Chapter 4 Network Layer: The Data Plane

Size: px
Start display at page:

Download "Chapter 4 Network Layer: The Data Plane"

Transcription

1 Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following: If you use these slides (e.g., in a class) that you mention their source (after all, we d like people to use our book!) If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material. Thanks and enjoy! JFK/KWR All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 Network Layer: Data Plane 4-1

2 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation IPv4 addressing network address translation IPv6 4.4 Generalized Forward and SDN match action OpenFlow examples of match-plus-action in action Network Layer: Data Plane 4-2

3 Chapter 4: network layer chapter goals: understand principles behind network layer services, focusing on data plane: network layer service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet Network Layer: Data Plane 4-3

4 Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every host, router router examines header fields in all IP datagrams passing through it application transport network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical network data link physical application transport network data link physical Network Layer: Data Plane 4-4

5 Two key network-layer functions network-layer functions: forwarding: move packets from router s input to appropriate router output routing: determine the path taken by packets from source to destination (a sender to a receiver) routing algorithms: run at routers to determine paths ; Routers have a forwarding table Destination address-based in Datagram networks Virtual circuit number-based in VC Networks analogy: taking a trip forwarding: process of getting through single interchange routing: process of planning trip from source to destination Network Layer: Data Plane 4-5

6 Interplay between routing and forwarding routing algorithm local forwarding table header value output link value in arriving packet s header

7 What does the Network layer consist of? Host, router network layer functions: Transport layer: TCP, UDP Network Routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling conventions forwarding table ICMP protocol error reporting router signaling Link layer physical layer ICMP: Internet Control Message Protocol: s an error-reporting protocol network devices like routers use to generate error messages to the source IP address when network problems prevent delivery of IP packets. ICMP creates and sends messages to the source IP address indicating that a gateway to the Internet that a router, service or host cannot be reached for packet delivery. 7 Any IP network device has the capability to send, receive or process ICMP messages.

8 The Internet Protocol (IP) 8

9 IP datagram format (IPv4) IP protocol version number header length (bytes) type of data max number remaining hops (decremen ted at each router) upper layer protocol to deliver payload to 32 bits ver head. type of len service length fragment -16bit identifier flgs offset time to upper live Internet checksum layer 32 bit source IP address 32 bit destination IP address Options (if any) data (variable length, typically a TCP or UDP segment) total datagram length (bytes) for fragmentation/ reassembly E.g. timestamp, record route taken, specify list of routers to visit. 9

10 1 0 IP datagram format (IPv4) IP protocol version number header length data (bytes) type of max number remaining hops (decremente d at each router) upper layer protocol to deliver payload to how much overhead with TCP??? bytes of TCP?? bytes of IP 32 bits ver head. type of len service length fragment -16bit identifier flgs offset time to upper live Internet checksum layer 32 bit source IP address 32bit destination IP address Options (if any) data (variable length, typically a TCP or UDP segment) total datagram length (bytes) for fragmentation/ reassembly E.g. timestamp, record route taken, specify list of routers to visit.

11 IP datagram format (IPv)4 IP protocol version number header length data (bytes) type of max number remaining hops (decremente d at each router) upper layer protocol to deliver payload to how much overhead with TCP? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer overhead ver head. type of len service 32 bits 16-bit identifier flgs time to upper live layer length offset Internet checksum 32 bit source IP address data (variable length, typically a TCP or UDP segment) fragment 32bit destination IP address Options (if any) total datagram length (bytes) for fragmentation/ reassembly E.g. timestamp, record route taken, specify list of routers to visit. 10

12 Network layer: data plane, control plane Data plane local, per-router function determines how datagram arriving on router input port is forwarded to router output port forwarding function values in arriving packet header Control plane network-wide logic determines how datagram is routed among routers along end-end path from source host to destination host two control-plane approaches: traditional routing algorithms: implemented in routers software-defined networking (SDN): implemented in (remote) servers Network Layer: Data Plane 4-12

13 Per-router control plane Individual routing algorithm components in each and every router interact in the control plane Routing Algorithm control plane data plane values in arriving packet header Network Layer: Control Plane 5-13

14 Logically centralized control plane A distinct (typically remote) controller interacts with local control agents (CAs) Remote Controller CA control plane data plane values in arriving packet header CA CA CA CA Network Layer: Control Plane 5-14

15 Network layer service models: Network Architecture Service Model Bandwidth Guarantees? Loss Order Timing Congestion feedback Internet ATM ATM ATM ATM best effort CBR (constant bitrate) VBR (variable bitrate ABR UBR none constant rate guaranteed rate guaranteed minimum none no yes yes no no no yes yes yes yes no yes yes no no no (inferred via loss) no congestion no congestion yes no Network Layer: Data Plane 4-15

16 Network layer service models: CBR stands for constant bitrate. During CBR encoding, the bitrate or the number of bits per second is kept the same throughout the encoding process. Constant bit rate (CBR) encoding persists the set data rate to your setting over the whole video clip.cbr encoding does not optimize media files for quality but will save you storage space. Use CBR only if your clip contains a similar motion level across the entire duration. CBR is most commonly used for streaming video content using the Flash Media Server (rtmp).our video encoding API will support CBR encoding for the special occasions in which you need to use CBR. VBR stands for variable bitrate. Variable bit rate (VBR) encoding adjusts the data rate down and to the upper limit you set, based on the data required by the compressor. This means that during a VBR encoding process the bitrate of the media file will dynamically increase or decrease depending on the media files bitrate needs. VBR takes longer to encode but produces the most favorable results as the quality of the media file is superior. VBR is most commonly used for http delivery if video content (http progressive) Network Layer: Data Plane 4-16

17 Network layer service models: Area Border Router (ABR) mean ABR is a kind of router that is located near the border between one or more Open Shortest Path First (OSPF) areas. It is used to establish a connection between backbone networks and the OSPF areas. It is a member of both the main backbone network and the specific areas to which it connects, so it stores and maintains separate routing information or routing tables regarding the backbone and the topologies of the area to which it is connected. Unspecified Bit Rate, a traffic contract used to guarantee quality of service for networks Network Layer: Data Plane 4-17

18 Network service model Q: What service model for channel transporting datagrams from sender to receiver? example services for individual datagrams: guaranteed delivery guaranteed delivery with less than 40 msec delay example services for a flow of datagrams: in-order datagram delivery guaranteed minimum bandwidth to flow restrictions on changes in inter-packet spacing Network Layer: Data Plane 4-18

19 IP fragmentation, reassembly network links have MTU (max.transfer size) - largest possible link-level frame different link types, different MTUs large IP datagram divided ( fragmented ) within the network (internetworking) one datagram becomes several datagrams reassembled only at final destination IP header bits used to identify, order related fragments reassembly fragmentation: in: one large datagram out: 3 smaller datagrams Network Layer: Data Plane 4-19

20 Network Layer 4-20

21 Network Layer 4-21

22 Network Layer 4-22

23 Network Layer 4-23

24 Network Layer 4-24

25 Network Layer 4-25

26 Network Layer 4-26

27 Network Layer 4-27

28 Network Layer 4-28

29 Network Layer 4-29

30 Network Layer 4-30

31 Network Layer 4-31

32 Network Layer 4-32

33 Network Layer 4-33

34 Network Layer 4-34

35 Network Layer 4-35

36 Network Layer 4-36

37 IP fragmentation, reassembly example: 4000 byte datagram MTU = 1500 bytes length =4000 ID =x fragflag =0 offset =0 one large datagram becomes several smaller datagrams 1480 bytes in data field length =1500 ID =x fragflag =1 offset =0 offset = 1480/8 length =1500 ID =x fragflag =1 offset =185 length =1040 ID =x fragflag =0 offset =370 Network Layer: Data Plane 4-37

38 Fragmenting A Fragment Network Layer 4-38

39 Network Layer 4-39

40 Example The device performing the fragmentation follows a specific algorithm to divide the message into fragments for transmission. The exact implementation of the fragmentation process depends on the device. Let's consider the following example, an IP message 12,000 bytes wide (including the 20-byte IP header) that needs to be sent over a link with an MTU of 3,300. Network Layer 4-40

41 Create First Fragment: The first fragment is created by taking the first 3,300 bytes of the 12,000-byte IP datagram. This includes the original header, which becomes the IP header of the first fragment (with certain fields changed as described below). So, 3,280 bytes of data are in the first fragment. This leaves 8,700 bytes to encapsulate (11,980 minus 3,280) Create Second Fragment: The next 3,280 bytes of data are taken from the 8,700 bytes that remain after the first fragment was built, and paired with a new header to create fragment #2. This leaves 5,420 bytes. Create Third Fragment: The third fragment is created from the next 3,280 bytes of data, with a 20-byte header. This leaves 2,140 bytes of data. Network Layer 4-41

42 Create Fourth Fragment: The remaining 2,140 bytes are placed into the fourth fragment, with a 20-byte header of course. two important points should be illustrated here. First, IP fragmentation does not work by fully encapsulating the original IP message into the Data fields of the fragments. If this were done, the first 20 bytes of the Data field of the first fragment would contain the original IP header. The original IP header is transformed into the IP header of the first fragment. Second, note that the total number of bytes transmitted increases: we are sending 12,060 bytes (3,300 times three plus 2,160) instead of 12,000. The extra 60 bytes are from the additional headers in the second, third and fourth fragments. (The increase in size could theoretically be even larger if the headers contain options.) Network Layer 4-42

43 IP addressing: introduction IP address: 32-bit identifier for host, router interface interface: connection between host/router and physical link router s typically have multiple interfaces host typically has one or two interfaces (e.g., wired Ethernet, wireless ) IP addresses associated with each interface = Network Layer: Data Plane 4-43

44 Class-based Addressing IP addresses consist of: Network part Host part IP addresses are divided into five classes: A, B, C, D, and E. Problems?? 0 Network (7 bits) 1 0 Network (14 bits) Class A Class B Host (24 bits) Host (16 bits) 110 Network (21 bits) Host (8 bits) Class C 1110 Multicast address 1111 Future use addresses Class D Class E 44

45 Class-based Addressing (coont) The number of networks and the number of hosts per class can be derived by this formula: Number of NW =2^network_bits Number of Hosts/NW=2^host_bit -2 When calculating hosts' IP addresses, 2 IP addresses are decreased because they cannot be assigned to hosts, i.e. the first IP of a network is network number and the last IP is reserved for Broadcast IP Network Layer 4-45

46 Class A Address The first bit of the first octet is always set to 0 (zero). Thus the first octet ranges from 1 127, i.e =1-127 Class A addresses only include IP starting from 1.x.x.x to 126.x.x.x only. The IP range 127.x.x.x is reserved for loopback IP addresses The default subnet mask for Class A IP address is which implies that Class A addressing can have 126 networks (2 7-2) and hosts (2 24-2). Class A IP address format is thus: 0NNNNNNN.HHHHHHHH.HHHHHHH H.HHHHHHHH Network Layer 4-46

47 Class B Address An IP address which belongs to class B has the first two bits in the first octet set to 10, i.e Class B IP Addresses range from x.x to x.x. The default subnet mask for Class B is x.x. Class B has (2 14 ) Network addresses and (2 16-2) Host addresses. Class B IP address format is: 10NNNNNN.NNNNNNNN.HHHHHHHH. HHHHHHHH Network Layer 4-47

48 Class C Address The first octet of Class C IP address has its first 3 bits set to 110, that is: Class C IP addresses range from x to x. The default subnet mask for Class C is x. Class C gives (2 21 ) Network addresses and 254 (2 8-2) Host addresses Class C IP address format is: 110NNNNN.NNNNNNNN.NNNNNNNN.HHHHHHHH Network Layer 4-48

49 Class D Address first four bits of the first octet in Class D IP addresses are set to 1110, giving a range of: Class D has IP address rage from to Class D is reserved for Multicasting. In multicasting data is not destined for a particular host, that is why there is no need to extract host address from the IP address, and Class D does not have any subnet mask. Network Layer 4-49

50 Class E Address This IP Class is reserved for experimental purposes only for R&D or Study. IP addresses in this class ranges from to Like Class D, this class too is not equipped with any subnet mask. Network Layer 4-50

51 Subnets: Motivation The classful addressing scheme proposes that the network portion of a IP address uniquely identifies one physical network. Any network with more than 255 hosts needs a class B address. Class B addresses can get exhausted before we have 4 billion hosts! Take bits from the host number part to create a subnet number ) right sizing (. 51

52 Subnets IP address: subnet part - high order bits host part - low order bits what s a subnet? device interfaces with same subnet part of IP address can physically reach each other without intervening router subnet network consisting of 3 subnets Network Layer: Data Plane 4-52

53 Subnets recipe to determine the subnets, detach each interface from its host or router, creating islands of isolated networks each isolated network is called a subnet / / subnet /24 subnet mask: /24 Network Layer: Data Plane 4-53

54 Subnets how many? Network Layer: Data Plane 4-54

55 Addressing in the Internet CIDR: Classless InterDomain Routing provides the flexibility of borrowing bits of Host part of the IP address and using them as Network in Network, called Subnet. By using subnetting, one single Class A IP address can be used to have smaller sub-networks which provides better network management capabilities. subnet portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in subnet portion of address Before CIDR, Internet used a class-based addressing scheme where x could be 8, 16, or 24 bits. These corresponding to classes A, B, and C resp. subnet part /23 host part 55

56 IP addresses: how to get one? Q: How does a host get IP address? hard-coded by system admin in a file Windows: control-panel->network->configuration- >tcp/ip->properties UNIX: /etc/rc.config DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server plug-and-play Network Layer: Data Plane 4-56

57 Class A Subnets In Class A, only the first octet is used as Network identifier and rest of three octets are used to be assigned to Hosts (i.e Hosts per Network). To make more subnet in Class A, bits from Host part are borrowed and the subnet mask is changed accordingly. For example, if one MSB (Most Significant Bit) is borrowed from host bits of second octet and added to Network address, it creates two Subnets (2 1 =2) with (2 23-2) Hosts per Subnet. The Subnet mask is changed accordingly to reflect subnetting. Next slide shows a list of all possible combination of Class A subnets: Network Layer 4-57

58 The first and last IP address of every subnet is used for Subnet Number and Subnet Broadcast IP address respectively. Because these two IP addresses cannot be assigned to hosts, subnetting cannot be implemented by using more than 30 bits as Network Bits, which provides less than two hosts per subnet. 4-58

59 Class B Subnets By default, using Classful Networking, 14 bits are used as Network bits providing (2 14 ) Networks and (2 16-2) Hosts. Class B IP Addresses can be subnetted the same way as Class A addresses, by borrowing bits from Host bits. Next slide gives all possible combination of Class B subnetting: Network Layer 4-59

60 Network Layer 4-60

61 Class C Subnets Class C IP addresses are normally assigned to a very small size network because it can only have 254 hosts in a network. Given below is a list of all possible combination of subnetted Class C IP address Network Layer 4-61

62 IP addressing: introduction Q: how are interfaces actually connected? A: we ll learn about that in chapter 5, 6. A: wired Ethernet interfaces connected by Ethernet switches For now: don t need to worry about how one interface is connected to another (with no intervening router) A: wireless WiFi interfaces connected by WiFi base station Network Layer: Data Plane 4-62

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach Chapter 4 Network Layer: The Data Plane Part A All material copyright 996-06 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th Edition, Global Edition Jim Kurose,

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-s-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and K.W.

More information

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communication & Networks G22.2262-001 Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science

More information

Lecture 16: Network Layer Overview, Internet Protocol

Lecture 16: Network Layer Overview, Internet Protocol Lecture 16: Network Layer Overview, Internet Protocol COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK 219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

More information

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting Quiz v 10/30/2013 (Wednesday), 20 mins v Midterm question (available on website) v TCP basics Segment structure and fields Flow control (rwnd) Timeout interval v TCP Congestion control Phases transition

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer Overview, Router Design, IP Sec 4.1. 4.2 and 4.3 Prof. Lina Battestilli Fall 2017 Chapter 4: Network Layer, Data Plane chapter goals: understand

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24 EE 586 Communication and Switching Networks (Fall 2010) Lecture 24 October 25, 2010 1-1 Announcements Midterm 1: Mean = 92.2 Stdev = 8 Still grading your programs (sorry about the delay) Network Layer

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation IPv4

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Mecanismes d Echange d Informations Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2014/2015 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer II Dmitri Loguinov Texas A&M University April 3, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter 4:

More information

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer PREPARED BY AHMED ABDEL-RAOUF Network Layer PREPARED BY AHMED ABDEL-RAOUF Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

TDTS06: computer Networks

TDTS06: computer Networks TDTS06: computer Networks Lecturer: Johannes Schmidt The slides are taken from the book s companion Web site with few modifications: Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith

More information

Network Layer: Router Architecture, IP Addressing

Network Layer: Router Architecture, IP Addressing Network Layer: Router Architecture, IP Addressing UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Router Architecture

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Network Layer: Data Plane 4-2

Network Layer: Data Plane 4-2 Network Layer: Data Plane EECS3214 18-02-25 4-1 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation

More information

Network Layer: Chapter 4. The Data Plane. Computer Networking: A Top Down Approach

Network Layer: Chapter 4. The Data Plane. Computer Networking: A Top Down Approach Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Network Layer 4-1 Chapter 4: Network Layer Chapter

More information

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 6 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 2 posted, due Feb 24, 10pm Next week

More information

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane Introduction to Computer Networking Guy Leduc Chapter 4 Network Layer: The Data Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016. From Computer

More information

NETWORK LAYER DATA PLANE

NETWORK LAYER DATA PLANE NETWORK LAYER DATA PLANE 1 GOALS Understand principles behind network layer services, focusing on the data plane: Network layer service models Forwarding versus routing How a router works Generalized forwarding

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane Lu Su Assistant Professor Department of Computer Science and Engineering State University of New York at Buffalo Adapted from the slides of the book s authors Computer

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Course on Computer Communication and Networks. Lecture 6 Network Layer part 1: Data Plane Chapter 4 (7/e) (6/e Ch4-first part)

Course on Computer Communication and Networks. Lecture 6 Network Layer part 1: Data Plane Chapter 4 (7/e) (6/e Ch4-first part) Course on Computer Communication and Networks Lecture 6 Network Layer part 1: Data Plane Chapter 4 (7/e) (6/e Ch4-first part) EDA344/DIT 423, CTH/GU Based on the book Computer Networking: A Top Down Approach,

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 17 CMPE 80N Spring'10 1 Announcements Next class: Presentation of fun projects

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy Hierarchical Routing Our routing study thus far - idealization all routers identical network flat no true in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing

More information

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach

Topic 4a Router Operation and Scheduling. Ch4: Network Layer: The Data Plane. Computer Networking: A Top Down Approach Topic 4a Router Operation and Scheduling Ch4: Network Layer: The Data Plane Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 4-1 Chapter 4:

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins HW3 and Quiz v HW3 (Chapter 3): R1, R2, R5, R6, R7, R8, R15, P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) v Quiz: 10/30/2013, Wednesday,

More information

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Δίκτυα Υπολογιστών ΙΙ Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Course information introductory course in computer networking course materials: text:

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

RSC Part II: Network Layer. 3. IP addressing. II.5 Network routing. II. 1 Basic Network layer concepts II.2 Introduction to IP

RSC Part II: Network Layer. 3. IP addressing. II.5 Network routing. II. 1 Basic Network layer concepts II.2 Introduction to IP RSC Part II: 3. IP addressing Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking: A Top Down Approach

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer These slides are adapted from the original slides provided by J.Kurose and K.W Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking:

More information

EPL606. Internetworking. Part 2a. 1Network Layer

EPL606. Internetworking. Part 2a. 1Network Layer EPL606 Internetworking Part 2a The majority of the slides in this course are adapted from the accompanying slides to the books by Larry Peterson and Bruce Davie and by Jim Kurose and Keith Ross. Additional

More information

CSE 3214: Computer Network Protocols and Applications Network Layer

CSE 3214: Computer Network Protocols and Applications Network Layer CSE 314: Computer Network Protocols and Applications Network Layer Dr. Peter Lian, Professor Department of Computer Science and Engineering York University Email: peterlian@cse.yorku.ca Office: 101C Lassonde

More information

Chapter 3 Transport Layer

Chapter 3 Transport Layer Chapter 3 Transport Layer A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Information Network Systems The network layer. Stephan Sigg

Information Network Systems The network layer. Stephan Sigg Information Network Systems The network layer Stephan Sigg Tokyo, November 1, 2012 Error-detection and correction Decoding of Reed-Muller codes Assume a second order (16, 11) code for m = 4. The r-th order

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

The Network Layer Forwarding Tables and Switching Fabric

The Network Layer Forwarding Tables and Switching Fabric The Network Layer Forwarding Tables and Switching Fabric Smith College, CSC 249 February 27, 2018 1 Network Layer Overview q Network layer services v v Desired services and tasks Actual services and tasks

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Network Layer: outline

Network Layer: outline Network Layer: outline 1 introduction 2 virtual circuit and datagram networks 3 what s inside a router 4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 5 routing algorithms link state

More information

Lecture 7. Network Layer. Network Layer 1-1

Lecture 7. Network Layer. Network Layer 1-1 Lecture 7 Network Layer Network Layer 1-1 Agenda Introduction to the Network Layer Network layer functions Service models Network layer connection and connectionless services Introduction to data routing

More information

Module 3 Network Layer CS755! 3-1!

Module 3 Network Layer CS755! 3-1! Module 3 Network Layer CS755 3-1 Please note: Most of these slides come from this book. Note their copyright notice below A note on the use of these ppt slides: We re making these slides freely available

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

HY 335 Φροντιστήριο 8 ο

HY 335 Φροντιστήριο 8 ο HY 335 Φροντιστήριο 8 ο Χειμερινό Εξάμηνο 2009-2010 Παπακωνσταντίνου Άρτεμις artpap@csd.uoc.gr 4/12/2009 Roadmap IP: The Internet Protocol IPv4 Addressing Datagram Format Transporting a datagram from source

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking A Top-Down Approach These slides are based on the slides made available by Kurose and Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical

Network layer. Network Layer 4-1. application transport network data link physical. network data link physical. network data link physical Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport layer network layer protocols in every

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations;

More information

B.Sc. (Hons.) Computer Science with Network Security B.Eng. (Hons) Telecommunications B.Sc. (Hons) Business Information Systems

B.Sc. (Hons.) Computer Science with Network Security B.Eng. (Hons) Telecommunications B.Sc. (Hons) Business Information Systems B.Sc. (Hons.) Computer Science with Network Security B.Eng. (Hons) Telecommunications B.Sc. (Hons) Business Information Systems Bridge BTEL/PT BCNS/14/FT BIS/14/FT BTEL/14/FT Examinations for 2014-2015

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Network layer overview

Network layer overview Network layer overview understand principles behind layer services: layer service models forwarding versus rou:ng how a router works rou:ng (path selec:on) broadcast, mul:cast instan:a:on, implementa:on

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network

CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network CS610 Computer Network Final Term Papers Solved MCQs with reference by Virtualians Social Network Question No: 1( M a r k s: 1 ) A ---------- Relies on the hardware manufacturer to assign a unique physical

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

Review. Some slides are in courtesy of J. Kurose and K. Ross

Review. Some slides are in courtesy of J. Kurose and K. Ross Review The Internet (IP) Protocol Datagram format IP fragmentation ICMP: Internet Control Message Protocol NAT: Network Address Translation Routing in the Internet Intra-AS routing: RIP and OSPF Inter-AS

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived from Computer Networking: A Top Down Approach, by Jim Kurose and Keith Ross, Addison-Wesley. The slides are adapted

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Key Network-Layer Functions

Key Network-Layer Functions Network Layer: Routing & Forwarding Instructor: Anirban Mahanti Office: ICT 745 Email: mahanti@cpsc.ucalgary.ca Class Location: ICT 121 Lectures: MWF 12:00 12:50 hours Notes derived from Computer Networking:

More information

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Intersession 2008 Last Name: First Name: Student ID: PLEASE

More information

3.7 TCP congestion. reliable data transfer. sliding window. Lecture 4: Transport layer III: flow control and congestion control & Network layer I: IP

3.7 TCP congestion. reliable data transfer. sliding window. Lecture 4: Transport layer III: flow control and congestion control & Network layer I: IP TDTS06 Computer s Lecture 4: Transport layer III: flow control and congestion control & Network layer I: IP Juha Takkinen, juha.takkinen@liu.se IDA/ADIT/IISLAB, Linköpings universitet 2010-09-13 Slides

More information

Chapter 6 The Link Layer and LANs

Chapter 6 The Link Layer and LANs Chapter 6 The Link Layer and LANs A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the

More information

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates:

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates: BSc.(Hons) Computer Science with Network Security BEng (Hons) Telecommunications Cohort: BCNS/17B/FT Examinations for 2017-2018 / Semester 2 Resit Examinations for BCNS/15A/FT, BTEL/15B/FT & BTEL/16B/FT

More information