telematics Chapter 4 Network Layer cknowledgement: These slides have been prepared by J.F. Kurose and K.W. Ross with a couple of additions from various sources (see references) Foundations

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications OMP /9: omputer Networks and pplications Week 9 Network Layer: Routing Reading Guide: hapter 4: Sections 4.5 Network Layer nnouncements v Labs Lab 4 ongestion ontrol Lab 5 Simple Router (start up for ssignment,

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Network Layer 4-1 Chapter 4: Network Layer Chapter

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

More on Network Routing and Internet Protocol

More on Network Routing and Internet Protocol omputer Networks //03 More on Network Routing and Internet Protocol Kai Shen Network Routing Link state routing: ijkstra s algorithm efficient approach to calculate least cost routes all routers need complete

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction hapter 4: Network Layer TDTS06 omputer s Lecture 6: Network layer III Routing in the Internet Jose M. Peña, jospe@ida.liu.se ID/DIT, LiU 2009-09-16 4. 1 Introduction 4.2 Virtual circuit and datagram s

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

Lecture 7. Network Layer. Network Layer 1-1

Lecture 7. Network Layer. Network Layer 1-1 Lecture 7 Network Layer Network Layer 1-1 Agenda Introduction to the Network Layer Network layer functions Service models Network layer connection and connectionless services Introduction to data routing

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

Network layer: Overview. Network layer functions Routing IP Forwarding

Network layer: Overview. Network layer functions Routing IP Forwarding Network layer: Overview Network layer functions Routing IP Forwarding 1 Network Layer Functions Transport packet from sending to receiving hosts (processes) Network layer protocols in every host, router

More information

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins HW3 and Quiz v HW3 (Chapter 3): R1, R2, R5, R6, R7, R8, R15, P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) v Quiz: 10/30/2013, Wednesday,

More information

UNIT III THE NETWORK LAYER

UNIT III THE NETWORK LAYER UNIT III THE NETWORK LAYER Introduction-Virtual Circuit and Datagram Networks- Inside a Router- The Internet Protocol (IP): Forwarding and Addressing in the Internet-Routing Algorithms Routing in the Internet-Broadcast

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 018 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 017 1 Network

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 017 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-007

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Network layer overview

Network layer overview Network layer overview understand principles behind layer services: layer service models forwarding versus rou:ng how a router works rou:ng (path selec:on) broadcast, mul:cast instan:a:on, implementa:on

More information

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms

Agenda. distance-vector (what you invented last Friday) hierarchical routing routing in the Internet. v DNS assignment Q&A v Routing Algorithms Agenda v DNS assignment Q&A v Routing Algorithms distance-vector (what ou invented last Frida) hierarchical routing routing in the Internet Network Laer 4- Chapter 4 Network Laer A note on the use of these

More information

CSE 3214: Computer Network Protocols and Applications Network Layer

CSE 3214: Computer Network Protocols and Applications Network Layer CSE 314: Computer Network Protocols and Applications Network Layer Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 101C Lassonde

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4. introduction 4. irtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 01 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Homework #4 Due Thursday, Nov 1 st Project # Due Tuesday, Nov 6 th Later this semester: Homework #5 Due Thursday,

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues Review: Routing in Packet Networks Shortest Path lgorithms: ijkstra s & ellman-ford Routing: Issues How are routing tables determined? Who determines table entries? What info used in determining table

More information

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20 CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 0 Announcements Final exam: June 7 th at 4pm. Comprehensive. Photo id required.

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Internet rou)ng V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Slide material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Graph abstraction 5 graph: G

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Lecture 9. Network Layer (cont d) Network Layer 1-1

Lecture 9. Network Layer (cont d) Network Layer 1-1 Lecture 9 Network Layer (cont d) Network Layer 1-1 Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest

More information

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes.

Announcements. CS 5565 Network Architecture and Protocols. Count-To-Infinity. Poisoned Reverse. Distance Vector: Link Cost Changes. Announcements CS 6 Network Architecture and Protocols Lecture 20 Project 2B Part/ due Wed Apr 27 :9pm Part/2 due Wed Ma :9pm Current reading assignment: Chapter.6.7, Chapter Final Ma 0, 3:2pm, MCB 26 Godmar

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Mecanismes d Echange d Informations Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint

More information

Network layer functions. Chapter 4 Network Layer. Network layer functions. Network layer functions

Network layer functions. Chapter 4 Network Layer. Network layer functions. Network layer functions Network layer functions Chapter 4 Network Layer transport packet from sending to receiving hosts layer entity in every host, router functions: path determination: route taken by packets from source to

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

Course on Computer Communication and Networks. Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5)

Course on Computer Communication and Networks. Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5) Course on Computer Communication and Networks Lecture 7 Network Layer, Chapter 4 (6/e) - Part B (7/e Ch5) EDA344/DIT 420, CTH/GU Based on the book Computer Networking: A Top Down Approach, Jim Kurose,

More information

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals:

Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4: Network Layer. Network layer. Chapter goals: Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 004. Chapter 4: Network Layer Chapter goals: understand principles

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 6 Network Architecture and Protocols Lecture 8 Godmar Back Project A due Apr 8 (toda) Project B due in parts: Apr 9 and Ma 6 See link to NY Times article on RFC Project B Project B Highlevel

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer Dmitri Loguinov Texas A&M University March 29, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Homework #3

More information

Telematics I. Chapter 7 Network Layer

Telematics I. Chapter 7 Network Layer Telematics I Chapter 7 Network Layer Acknowledgement: These slides have been prepared by J.F. Kurose and K.W. Ross with a couple of additions from various sources (see references) Goals of this Chapter

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides are adapted

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Routing. Jens A Andersson Communication Systems

Routing. Jens A Andersson Communication Systems Routing Jens A Andersson Communication Systems R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 R5 10 Router A router is a type of internetworking device that passes data

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 11 1 Midterm exam Midterm this Thursday Close book but one-side 8.5"x11" note is allowed (must

More information

Module 3 Network Layer CS755! 3-1!

Module 3 Network Layer CS755! 3-1! Module 3 Network Layer CS755 3-1 Please note: Most of these slides come from this book. Note their copyright notice below A note on the use of these ppt slides: We re making these slides freely available

More information

WANs and Long Distance Connectivity. Introduction

WANs and Long Distance Connectivity. Introduction WANs and Long Distance Connectivity Chapters 2-3 Introduction Previous technologies covered "short" distances Can extend over short distances somewhat with bridges, hubs, repeaters, etc. but still limited

More information

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Δίκτυα Υπολογιστών ΙΙ Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Course information introductory course in computer networking course materials: text:

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Layer UG3 Computer Communications & Networks (COMN) Myungjin Lee myungjin.lee@ed.ac.uk Slides copyright of Kurose and Ross Hierarchical routing our routing study thus far - idealization

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

55:134/22C:134 Summer, Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4 roadmap. Jon Kuhl. Network layer functions

55:134/22C:134 Summer, Chapter 4: Network Layer. Chapter 4 Network Layer. Chapter 4 roadmap. Jon Kuhl. Network layer functions Chapter 4 Network Layer ll material copyright 996-00 J.F Kurose and K.W. Ross, ll Rights Reserved Computer Networking: Top Down pproach Featuring the Internet, nd edition. Jim Kurose, Keith Ross ddison-wesley,

More information

Lecture 17: Network Layer Addressing, Control Plane, and Routing

Lecture 17: Network Layer Addressing, Control Plane, and Routing Lecture 17: Network Layer Addressing, Control Plane, and Routing COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition:

More information

How to deal with large numbers (millions) of entities in a system? IP devices in the internet (0.5 billion) Users in P2P network (millions)

How to deal with large numbers (millions) of entities in a system? IP devices in the internet (0.5 billion) Users in P2P network (millions) Designs for Scale How to deal with large numbers (millions) of entities in a system? IP devices in the internet (0.5 billion) Users in P2P network (millions) More generally: Are there advantages to large

More information

Routing Unicast routing protocols

Routing Unicast routing protocols Routing Unicast routing protocols Jens A Andersson Electrical and Information Technology R1 Choosing an Optimal Path R4 5 R7 5 10 40 R6 6 5 B R2 15 A 20 4 10 10 R8 R3 5 10 R5 1 Router A router is a type

More information