Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking. Date: March 9 th 2007 at 8:00 13:00 SOLUTIONS

Size: px
Start display at page:

Download "Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking. Date: March 9 th 2007 at 8:00 13:00 SOLUTIONS"

Transcription

1 Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking Date: March 9 th 2007 at 8:00 13:00 SOLUTIONS

2 1. IP Addressing? (5p) There are ten nodes connected to your network: a router R and hosts H 1 to H 9. You can be assigned a network address from the pool /24. The bigger the address range you ask for, the higher the cost. a) What network address/prefix should you ask for in order to minimize the cost? (1) Ask for /28 b) What is the subnet mask of your network? (1) The mask is c) Assume that router R has the smallest IP address in your network. It sends a datagram to the directed broadcast address of your network. What are the source and destination addresses? (1) Src: , dst: d) Router R sends a multicast packet to all hosts in your network. What is the destination IP address of the packet? (1) Dst: e) How many subnets (not necessarily of equal size) can you split your network into, if you want to be able to accommodate the 9 hosts? Assume that you can install any number of interfaces in router R, and all subnets are connected to router R. (1) You can create two /29 subnets. Then the router has three interfaces, i.e. takes two IP addresses + 2 network addresses + 2 directed broadcast + 9 hosts = 15< ARP and bridging (5p) Consider the following network consisting of 2 bridges and 1 router. Hosts H 1 to H 6 have one interface each. B 1 and B 2 are learning bridges. R 1 is a router with an appropriate routing table. All ARP caches and the bridges learning tables are empty. Assume that ARP snooping is used. H 1 B 1 H 2 H 3 H 4 R 1 B 2 H 5 H 6 a) Add the necessary physical (MAC) and logical (IP) addresses, and identify the subnets! (1p) b) Host H 1 sends an IP packet to host H 2. Show the contents of the bridges learning tables and the hosts and the router s ARP caches after the packet has been delivered. (2p) c) Shortly after the delivery of the packet, host H 2 sends an IP packet to host H 5. Show the new contents of the ARP caches and the learning tables. (1p)

3 d) After the packet is delivered, host H 6 sends an IP packet to host H 1. Show the new contents of the ARP caches and the learning tables. (1p) 3. IPv4 forwarding? (5p) A router has the routing table shown below. Determine the next-hop address and the outgoing interface for the packets arriving to the router with source addresses as given in points (a)-(e). Destination Next hop Flags Interface /16 - U m / UG m / UG m /28 - U m / UG m /18 - U m / G m / UGH m / UG m0 a) (1p) on m0 b) (1p) on m2 c) (1p) discarded, because next hop s U flag is not set d) (1p) on m2, direct delivery e) (1p) TCP I?(5p) a) What is the purpose of flow control? How does TCP flow control work? (1p) Its purpose is to ensure that the sender does not overwhelm the receiver with data. The receiver advertises its window to the sender. The sender is not allowed to have more unacknowledged data in the network than the receiver window size. b) What does cumulative acknowledgement mean and how is the TCP SACK option related to it? (1p) Cumulative acknowledgement means that segments are not necessarily acknowledged individually, but a continuous sequence of segments can be acknowledged with one ACK. SACK is Selective ACKnowledgement, and is used to make feedback more efficient in the presence of losses. c) TCP s congestion control consists of two main phases. What are these phases, and what is the principal difference between them? (2p) Slow start (SS) and congestion avoidance (CA). In slow start: the congestion window is doubled every RTT. In congestion avoidance: it is increased by 1 every RTT, and halved if a loss event occurs (CA), reset to 1 if a timeout occurs (SS). d) How do flow control and congestion control interact at the sender in TCP? (1p) The sender s window size is set to min(cwnd, rwnd). 5. TCP II?(5p) a) The accurate estimation of the RTT is very important for the proper operation of TCP. What happens if the RTT is underestimated or if it is overestimated? (1p)

4 Underestimation: retransmissions happen before the ACK arrives -> generates excess traffic -> can lead to congestion collapse Overestimation: the throughput decreases in the presence of losses. b) What is the silly window syndrome? When can it occur, and how can it be resolved? (2p) Sender driven vs. receiver driven. Sender driven: Nagle s algorithm. Receiver driven: Clark s solution or delayed ACKs. c) TCP sends a segment at 13:20:10. It does not receive an acknowledgement, so that at 13:20:20 it retransmits the segment. The ACK for the segment arrives at 13:20:22. The RTTstdev was initially 1.25s. What was the estimated RTT at 13:20:10, 13:20:20 and 13:20:22? What were the corresponding RTOs? (2p) RTT estimates: 5,5,5. RTO values: 10,20,20 6. Application layer?(5p) a) FTP can operate in two different modes, active and passive. Explain the difference between these two modes! (2p) In active mode the client tells to the server on which port it is ready to accept (PORT command) a data connection from the server. The server issues the active open. In passive mode the client asks for a port number (PASV command) from the server, and issues an active open to that port. b) Name three reasons for using MIME to transfer messages via SMTP! (1p) MIME is used to overcome the limitations of SMTP: Textual message bodies in other character sets, non-textual message bodies, multi-part message bodies, textual header information in other character sets. c) What is the delay jitter? How can it be handled? Typically UDP is considered to be more suitable for multimedia transmission than TCP. Is this true in general? Motivate your answer! (2p) Delay jitter is the difference in the time it takes for different packets to travel between two hosts. One can use a playout buffer to decrease the effects of jitter. TCP retransmissions make the delay/delay jitter hard to predict, while a certain amount of losses is usually tolerable for multimedia, so that reliability is not the most important. Hence UDP can be more suitable, but mainly if the multimedia has to be played out with a small delay (e.g.: real-time communication, streaming with repositioning). It does not make sense to say that UDP is faster than TCP! 7. DNS I (5p) The following is an example of a DNS zone file. ;;; zone file for music.lab.kthnoc.net. $TTL IN SOA root.music.lab.kthnoc.net. dnsadmin.kthnoc.net. ( ;!!SERIAL!! ; Refresh 4 hour(s) 3600 ; Retry 1 hour(s) ; Expire 7 day(s) ; Minimum 1 day(s) ) IN NS root IN NS root.lab.kthnoc.net. IN MX 5 mx1.music.lab.kthnoc.net. root.music.lab.kthnoc.net. IN A mx1 IN A www IN CNAME ;;; end of zone file for music.lab.kthnoc.net

5 Please answer the following questions a) Describe in your own words what a resource record (RR) is. (1p) RFC1035, page 11: A RR consists of NAME, TYPE, CLASS, TTL, RDLENGTH and RDATA. or A RR in dns is equal to a database entry (a row) in a database. b) You can find several types of RRs in the example. Name one type of RR not listed in the example above and describe it. (1p) For example, PTR which in its left part holds a reverse coded ipv4 or ipv6 address (+ in-addr.arpa. or ip6.arpa.) and in the rightmost part holds a hostname. c) The BIND program will expand the " IN NS root" row. Write down the fully expanded row. (1p) music.lab.kthnoc.net IN NS root.music.lab.kthnoc.net. d) One external resolver keeps one of the RRs from the example in its cache. What is the maximum time it keeps the RR in the cache without asking the name server again? (1p) seconds or 1 day. e) What kind of RR(s) is/are needed for a parent zone to point out a subzone? (1p) At least one NS RR and sometimes also one or more A RR (glue). (RFC1034, page 20,21) 8. DNS II (5p) A name server with BIND installed and running listens on two sockets (port 53 udp and port 53 tcp). a) Give two examples, one when UDP is used and one example when TCP is used. Motivate why UDP and why TCP is used in your examples. (2p) Udp: A normal standard query about a RR to the name server holding the zone file in the example above. The tight coding of the RR makes the transfer small and the answer fast. Tcp: (RFC1034, page 28,29) A zonetransfer of the zone in the example above should be reliable and holds more data than a simple RR query, therefor tcp is used. b) Describe the two independent mechanisms that update a secondary (slave) server including what triggers the mechanism. (3p) Mechanism 1: (RFC1034, page 28,29) The secondary requests the SOA from the master at regular intervals determined by the values found in the SOA. Then the SERIAL field is then compared (using sequence space arithmetic). If the requested SERIAL is found to be bigger the secondary should request a AXFR or a IXFR (depending on implementation). Mechanism 2: (RFC1996, A Mechanism for Prompt Notification of Zone Changes, DNS NOTIFY) When the masters zonefile is updated and reloaded it triggers a flooding mechanism: the master sends a notify message to all NS hosts in the zonefile. The name server receiving such a notify can decide to act on that notify and request a zone transfer from the master

6 9. Dynamic Routing I (5p) a) Describe the difference between intra-domain and inter-domain routing with respect to routing protocols and metrics? (1p) Intra-domain routing is concerned with routing within an administrative routing domain. Since all resources are under the control of the administrator, you are typically concerned with hops and bandwidth and optimizations of traffic paths and traffic load. Link-state protocols is a good choice here. Inter-domain routing is concenrned with more general policies including costs and business relations. Thus, an inter-domin protocol needs to be able to express complex policies, which is the case in BGP. b) What is route preference (administrative distance)? How is it used in a router? (1p) Route preference expresses the priority of the same route from different protocols. If two protocols have the same route in one router, the route with lower preference is installed in the routing table (ie FIB). c) Explain what route aggregation (summarization) is. Why is it necessary? (1p) Route aggregation is the forming of a more general (less specific) prefix from more specific prefixes.route aggregation is necessary to bring the number of prefixes down and also (possibly) to hide information about specific networks. If there were no route aggregation, the global routing tables would be very large. d) Explain what route redistribution is. Give two examples of situations where route redistribution is useful.(2p) Route distribution is when a route (or set of routes) is distributed from one protocol to another. One typical examples is when interior routes that exists in an internal routing protocol (such as OSPF) are (aggregated and) announced via BGP. Another example is when exterior routes (eg from BGP) are injected into an internal routing protocol (such as OSPF). 10. Dynamic Routing II (5p) The following is a description of the Bellman-Ford algorithm used in distance-vector routing protocols as described in the specification of RIP-2 (Routing Information Protocol) from RFC If it is possible to get from entity i to entity j directly, then a cost, d(i,j), is associated with the hop between i and j. The cost is infinite if i and j are not immediate neighbors. Let D(i,j) represent the metric of the best route from entity i to entity j. Then, the best metric must be described by D(i,i) = 0, all i D(i,j) = min [d(i,k) + D(k,j)], otherwise k The algorithm: Entity i gets its neighbors k to send it their estimates of their distances to the destination j. When i gets the estimates from k, it adds d(i,k) to each of the numbers. This is simply the cost of traversing the network between i and k. Now and then i compares the values from all of its neighbors and picks the smallest. It can be proven that this algorithm will converge to the correct estimates of D(i,j) in finite time in the absence of topology changes.

7 But this is a description of an algorithm, not a description of a protocol. Describe what concretizations need to be made in a protocol specification in order for an actual implementation to be made. Motivate your answer. Hint: Issues that you should address in your answer include addressing and timing, for example. There are many possible answers to this question. The main issue is a logical reasoning that proves that the student has understood the underlying principles of routing protocols. Bellman-Ford is an algorithm that on an abstract level describes how to compute a shortest path. However, the description talks about entities and defines the algorithm via an equation system. But a protocol in a real network need to concern itself about actual nodes, links, messages and timing. First, an IP routing protocol needs to refer to addresses. In IP, the primary concept is IP subnetworks not entities. Second, a router needs to identify tits neighbours, and which links the neighbours appear on. Third, a router needs to form messages and send them over a link to its neighbours. Fourth, the algorithm says now and then, a router needs to know how often it should send out messages (such as every 30 seconds). Fifth, the algorithm only briefly mentions topology changes but this is a major issue not all addressed by the algorithm. For example, old data will get stale, a protocol needs to know when routes time-out. Topology changes may lead to inconsistencies (eg. Count-to-infinity) which leads to a limitiation of the inifinity concept (16 in RIP). It may also lead to other fixes (such as split horizon and poison reverse, for example). 11. IPv6 (5p) a) A difference between IPv4 and IPv6 is that the header checksum has been removed in IPv6? Why was it removed, motivate your answer? (2p) The IP header checksum algorithm ( the Internet checksum ) is very weak, really only a parity check, so that it should be easy to implement in software. A CRC (cyclic redundancy check) which may be performed in hardware by the link-layer is much stronger. Since IPv6 requires all links to provide a strong checksum, there is really no need to have this checksum at all. b) In IPv6, stateless autoconfiguration has been added. Describe how this works and how it relates to stateful autoconfiguration using DHCP. (3p) Stateless autoconfiguration in IPv6 is designed to be able to attach to a network with no manual or central configuration (such as in DHCP). The idea is that a host first form a linklocal address that can be used to connect to all nodes on a sub-network. This link-local address is typically formed by concatenating a well-known prefix to a MAC address. The host then queries any routers on the subnetwork using ICMP router solicitation messages over multicast. Any routers on the network picking up this will return with router advertisements which contains information about the site. Such as prefixes to use, next-hop addresses, etc. The host can now form global addresses by concatenating the global prefix with its mac address and communicate with the outside world using the next-hop address. However, DHCP needs to be used in many cases anyway since there is a lot of information that is not present in the router advertisements.

8 12. General (5p) In many link layers there is a reliability mechanism that implements reliability in the network components at the link layers. For example, a link layer can itself have an ARQ (Automatic Repeat-reQuest) mechanism that resends lost packets on a local basis (i.e., on a single link). In such a network, the link layer itself is reliable. Assume the whole network (all link-layers from src to destination) is constructed in this way. Argue for the advantages and disadvantages for such a scheme with respect to the IP and TCP design. In particular, how does it relate to the end-to-end argument? There can be very variants on the answers to this question The main issue is a logical reasoning that proves that the student has understood the underlying principles of data networks. The following are a couple of examples of reasonings that are valid. The reasoning should include that TCP implements reliability on an end-to-end basis. A reliable link using ARQ may interfer with the TCP retransmission mechanisms. The RTT computation in TCP, for example must be on an order of magnitude larger than retransmissions on a link, otherwise retransmissions may occur both on links and end-nodes and cause duplicates and strange behavior of TCP. The situation is an example of layering violation that also breaks the end-to-end principle which states that as much as possible should be off-loaded to the end-nodes. In a pure IP network, reliability is handled by the transport layer at the end-nodes. Another interesting aspect is that many link-layer ARQ mechanisms are made for links with high bit error rates. TCP congestion control was designed for losses due to congestion only. One can argue that TCP does not handle bit errors well and that such a mechanism is necessary to cope for such situations. This is a weakness with TCP and should argue for adding the handling of lower-layer fault-handling or indication in IP. (There exist such proposal such as ECN: Early Congestion Notification). Finally, if one devises a network which is fully reliable, composed of only reliable links, then much of the end to-end argument falls. It would lead to a more intelligent network where data is stored in the links. It might produce a simpler IP layer and removes most of the need for TCP, but probably to new problems in the routers and line-cards.

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2G1305 Internetworking 2G1507 Kommunikationssystem, fk Date: January 17 th 2006 at 14:00 18:00 SOLUTIONS 1. General (5p) a) Draw the layered

More information

Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking. Date: June 1 st 2007 at 14:00 19:00 SOLUTIONS

Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking. Date: June 1 st 2007 at 14:00 19:00 SOLUTIONS Examination 2D1392 Protocols and Principles of the Internet 2E1605 Internetworking Date: June 1 st 2007 at 14:00 19:00 SOLUTIONS 1. IP and addressing (5p) a) Your company would like to have all its 511

More information

Important note! Please start with problems 1-4; because your grade is F if you do not reach at least 15 (fifteen) points out of 20 for problems 1-4!

Important note! Please start with problems 1-4; because your grade is F if you do not reach at least 15 (fifteen) points out of 20 for problems 1-4! Examination DD2392 Protocols and Principles of the Internet EP2120 Internetworking Date: 10 March 2009 at 8:00 13:00 a) No help material is allowed - You are not allowed to use dictionaries, books, or

More information

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS 1. General (5p) a) The so-called hourglass model (sometimes referred to as a wine-glass ) has been used

More information

Distance vector and RIP

Distance vector and RIP DD2490 p4 2008 Distance vector and RIP Olof Hagsand KTHNOC/NADA Literature RIP lab RFC 245: RIPv2. Sections 1 2 contains some introduction that can be useful to understand the context in which RIP is specified..1.4

More information

Chapter 09 Network Protocols

Chapter 09 Network Protocols Chapter 09 Network Protocols Copyright 2011, Dr. Dharma P. Agrawal and Dr. Qing-An Zeng. All rights reserved. 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

Examination DD2393 Protocols and Principles of the Internet EP2120 Internetworking. Date: 10 January 2011 at 14:00 18:00

Examination DD2393 Protocols and Principles of the Internet EP2120 Internetworking. Date: 10 January 2011 at 14:00 18:00 Examination DD2393 Protocols and Principles of the Internet EP2120 Internetworking Date: 10 January 2011 at 14:00 18:00 a) No help material is allowed - You are not allowed to use dictionaries, books,

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Example questions for the Final Exam, part A

Example questions for the Final Exam, part A ETSF10, ETSF05 Ht 2010 Example questions for the Final Exam, part A 1. In AdHoc routing there are two main strategies, reactive and proactive routing. Describe in a small number of words the concept of

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

ETSF05/ETSF10 Internet Protocols. Routing on the Internet

ETSF05/ETSF10 Internet Protocols. Routing on the Internet ETSF05/ETSF10 Internet Protocols Routing on the Internet Circuit switched routing ETSF05/ETSF10 - Internet Protocols 2 Routing in Packet Switching Networks Key design issue for (packet) switched networks

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

Basic Idea. Routing. Example. Routing by the Network

Basic Idea. Routing. Example. Routing by the Network Basic Idea Routing Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Routing by the Network

Routing by the Network Routing Basic Idea Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Chapter 12 Network Protocols

Chapter 12 Network Protocols Chapter 12 Network Protocols 1 Outline Protocol: Set of defined rules to allow communication between entities Open Systems Interconnection (OSI) Transmission Control Protocol/Internetworking Protocol (TCP/IP)

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Autumn 03/04 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Autumn 03/04 John Kristoff - DePaul University 1 IPv4 unicast routing All Internet hosts perform basic routing for local net destinations, forward to local host for non-local

More information

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing.

Announcements. IP Forwarding & Transport Protocols. Goals of Today s Lecture. Are 32-bit Addresses Enough? Summary of IP Addressing. IP Forwarding & Transport Protocols EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/

More information

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions

FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions First name: Family name: FINAL EXAM - SLOT 2 TCP/IP NETWORKING Duration: 90 min. With Solutions Jean-Yves Le Boudec, Patrick Thiran 2011 January 15 INSTRUCTIONS 1. The exam is in two time slots. Slot 1

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

RIP Configuration. RIP Overview. Operation of RIP. Introduction. RIP routing table. RIP timers

RIP Configuration. RIP Overview. Operation of RIP. Introduction. RIP routing table. RIP timers Table of Contents RIP Configuration 1 RIP Overview 1 Operation of RIP 1 Operation of RIP 2 RIP Version 2 RIP Message Format 3 Protocols and Standards 4 Configuring RIP Basic Functions 5 Configuration Prerequisites

More information

EECS 122, Lecture 16. Link Costs and Metrics. Traffic-Sensitive Metrics. Traffic-Sensitive Metrics. Static Cost Metrics.

EECS 122, Lecture 16. Link Costs and Metrics. Traffic-Sensitive Metrics. Traffic-Sensitive Metrics. Static Cost Metrics. EECS 122, Lecture 16 Kevin Fall kfall@cs.berkeley.edu edu Link Costs and Metrics Routing protocols compute shortest/cheapest paths using some optimization criteria Choice of criteria has strong effect

More information

Computer Networks. Lecture 9 Network and transport layers, IP, TCP, UDP protocols

Computer Networks. Lecture 9 Network and transport layers, IP, TCP, UDP protocols Computer Networks Lecture 9 Network and transport layers, IP, TCP, UDP protocols Network layer The Network layer, or OSI Layer 3, provides services to exchange the individual pieces of data over the network

More information

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork

Internetworking. different kinds of network technologies that can be interconnected by routers and other networking devices to create an internetwork UNIT - II Internetworking An internetwork is a collection of individual networks, connected by intermediate networking devices, that functions as a single large network. different kinds of network technologies

More information

ICMP, ARP, RARP, IGMP

ICMP, ARP, RARP, IGMP Internet Layer Lehrstuhl für Informatik 4 Raw division into three tasks: Data transfer over a global network Route decision at the sub-nodes Control of the network or transmission status Routing Protocols

More information

Examination IK2218 Protocols and Principles of the Internet EP2120 Internetworking. Date: 27 October 2015 at 14:00 18:00

Examination IK2218 Protocols and Principles of the Internet EP2120 Internetworking. Date: 27 October 2015 at 14:00 18:00 Examination IK2218 Protocols and Principles of the Internet EP2120 Internetworking Date: 27 October 2015 at 14:00 18:00 a) No help material is allowed - You are not allowed to use dictionaries, books,

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Problem Max. Points Act. Points Grader

Problem Max. Points Act. Points Grader Networks and Protocols Course: 320301 Jacobs University Bremen Date: 2007-12-12 Dr. Jürgen Schönwälder Duration: 90 minutes Final Examination The Jacobs University s Code of Academic Integrity applies

More information

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Internet Protocol (IP) Lecture 2: Prof. Shervin Shirmohammadi CEG

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Internet Protocol (IP) Lecture 2: Prof. Shervin Shirmohammadi CEG Lecture 2: Internet Protocol (IP) Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 2-1 Network Layer Provides the upper layers with independence from the data

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CSC458 Lecture 6. Administrivia. Inter-domain Routing IP Addressing. Midterm will Cover Following Topics (2) Midterm will Cover Following Topics

CSC458 Lecture 6. Administrivia. Inter-domain Routing IP Addressing. Midterm will Cover Following Topics (2) Midterm will Cover Following Topics CSC458 Lecture 6 Inter-domain Routing IP Addressing Administrivia Homework: #2 due today #3 out today, due in two weeks (same date as midterm) No lecture next week Reading Week Midterm in two weeks 60

More information

cs/ee 143 Communication Networks

cs/ee 143 Communication Networks cs/ee 143 Communication Networks Chapter 4 Internetworking Text: Walrand & Parekh, 2010 Steven Low CMS, EE, Caltech Warning These notes are not self-contained, probably not understandable, unless you also

More information

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP Outline Connecting to the access network: DHCP and mobile IP, LTE Transport layer: UDP and TCP IETF TCP/IP protocol suite User application, e.g., http with Mozilla Communication for each process on computer

More information

Topics for This Week

Topics for This Week Topics for This Week Routing Protocols in the Internet OSPF, BGP More on IP Fragmentation and Reassembly ICMP Readings Sections 5.6.4-5.6.5 1 Hierarchical Routing aggregate routers into regions, autonomous

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Auxiliary protocols. tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP).

Auxiliary protocols. tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP). Auxiliary protocols IP is helped by a number of protocols that perform specific tasks that IP does not handle: Routing table management (RIP, OSPF, etc.). Congestion and error reporting (ICMP). Multicasting

More information

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL

CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL CHAPTER 9: PACKET SWITCHING N/W & CONGESTION CONTROL Dr. Bhargavi Goswami, Associate Professor head, Department of Computer Science, Garden City College Bangalore. PACKET SWITCHED NETWORKS Transfer blocks

More information

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS Time: 75 min (strictly enforced) Points: 50 YOUR NAME (1 pt): Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly

More information

What is the difference between unicast and multicast? (P# 114)

What is the difference between unicast and multicast? (P# 114) 1 FINAL TERM FALL2011 (eagle_eye) CS610 current final term subjective all solved data by eagle_eye MY paper of CS610 COPUTER NETWORKS There were 30 MCQs Question no. 31 (Marks2) Find the class in 00000001.001011.1001.111

More information

EEC-484/584 Computer Networks

EEC-484/584 Computer Networks EEC-484/584 Computer Networks Lecture 13 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of lecture 12 Routing Congestion

More information

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class Computer Network Homework#2 COMPUTER NETWORK Homework #3 Due Date: May 22, 2017 in class Question 1 Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes

More information

Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.)

Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.) Internetworking - We are heterogeneity to our network (variable network technologies, bandwidth, MTU, latency, etc. etc.) Goal is to use this opportunity (and not to find the lowest common denominator

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 22 Network Layer:, and Routing Department of Information Technology Eastern Mediterranean University Objectives 2/131 After completing this chapter you should be able

More information

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class Computer Network Homework#3 COMPUTER NETWORK Homework #3 Due Date: May 22, 2017 in class Question 1 Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes

More information

Lecture 12. Introduction to IP Routing. Why introduction? Routing

Lecture 12. Introduction to IP Routing. Why introduction? Routing Lecture. Introduction to IP Routing Why introduction? Routing: very complex issue need in-depth study entire books on routing our scope: give a flavour of basic routing structure and messaging give an

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Final Examination Instructor: N. Vlajic Date: April 15, 2011 Instructions: Examination time: 180 min.

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 018 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 017 1 Network

More information

Mobile IP and Mobile Transport Protocols

Mobile IP and Mobile Transport Protocols Mobile IP and Mobile Transport Protocols 1 IP routing Preliminaries Works on a hop-by-hop basis using a routing table 32 bits: 129.97.92.42 Address = subnet + host (Mobility No packet for you) Two parts»

More information

Chapter 7 Routing Protocols

Chapter 7 Routing Protocols Chapter 7 Routing Protocols Nonroutable Protocols In the early days of networking, networks were small collections of computers linked together For the purposes of sharing information and expensive peripherals

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 017 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-007

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load Dynamic Routing Overview Forwarding vs Routing forwarding: to select an output port based on destination address and routing table routing: process by which routing table is built Network as a Graph C

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

Introduction to Network. Topics

Introduction to Network. Topics Introduction to Network Security Chapter 7 Transport Layer Protocols 1 TCP Layer Topics Responsible for reliable end-to-end transfer of application data. TCP vulnerabilities UDP UDP vulnerabilities DNS

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ

Networking for Data Acquisition Systems. Fabrice Le Goff - 14/02/ ISOTDAQ Networking for Data Acquisition Systems Fabrice Le Goff - 14/02/2018 - ISOTDAQ Outline Generalities The OSI Model Ethernet and Local Area Networks IP and Routing TCP, UDP and Transport Efficiency Networking

More information

Computer Networks (Unit wise Questions)

Computer Networks (Unit wise Questions) Unit I Unit II 1. What are different transmission modes?[4] 2. Encode the following binary data stream into Manchester and differential Manchester codes 1 1 0 0 1 0 1 0 [8] 3. What are different topologies

More information

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1

Network Protocols. Routing. TDC375 Winter 2002 John Kristoff - DePaul University 1 Network Protocols Routing TDC375 Winter 2002 John Kristoff - DePaul University 1 IP routing Performed by routers Table (information base) driven Forwarding decision on a hop-by-hop basis Route determined

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A 5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI 635 854. NAME OF THE STAFF : R.ANBARASAN DESIGNATION & DEPARTMENT : AP/CSE SUBJECT CODE : CS 6551 SUBJECT NAME : COMPUTER NETWORKS UNIT I FUNDAMENTALS

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006

ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006 Email Address ECE4110, Internetwork Programming, QUIZ 2 - PRACTICE Spring 2006 Name (Print) Prof. John A. Copeland Practice for April 11, 2006 Tel.: 404-894-5177 E-Mail: copeland@ece.gatech.edu RULES.

More information

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing ICS 351: Today's plan netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing Netmask exercises how many bits in this netmask: 255.128.0.0 using this netmask and the

More information

ECSE 414 Fall 2014 Final Exam Solutions

ECSE 414 Fall 2014 Final Exam Solutions ECSE 414 Fall 2014 Final Exam Solutions Question 1 a. The five main layers of the internet protocol stack, along with the service provided by each, and the place where each is implemented are as follows:

More information

Routing Protocols. Autonomous System (AS)

Routing Protocols. Autonomous System (AS) Routing Protocols Two classes of protocols: 1. Interior Routing Information Protocol (RIP) Open Shortest Path First (OSPF) 2. Exterior Border Gateway Protocol (BGP) Autonomous System (AS) What is an AS?

More information

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents Table of Contents Table of Contents Chapter 1 Static Routing Configuration... 1-1 1.1 Introduction... 1-1 1.1.1 Static Route... 1-1 1.1.2 Default Route... 1-1 1.1.3 Application Environment of Static Routing...

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

Unit 6 Routing and Layers 3 and 4 Protocols. Chapter 6: Layers 3 and 4 Protocols

Unit 6 Routing and Layers 3 and 4 Protocols. Chapter 6: Layers 3 and 4 Protocols Unit 6 Routing and Layers 3 and 4 Protocols Chapter 6 from each textbook Chapter 6: Layers 3 and 4 Protocols 2008 ITT Educational Services Inc. IT-320 Wan Technologies : Unit 6: Slide 1 Objectives 6: Describe

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control What is Congestion The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

TCP Congestion Control

TCP Congestion Control What is Congestion TCP Congestion Control The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 11 October 2018 Midterm on Tues Announcements 1 HW#4 Review maine.edu created? What is a

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

ETSF05/ETSF10 Internet Protocols Routing on the Internet

ETSF05/ETSF10 Internet Protocols Routing on the Internet ETSF05/ETSF10 Internet Protocols Routing on the Internet 2014, (ETSF05 Part 2), Lecture 1.1 Jens Andersson Circuit switched routing 2014 11 05 ETSF05/ETSF10 Internet Protocols 2 Packet switched Routing

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Configuring IP Services

Configuring IP Services This module describes how to configure optional IP services. For a complete description of the IP services commands in this chapter, refer to the Cisco IOS IP Application Services Command Reference. To

More information

Computer Networks. 19 December This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points.

Computer Networks. 19 December This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points. Computer Networks 19 December 2014 This exam consists of 6 questions with subquestions. Every subquestion counts for 10 points. Mark every page with name and student number. Use of books, additional course

More information

Review problems (for no credit): Transport and Network Layer

Review problems (for no credit): Transport and Network Layer Review problems (for no credit): Transport and Network Layer V. Arun CS 653, Fall 2018 09/06/18 Transport layer 1. Protocol multiplexing: (a) If a web server has 100 open connections, how many sockets

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination.

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination. THE HONG KONG POLYTECHNIC UNIVERSITY Department of Computing This is an open-book examination. () Internetworking Protocols and Software 7 January 2013 3 hours [Answer all ten questions.] 2 Please answer

More information

CS BGP v4. Fall 2014

CS BGP v4. Fall 2014 CS 457 - BGP v4 Fall 2014 Autonomous Systems What is an AS? a set of routers under a single technical administration uses an interior gateway protocol (IGP) and common metrics to route packets within the

More information

ECE 435 Network Engineering Lecture 11

ECE 435 Network Engineering Lecture 11 ECE 435 Network Engineering Lecture 11 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 5 October 2017 Announcements Back from Memsys. Related things: fast memories for network

More information

Examination DD2392 Protocols and Principles of the Internet EP2120 Internetworking. Date: 02 June 2009 at 14:00 19:00

Examination DD2392 Protocols and Principles of the Internet EP2120 Internetworking. Date: 02 June 2009 at 14:00 19:00 Examination DD2392 Protocols and Principles of the Internet EP2120 Internetworking Date: 02 June 2009 at 14:00 19:00 a) No help material is allowed - You are not allowed to use dictionaries, books, or

More information

Routing Overview. Information About Routing CHAPTER

Routing Overview. Information About Routing CHAPTER 21 CHAPTER This chapter describes underlying concepts of how routing behaves within the ASA, and the routing protocols that are supported. This chapter includes the following sections: Information About

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP CS 5520/ECE 5590NA: Network Architecture I Spring 2008 Lecture 13: UDP and TCP Most recent lectures discussed mechanisms to make better use of the IP address space, Internet control messages, and layering

More information

EE 122: IP Forwarding and Transport Protocols

EE 122: IP Forwarding and Transport Protocols EE 1: IP Forwarding and Transport Protocols Ion Stoica (and Brighten Godfrey) TAs: Lucian Popa, David Zats and Ganesh Ananthanarayanan http://inst.eecs.berkeley.edu/~ee1/ (Materials with thanks to Vern

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information