NETWORK LAYER: IP Addressing

Size: px
Start display at page:

Download "NETWORK LAYER: IP Addressing"

Transcription

1 NETWORK LAYER: IP Addressing McGraw-Hill The McGraw-Hill Companies, Inc.,

2 Position of network layer McGraw-Hill The McGraw-Hill Companies, Inc., 2004

3 Network layer duties McGraw-Hill The McGraw-Hill Companies, Inc., 2004

4 Host-to-Host Delivery: Internetworking, Addressing McGraw-Hill The McGraw-Hill Companies, Inc., 2004

5 # Physical and Data Link layers operate locally. # In order to exchange data between networks, the networks need to be connected to make an internetwork. Figure below shows an example of an internetwork. The internetwork above is made of five networks: 4 LANs and 1 WAN McGraw-Hill The McGraw-Hill Companies, Inc., 2004

6 Figure below shows the protocol level working of the internetwork. Question: When data arrive at interface f1 of S1, how does S1 know that they should be sent out from interface f3? Because there is no provision in the data link layer to help S1 make right decision (because frame does not contain any routing information. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

7 Internetworks Need For Network Layer Internet As A Packet-Switched Network Internet As A Connectionless Network McGraw-Hill The McGraw-Hill Companies, Inc., 2004

8 Internetwork Need for Network Layer To solve the problem through several links, the network layer was designed. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

9 Internetwork Need for Network Layer Network Layer at Source Working at source : Receives data from source, adds universal address of host A, adds universal address of D, makes sure that packet is of correct size, adds field for error control. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

10 Internetwork Need for Network Layer Network Layer at Router or Switch Finds the interface from which the packet must be sent. This is done by using a routing table. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

11 Internetwork Need for Network Layer Network Layer at Destination Working at Destination : Responsible for address verification, checks if the packet has been corrupted during transmission, waits for all fragments to arrive, reassembles them and delivers the reassembled packet to the transport layer. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

12 Figure 19.7 Switching McGraw-Hill The McGraw-Hill Companies, Inc., 2004

13 Figure 19.8 Datagram approach McGraw-Hill The McGraw-Hill Companies, Inc., 2004

14 Note: Switching at the network layer in the Internet is done using the datagram approach to packet switching. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

15 Note: Communication at the network layer in the Internet is connectionless. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

16 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router) to the Internet. Topics discussed in this section: Address Space Notations Classful Addressing Classless Addressing Network Address Translation (NAT) 19.16

17 Note An IPv4 address is 32 bits long

18 Note The IPv4 addresses are unique and universal

19 Note The address space of IPv4 is 2 32 or 4,294,967,

20 Figure 19.1 Dotted-decimal notation and binary notation for an IPv4 address 19.20

21 Example 19.1 Change the following IPv4 addresses from binary notation to dotted-decimal notation. Solution We replace each group of 8 bits with its equivalent decimal number (see Appendix B) and add dots for separation

22 Example 19.2 Change the following IPv4 addresses from dotted-decimal notation to binary notation. Solution We replace each decimal number with its binary equivalent (see Appendix B)

23 Example 19.3 Find the error, if any, in the following IPv4 addresses. Solution a. There must be no leading zero (045). b. There can be no more than four numbers. c. Each number needs to be less than or equal to 255. d. A mixture of binary notation and dotted-decimal notation is not allowed

24 Note In classful addressing, the address space is divided into five classes: A, B, C, D, and E

25 Figure Finding the class in binary notation

26 Figure Finding the address class

27 19.27 Figure 19.2 Finding the classes in binary and dotted-decimal notation

28 Example 19.4 Find the class of each address. a b c d Solution a. The first bit is 0. This is a class A address. b. The first 2 bits are 1; the third bit is 0. This is a class C address. c. The first byte is 14; the class is A. d. The first byte is 252; the class is E

29 Note In classful addressing, a large part of the available addresses were wasted

30 Figure Netid and hostid McGraw-Hill The McGraw-Hill Companies, Inc., 2004

31 Figure Blocks in class A McGraw-Hill The McGraw-Hill Companies, Inc., 2004

32 Note: Millions of class A addresses are wasted. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

33 Figure Blocks in class B McGraw-Hill The McGraw-Hill Companies, Inc., 2004

34 Note: Many class B addresses are wasted. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

35 Note: The number of addresses in class C is smaller than the needs of most organizations. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

36 Figure Blocks in class C McGraw-Hill The McGraw-Hill Companies, Inc., 2004

37 Figure Network address McGraw-Hill The McGraw-Hill Companies, Inc., 2004

38 Note: In classful addressing, the network address is the one that is assigned to the organization. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

39 Example 5 Given the address , find the network address. Solution The class is A. Only the first byte defines the netid. We can find the network address by replacing the hostid bytes ( ) with 0s. Therefore, the network address is McGraw-Hill The McGraw-Hill Companies, Inc., 2004

40 Example 6 Given the address , find the network address. Solution The class is B. The first 2 bytes defines the netid. We can find the network address by replacing the hostid bytes (17.85) with 0s. Therefore, the network address is McGraw-Hill The McGraw-Hill Companies, Inc., 2004

41 Example 7 Given the network address , find the class. Solution The class is A because the netid is only 1 byte. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

42 Note: A network address is different from a netid. A network address has both netid and hostid, with 0s for the hostid. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

43 Figure Sample internet McGraw-Hill The McGraw-Hill Companies, Inc., 2004

44 Note: IP addresses are designed with two levels of hierarchy. McGraw-Hill The McGraw-Hill Companies, Inc., 2004

45 Figure A network with two levels of hierarchy McGraw-Hill The McGraw-Hill Companies, Inc., 2004

46 Figure A network with three levels of hierarchy (subnetted) McGraw-Hill The McGraw-Hill Companies, Inc., 2004

47 Figure Addresses in a network with and without subnetting McGraw-Hill The McGraw-Hill Companies, Inc., 2004

48 Classes and Blocks Table 19.1 Number of blocks and block size in classful IPv4 addressing McGraw-Hill The McGraw-Hill Companies, Inc., 2004

49 Mask :- a32-bit number made of contiguous 1s followed by contiguous 0s. / slash notion or CIDR : used in class less Subnetting :- Supernetting :- McGraw-Hill The McGraw-Hill Companies, Inc., 2004

50 19.50 Table 19.2 Default masks for classful addressing

51 Note Classful addressing, which is almost obsolete, is replaced with classless addressing

52 Example 19.5 Figure 19.3 shows a block of addresses, in both binary and dotted-decimal notation, granted to a small business that needs 16 addresses. We can see that the restrictions are applied to this block. The addresses are contiguous. The number of addresses is a power of 2 (16 = 2 4 ), and the first address is divisible by 16. The first address, when converted to a decimal number, is 3,440,387,360, which when divided by 16 results in 215,024,

53 19.53 Figure 19.3 A block of 16 addresses granted to a small organization

54 Note In IPv4 addressing, a block of addresses can be defined as x.y.z.t /n in which x.y.z.t defines one of the addresses and the /n defines the mask

55 Note The first address in the block can be found by setting the rightmost 32 n bits to 0s

56 Example 19.6 A block of addresses is granted to a small organization. We know that one of the addresses is /28. What is the first address in the block? Solution The binary representation of the given address is If we set rightmost bits to 0, we get or This is actually the block shown in Figure

57 Note The last address in the block can be found by setting the rightmost 32 n bits to 1s

58 Example 19.7 Find the last address for the block in Example Solution The binary representation of the given address is If we set rightmost bits to 1, we get or This is actually the block shown in Figure

59 Note The number of addresses in the block can be found by using the formula 2 32 n

60 Example 19.8 Find the number of addresses in Example Solution The value of n is 28, which means that number of addresses is or

61 Example 19.9 Another way to find the first address, the last address, and the number of addresses is to represent the mask as a 32- bit binary (or 8-digit hexadecimal) number. This is particularly useful when we are writing a program to find these pieces of information. In Example 19.5 the /28 can be represented as (twenty-eight 1s and four 0s). Find a. The first address b. The last address c. The number of addresses

62 Example 19.9 (continued) Solution a. The first address can be found by ANDing the given addresses with the mask. ANDing here is done bit by bit. The result of ANDing 2 bits is 1 if both bits are 1s; the result is 0 otherwise

63 Example 19.9 (continued) b. The last address can be found by ORing the given addresses with the complement of the mask. ORing here is done bit by bit. The result of ORing 2 bits is 0 if both bits are 0s; the result is 1 otherwise. The complement of a number is found by changing each 1 to 0 and each 0 to

64 Example 19.9 (continued) c. The number of addresses can be found by complementing the mask, interpreting it as a decimal number, and adding 1 to it

65 19.65 Figure 19.4 A network configuration for the block /28

66 Note The first address in a block is normally not assigned to any device; it is used as the network address that represents the organization to the rest of the world

67 SUBNETTING : AS discuss in the class 19.67

68 19.68 Figure 19.5 Two levels of hierarchy in an IPv4 address

69 19.69 Figure 19.6 A frame in a character-oriented protocol

70 Note Each address in the block can be considered as a two-level hierarchical structure: the leftmost n bits (prefix) define the network; the rightmost 32 n bits define the host

71 19.71 Figure 19.7 Configuration and addresses in a subnetted network

72 19.72 Figure 19.8 Three-level hierarchy in an IPv4 address

73 Example An ISP is granted a block of addresses starting with /16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows: a. The first group has 64 customers; each needs 256 addresses. b. The second group has 128 customers; each needs 128 addresses. c. The third group has 128 customers; each needs 64 addresses. Design the subblocks and find out how many addresses are still available after these allocations

74 Example (continued) Solution Figure 19.9 shows the situation. Group 1 For this group, each customer needs 256 addresses. This means that 8 (log2 256) bits are needed to define each host. The prefix length is then 32 8 = 24. The addresses are 19.74

75 Example (continued) Group 2 For this group, each customer needs 128 addresses. This means that 7 (log2 128) bits are needed to define each host. The prefix length is then 32 7 = 25. The addresses are 19.75

76 Example (continued) Group 3 For this group, each customer needs 64 addresses. This means that 6 (log 2 64) bits are needed to each host. The prefix length is then 32 6 = 26. The addresses are Number of granted addresses to the ISP: 65,536 Number of allocated addresses by the ISP: 40,960 Number of available addresses: 24,

77 19.77 Figure 19.9 An example of address allocation and distribution by an ISP

78 New Addressing Concepts Problems with IPv4 Shortage of IPv4 addresses Allocation of the last IPv4 addresses was for the year 2005 Address classes were replaced by usage of CIDR, but this is not sufficient Short term solution NAT: Network Address Translator Long term solution IPv6 = IPng (IP next generation) Provides an extended address range Fig. 2 Address shortage and possible solutions (TI1332EU02TI_0003 New Address Concepts, 5) 78

79 WHAT IS NAT First described in RFC 1631 Technique of rewriting IP addresses in headers and application data streams according to a defined policy Based on traffic source and/or destination IP address NAT is a way to conserve IP addresses Hide a number of hosts behind a single IP address Use: , or for local networks

80 WHY USE NAT? Inside Outside SA NAT border router SA Internet Typical examples of NAT : You need to connect to the Internet and your hosts do not have globally unique IP addresses You change over to a new ISP that requires you to renumber your network Two intranets with duplicate addresses merge

81 NAT BENEFITS Eliminates re-assigning each host a new IP address when changing to a new ISP Eliminates the need to re-address all hosts that require external access, saving time and money Conserves addresses through application port-level multiplexing Protects network security 8 October,

82 NAT Implementation Considerations Advantages Conserves legally registered addresses Hide internal network Increases flexibility in IP addressing design Eliminates address renumbering as ISP changes Disadvantages Translation introduces switching path delays Certain applications will not function with NAT enabled

83 NAT FEATURES Static NAT is designed to allow one-to-one mapping of local and global addresses. Dynamic NAT is designed to map a private IP address to a public address. 8 October,

84 Table 19.3 Addresses for private networks - Using a pool of IP Address - Using both IP address and Port Address 19.84

85 19.85 Figure A NAT implementation

86 19.86 Figure Addresses in a NAT

87 19.87 Figure NAT address translation

88 19.88 Table 19.4 Five-column translation table

89 19.89 Figure An ISP and NAT

90 19-2 IPv6 ADDRESSES Despite all short-term solutions, address depletion is still a long-term problem for the Internet. This and other problems in the IP protocol itself have been the motivation for IPv6. Topics discussed in this section: Structure Address Space 19.90

91 Note An IPv6 address is 128 bits long

92 19.92 Figure IPv6 address in binary and hexadecimal colon notation

93 19.93 Figure Abbreviated IPv6 addresses

94 Example Expand the address 0:15::1:12:1213 to its original. Solution We first need to align the left side of the double colon to the left of the original pattern and the right side of the double colon to the right of the original pattern to find how many 0s we need to replace the double colon. This means that the original address is

95 19.95 Table 19.5 Type prefixes for IPv6 addresses

96 19.96 Table 19.5 Type prefixes for IPv6 addresses (continued)

97 19.97 Figure Prefixes for provider-based unicast address

98 19.98 Figure Multicast address in IPv6

99 19.99 Figure Reserved addresses in IPv6

100 Figure Local addresses in IPv

Internet Fundamentals

Internet Fundamentals Internet Fundamentals Lecture-10 IPv4 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router)

More information

Lecture 8 Network Layer: Logical addressing

Lecture 8 Network Layer: Logical addressing Data Communications ACOE412 Lecture 8 Network Layer: Logical addressing Spring 2009 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 IPv4 IPv4 addresses are 32 bit length. IPv4 addresses are

More information

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6 Communication at the network layer is host-to-host Length of address Space adresses (2 length ) Total number of addresses used by the protocol IPv4 & IPv6 IPv4 ADDRESSES Defines the connection of a device

More information

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez Computer Networks Lecture -5- IPv4 Addresses Dr. Abbas Abdulazeez McGraw-Hill The McGraw-Hill Companies, Inc., 2000 OBJECTIVES: To introduce the concept of an address space in general and the address space

More information

McGraw-Hill The McGraw-Hill Companies, Inc., 2000

McGraw-Hill The McGraw-Hill Companies, Inc., 2000 !! McGraw-Hill The McGraw-Hill Companies, Inc., 2000 "#$% & '$# )1 ) ) )6 ) )* )- ). )0 )1! )11 )1 )1 )16 )1 3'' 4", ( ( $ ( $ $$+, $$, /+ & 23,4 )/+ &4 $ 53" Network Layer Position of network layer Figure

More information

Figure 11 Two-level addressing in classful addressing

Figure 11 Two-level addressing in classful addressing Two-Level Addressing The whole purpose of IPv4 addressing is to define a destination for an Internet packet (at the network layer). When classful addressing was designed, it was assumed that the whole

More information

Chapter 19 Network Layer: Logical Addressing

Chapter 19 Network Layer: Logical Addressing Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000 IP Addresses The IP addresses are unique. An IPv4 address is a 32-bit address. An IPv6 address is a 128-bit address. The address space of IPv4 is 2 32 or 4,294,967,296. The address space of IPv6 is 2 128

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296.

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296. Chapter 4 Objectives Upon completion you will be able to: Understand IPv4 addresses and classes Identify the class of an IP address Find the network address given an IP address Understand masks and how

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing Network Layer: Logical Addressing Introduction The network layer is responsible for the delivery of individual packets from source to the destination host Logical Addressing A universal addressing system

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing CHAPTER 19 Network Layer: Logical Addressing Solutions to Review Questions and Exercises Review Questions 1. An IPv4 address is 32 bits long. An IPv6 address is 128 bits long. 2. IPv4 addresses are usually

More information

Data Communication & Computer Networks Week # 13

Data Communication & Computer Networks Week # 13 Data Communication & Computer Networks Week # 13 M.Nadeem Akhtar CS & IT Department The University of Lahore Email: nadeem.akhtar@cs.uol.edu.pk URL-https://sites.google.com/site/nadeemuolcsccn/home Powerpoint

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing 550 CHAPTER 19 NETWORK layer: LOGICAL ADDRESSING Network Layer: Logical Addressing As we discussed iu Chapter 2, communication at the network layer is host-to-host (computer-to-computer); a computer somewhere

More information

Network Layer/IP Protocols

Network Layer/IP Protocols Network Layer/IP Protocols 1 Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2 IPv4 packet header 3 IPv4 Datagram Header Format version of the IP protocol (4 BIts) IP header

More information

Network Layer: outline

Network Layer: outline Network Layer: outline 1 introduction 2 virtual circuit and datagram networks 3 what s inside a router 4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 5 routing algorithms link state

More information

Chapter 5. Subnetting/Supernetting and Classless Addressing

Chapter 5. Subnetting/Supernetting and Classless Addressing Chapter 5 Subnetting/Supernetting and Classless Addressing Outline Subnetting Supernernetting Classless addressing 5.1 SUBNETTING Subnetting IP addresses are designed with two level of hierarchy Two levels

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Subnetting/Supernetting and Classless Addressing CONTENTS SUBNETTING SUPERNETTING CLASSLESS ADDRSSING 5.1 SUBNETTING IP addresses are designed with two levels of hierarchy. Figure 5-1 A network with two

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing CHAPTER 9 Network Layer: Logical Addressing As we discussed in Chapter 2, communication at the network layer is (computer-to-computer); a computer somewhere in the world needs to communicate with another

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab bacademy for Science &T Technology and Maritime Transport Internet Protocol Suite IP Suite Dr.

More information

5.7 K E Y TE R M S 5.8 SUM M A R Y

5.7 K E Y TE R M S 5.8 SUM M A R Y C H A P T E R 5 I P V 4 A D D RE SSE S 153 5.7 K E Y TE R M S address aggregation address space binary notation block of addresses class A address class B address class C address class D address class

More information

Chapter 18 and 22. IPv4 Address. Data Communications and Networking

Chapter 18 and 22. IPv4 Address. Data Communications and Networking University of Human Development College of Science and Technology Department of Information Technology Chapter 18 and 22 Data Communications and Networking IPv4 Address 1 Lecture Outline IPv4 Addressing

More information

The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or

The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or CBCN4103 The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or IP address. An IP address is a 32-bit address

More information

Chapter 06 IP Address

Chapter 06 IP Address Chapter 06 IP Address IP Address Internet address Identifier used at IP layer 32 bit binary address The address space of IPv4 is 2 32 or 4,294,967,296 Consists of netid and hosted IP Address Structure

More information

Subnetting and Classless Addressing

Subnetting and Classless Addressing Subnetting and Classless Addressing CONTENTS SUBNETTING CLASSLESS ADDRSSING 1 5.1 SUBNETTING IP addresses are designed with two levels of hierarchy. 2 Figure 5-1 A network with two levels of hierarchy

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Network Addressing TDC463 Fall 2017 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses at L2? If not, should

More information

Chapter 18. Introduction to Network Layer

Chapter 18. Introduction to Network Layer Chapter 18. Introduction to Network Layer 18.1 Network Layer Services 18.2 Packet Switching 18.3 Network Layer Performance 18.4 IPv4 Addresses 18.5 Forwarding of IP Packets Computer Networks 18-1 Communication

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Internet Protocol (IP) Addressing TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

IP Addressing and Subnetting

IP Addressing and Subnetting IP Addressing and Subnetting Internet Layer The purpose of the Internet layer is to send packets from a network node and have them arrive at the destination node independent of the path taken. Internet

More information

TDC 563 Protocols and Techniques for Data Networks

TDC 563 Protocols and Techniques for Data Networks TDC 563 Protocols and Techniques for Data Networks Network Addressing TDC563 Autumn 2015/16 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

Chapter Motivation For Internetworking

Chapter Motivation For Internetworking Chapter 17-20 Internetworking Part 1 (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution 1 Motivation For Internetworking LANs Low cost Limited distance WANs High cost Unlimited distance

More information

IP Address Assignment

IP Address Assignment IP Address Assignment An IP address does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network. A computer with multiple network connections

More information

LECTURE -4 IP ADDRESSES. IP Addresses: Classful Addressing

LECTURE -4 IP ADDRESSES. IP Addresses: Classful Addressing LECTURE -4 IP ADDRESSES IP Addresses: Classful Addressing 1 CONTENTS INTRODUCTION CLASSFUL ADDRESSING Different Network Classes Subnetting Classless Addressing 2 INTRODUCTION 3 WHAT IS AN IP ADDRESS A

More information

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

VLSM and CIDR. Routing Protocols and Concepts Chapter 6. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 VLSM and CIDR Routing Protocols and Concepts Chapter 6 Version 4.0 1 Objectives Compare and contrast classful and classless IP addressing. Review VLSM and explain the benefits of classless IP addressing.

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

IP Addressing - Subnetting

IP Addressing - Subnetting IP Addressing - Subnetting The Two Parts of an IP Address 32 Bits Prefix Host Prefix Length IP Address Classes Classes are now considered obsolete But you have to learn them because Everyone in the industry

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements?

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements? 95 Chapter 7 TCP/IP Protocol Suite and IP Addressing This chapter presents an overview of the TCP/IP Protocol Suite. It starts with the history and future of TCP/IP, compares the TCP/IP protocol model

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: Internet Protocol Literature: Forouzan: ch (4-6), 7-9 and ch 31 2004 Image Coding Group, Linköpings Universitet Lecture 2: IP Goals: Understand the benefits Understand the architecture IPv4

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Sungkyunkwan University Chapter 4 Network Layer Prepared by H. Choo 2018-Fall Computer Networks Copyright 2000-2014 2000-2018 Networking Laboratory 1/52 Presentation Outline 4.1 Introduction 4.2 Network-Layer

More information

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324

IP Addressing Week 6. Module : Computer Networks Lecturer: Lucy White Office : 324 IP Addressing Week 6 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 1 Addressing: Network & Host Network address help to identify route through the network cloud Network address

More information

Chapter 6 Addressing the Network- IPv4

Chapter 6 Addressing the Network- IPv4 Chapter 6 Addressing the Network- IPv4 Objectives Explain the structure IP addressing and demonstrate the ability to convert between 8- bit binary and decimal numbers. Given an IPv4 address, classify by

More information

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding. Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of

More information

This talk will cover the basics of IP addressing and subnetting. Topics covered will include:

This talk will cover the basics of IP addressing and subnetting. Topics covered will include: This talk will cover the basics of IP addressing and subnetting. Topics covered will include: What is an IP Address? What are Classes? What is a Network Address? What are Subnet Masks and Subnet Addresses?

More information

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP Fourth Edition Chapter 2: IP Addressing and Related Topics Objectives Describe IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Module 4. Planning the Addressing Structure

Module 4. Planning the Addressing Structure Module 4 Planning the Addressing Structure Name 4.1.1 1. How many bits are in an IP address? 2. What is dotted decimal notation? 3. What is the parent part of an IP address? 4. What is the child part of

More information

Binary Octet to Decimal Format Conversion

Binary Octet to Decimal Format Conversion IP Address An IP (Internet Protocol) address is a unique address that different computers on a computer network use to identify and communicate with one another. An IP address is used as an identifier

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 10: IP Routing and Addressing Extensions

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 10: IP Routing and Addressing Extensions CS 5520/ECE 5590NA: Network Architecture I Spring 2009 Lecture 10: IP Routing and Addressing Extensions This lecture provides discussion of the mechanisms used to route IP datagrams (Chapter 7). It also

More information

Configuring IPv4 Addresses

Configuring IPv4 Addresses This chapter contains information about, and instructions for configuring IPv4 addresses on interfaces that are part of a networking device. Note All further references to IPv4 addresses in this document

More information

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats Classful IP Addressing When IP was first standardized in September 1981, the specification required that each system attached to an IP-based Internet be assigned a unique, 32-bit Internet address value.

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

CS 520: Network Architecture I Winter Lecture 11: IP Address Conservation

CS 520: Network Architecture I Winter Lecture 11: IP Address Conservation CS 520: Network Architecture I Winter 2006 Lecture 11: IP Address Conservation This lecture provides discussion of several approaches that are used to make better use of the IP address space. Subnetting

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Chapter 20 Network Layer: Internet Protocol 20.1

Chapter 20 Network Layer: Internet Protocol 20.1 Chapter 20 Network Layer: Internet Protocol 20.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 20-1 INTERNETWORKING In this section, we discuss internetworking,

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

IP: Routing and Subnetting

IP: Routing and Subnetting IP: outing and Network Protocols and Standards Autumn 2004-2005 Oct 28, 2004 CS573: Network Protocols and Standards 1 Issues in Addressing A large corporate/campus environment Large number of Local Area

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 2017 Network

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer PREPARED BY AHMED ABDEL-RAOUF Network Layer PREPARED BY AHMED ABDEL-RAOUF Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport

More information

IP Addresses. IP Addresses

IP Addresses. IP Addresses IP Addresses Introductory material. IP Addressing Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses ting CIDR IP Version 6 addresses An entire module

More information

Lab 8 (IP Addressing)

Lab 8 (IP Addressing) Islamic University of Gaza Faculty of engineering Computer Department. Computer Network Lab ECOM 4121 Prepared by : Eng. Eman Al- Kurdi Lab 8 (IP Addressing) Introduction: Each device on a network must

More information

Internet Network Protocols IPv4/ IPv6

Internet Network Protocols IPv4/ IPv6 Internet Network Protocols IPv4/ IPv6 Prof. Anja Feldmann, Ph.D. anja@inet.tu-berlin.de TCP/IP Illustrated, Volume 1, W. Richard Stevens http://www.kohala.com/start 1 IP Interfaces IP address: identifier

More information

Chapter 6. Delivery and Forwarding of IP Packets

Chapter 6. Delivery and Forwarding of IP Packets Chapter 6 Delivery and Forwarding of IP Packets TCP/IP Protocol Suite 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. OBJECTIVES: To discuss the delivery of

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 2017 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007 1

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask 1 2 3 4 5 6 7 8 9 10 Unit C - Network Addressing Objectives Describe the purpose of an IP address and Subnet Mask and how they are used on the Internet. Describe the types of IP Addresses available. Describe

More information

CCE1030 Computer Networking

CCE1030 Computer Networking CCE1030 Computer Networking Lecture 19 Subnetting CIDR / VLSM Usama Arusi January 2018 CCE1030 Usama Arusi 1 Lecture Content Introduction Classful IP Addressing Classful Addressing Structure Classless

More information

End-to-End Communication

End-to-End Communication End-to-End Communication Goal: Interconnect multiple LANs. Why? Diverse LANs speak different languages need to make them talk to each other Management flexibility global vs. local Internet Problems: How

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

Addressing & Subnetting

Addressing & Subnetting Addressing & Subnetting Addressing to identify and locate each host. We call it addressing. Identification: hostname, address (MAC, IP) IP add? MAC add? MAC add: local IP add: internetwork An address generally

More information

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 TCP/IP Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 At the beginning of the course, we discussed two primary conceptual models of networking: OSI

More information

Chapter 8: Subnetting IP Networks

Chapter 8: Subnetting IP Networks Chapter 8: Subnetting IP Networks Designing, implementing and managing an effective IP addressing plan ensures that networks can operate effectively and efficiently. This is especially true as the number

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

Basics of communication. Grundlagen der Rechnernetze Introduction 31

Basics of communication. Grundlagen der Rechnernetze Introduction 31 Basics of communication Grundlagen der Rechnernetze Introduction 31 Types of communication H9 H8 H1 H7 R1 N3 H2 N1 R3 H3 R2 N2 H6 H5 H4 Unicast communication where a piece of information is sent from one

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications.

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. The Internet 9.1 Introduction The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. Associated with each access network - ISP network, intranet,

More information

ECE 461 Internetworking Fall Quiz 1

ECE 461 Internetworking Fall Quiz 1 ECE 461 Internetworking Fall 2010 Quiz 1 Instructions (read carefully): The time for this quiz is 50 minutes. This is a closed book and closed notes in-class exam. Non-programmable calculators are permitted

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Subnetting/Supernetting and Classless Addressing CONTENTS SUBNETTING SUPERNETTING CLASSLESS ADDRSSING SUBNETTING IP addresses are designed with two levels of hierarchy. Figure 5-1 A network with two levels

More information

b. Suppose the two packets are to be forwarded to two different output ports. Is it

b. Suppose the two packets are to be forwarded to two different output ports. Is it Problem-1:[15] Suppose two packets arrive to two different input ports of a router at exactly the same time. Also suppose there are no other packets anywhere in the router. a. Suppose the two packets are

More information

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008 Networks an overview dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 4, 2008 dr. C. P. J. Koymans (UvA) Networks February 4, 2008 1 / 53 1 Network modeling Layered networks

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Subnetting. This Hour. Subnetting. Hour 5

Subnetting. This Hour. Subnetting. Hour 5 Subnetting Hour 5 This Hour Explain how subnets are used Explain the benefits of subnetting Develop a subnet mask that meets business needs Classless Internet Domain Routing / Supernetting Subnetting Subnet

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

Using IP Addressing in the Network Design

Using IP Addressing in the Network Design Using IP Addressing in the Network Design Designing and Supporting Computer Networks Chapter 6 Version 4.0 2006 Cisco Systems, Inc. All rights reserved. Cisco Public 1 Objectives Describe the use of a

More information

A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples.

A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples. Objectives This module explores the evolution and extension of IPv4, including the key scalability features that engineers have added to it over the years: Subnetting Classless interdomain routing (CIDR)

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi).

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi). Assignments Reading for Lecture 9: Section 3.3 3.2 Basic Internetworking (IP) Bridges and LAN switches from last section have limited ability CS475 Networks Lecture 8 Chapter 3 Internetworking is a logical

More information

The Internet. The Internet is an interconnected collection of netw orks.

The Internet. The Internet is an interconnected collection of netw orks. The Internet The Internet is an interconnected collection of netw orks. Internetw orking-1 Internetworking! Communications Network: A facility that provides a data transfer service among stations attached

More information