The Netwok Layer IPv4 and IPv6 Part 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "The Netwok Layer IPv4 and IPv6 Part 2"

Transcription

1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer 2

2 ed2 in has a packet to destination address: ; packet is sent directly to ; packet is sent to MAC Address Resolution Q: What does «send packet directly» mean? A: send in an Ethernet frame, with destination MAC address = MAC address of Pb: what is the MAC address of ? Solution: ed2 in learns MAC address of using an address resolution procedure 3 Address Resolution with IPv4 : ARP Protocol 1: ed2-in has a packet to send to (stisun1) 1 No dest IP address Dest MAC addr = ff:ff:ff:ff:ff:ff ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 this address is on the same subnet lrcsuns sends an ARP request to all systems on the subnet (Ethernet broadcast Ethernet type = ARP) target IP address = ARP request is received by all IP hosts on the local network is not forwarded by routers 4

3 Address Resolution with IPv4 : ARP Protocol 1 2 No dest IP address Dest MAC addr = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 2: stisun1 has recognized its IPv4 address sends an ARP reply packet to the requesting host with its IPv4 and MAC addresses 5 Address Resolution with IPv4 : ARP Protocol Dest IP addr = Dest MAC Addr = 00:00:c0:b3:d2:8d ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 3: ed2-in reads ARP reply, stores in a cache and sends IPv4 packet to stisun1 1 and 2 are ARP packets; Ethertype = ARP (0806) 3 is an IPv4 packet; Ethertype = IPv4 (0800) ed2 in keeps mapping in cache; expires if there is no traffic from stisun2 for some period of time > cache timeout 6

4 Address Resolution with IPv6 is part of the Neighbor Discovery Protocol (NDP) 1: ed2-in has a packet to send to 2001:620:618:1a6:1:80b2:f66:1(stisun1) 1 Dest IP address = ff02::1:ff66:1 Dest MAC address = 33:33:ff:66:00:01 ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:d0:b3:d2:8d this address is on the same subnet lrcsuns sends a Neighbor Solicitation (NS) packet to the solicited node multicast address ff02::1:ff66:1 NS is received by all IPv6 hosts on the local network that have the same solicited node multicast address (here: only stisun1) 7 The Solicited Node Multicast Address Add last 24 bits of target IP address to ff02::1:ff00:0/104 A packet with such a destination address is forwarded by layer 2 to all nodes that listen to this multicast address Using MAC multicast address 33:33:<last 32 bits of IP address> This is better than broadcast Target address Solicited Node multicast address Compressed Uncompressed Uncompressed Compressed 2001:620:618:1a6:001:80b2:f66:1 2001:0620:0618:01a6:0001:80b2:0f66:0001 ff02:0000:0000:0000:0000:0001:ff66:0001 ff02::1:ff66:1 8

5 Address Resolution with IPv6 : NDP Protocol 1 2 Dest IP address = 2001:620:618:1a6:1:80b2:f01:1 Dest MAC address = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:c0:b3:d2:8d 2: stisun1 has received the NS packet and recognized its IPv6 address as the target sends a Neighbor Advertisement in reply with its IPv6 and MAC addresses 9 Address Resolution with IPv6 : NDP Protocol Dest IP address = 2001:620:618:1a6:1:80b2:f66:1 Dest MAC address = 00:00:c0:b3:d2:8d ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:c0:b3:d2:8d 3: ed2-in reads NA, stores in a cache and sends IPv6 packet to stisun1 1,2 and 3 are IPv6 packets; Ethertype = ARP (86DD) ed2 in keeps mapping in cache; expires if there is no traffic from stisun2 for some period of time > cache timeout 10

6 Look inside an ARP packet Ethernet II Destination: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff) Source: 00:03:93:a3:83:3a (Apple_a3:83:3a) Type: ARP (0x0806) Trailer: Address Resolution Protocol (request) Hardware type: Ethernet (0x0001) Protocol type: IP (0x0800) Hardware size: 6 Protocol size: 4 Opcode: request (0x0001) Sender MAC address: 00:03:93:a3:83:3a (Apple_a3:83:3a) Sender IP address: ( ) Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00) Target IP address: ( ) 11 Look Inside an ICMPv6 NDP Neighbour Solicitation Packet Solicited Node Multicast Address corresponding to this IPv6 target address Neighbor Solicitation (=ARP Request) 12

7 ed2 in has a packet to destination address ; packet is sent to ; the packet is sent by «ed2 in» inside an Ethernet frame with destination MAC address = 08:00:20:71:0d:d inside an Ethernet frame with destination MAC address = 00:00.0d:0d:9a:75 3. None of the above 4. I don t know 00:00.0d:0d:9a:75 0% 0% 0% 0% Security Issues with ARP/ NDP ARP requests / replies may be falsified (ARP spoofing) 1 2 No dest IP address Dest MAC addr = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 Can we prevent ARP spoofing? 14

8 DHCP Snooping and Dynamic ARP Inspection can prevent ARP spoofing in LANs DHCP snooping = switch/ethernet concentrator/wifi base station observes all DHCP traffic and remembers mappings IP addr MAC addresses (DHCP is used to automatically configure the IP address at system boot) Dynamic ARP inspection: switch filters all ARP (or NDP) traffic and allows only valid answers This solution is deployed in enterprise networks, rarely in homes or WiFi access points 15 p.h1 sends a packet to q.h1 for the first time since last reboot. 1. p.h1 sends an ARP (or NDP NS) packet for q.h1 2. p.h1 sends an ARP (or NDP NS) packet for p.1 3. None of the above 4. I don t know 0% 0% 0% 0%

9 7. Host Configuration An IP host needs to be configured on each interface with IP address of this interface Mask of this interface IP address of default router IP address of DNS server Can be done manually or automatically IPv4: with DHCPv4 IPv6: DHCPv6 stateful Stateless Address Autoconfiguration (SLAAC) DHCPv6 stateless 17 Dynamic Host Configuration Protocol = DHCP Why invented: avoid manual configuration How does it work : put config info in DHCP servers; host contacts DHCP server when boots Two phase commit to avoid inconsistent reservations Limited lifetime renewals Works for both IPv6 and IPv4, one logical server for each DHCPv4 client (host) Discover DHCPv4 relay (router) DHCPv4 server Offer Request Ack DISCOVER <MAC addr of client> UDP, dest port = 67,srce port = 68 IPv4 dest addr = IPv4 srce addr =

10 DHCP with IPv6 Broadcasts are avoided thanks to Link local unicast address of requesting host DHCP server broadcast address DUID = DHCP Unique Identifier = derived from one MAC address Uses ICMP (internet control protocol) instead of UDP DHCPv6 client (host) Solicit DHCPv6 relay (router) DHCPv6 server Advertize Request Reply SOLICIT <DUID> UDP, dest port = 547,srce port = 5466 IPv6 dest addr = ff05::1:3 IPv6 srce addr = fe80: Example: An EPFL Assigned IPv6 Addresses (except in lnternet Engineering Workshop) = EPFL Network prefix Host part In the lnternet Engineering Workshop we use special addresses that are not part of the EPFL numbering plan Do you recognize something special in the host part? 20

11 The EPFL numbering plan for IPv6 is such that the host part of this interface is derived from. 1. The MAC adress of this interface 2. The IPv4 address of this interface 3. Nothing special 4. I don t know 25% 25% 25% 25% The Point to Point Protocol (PPP) Why? allocate address automatically over telecom lines (modem, ADSL) link is point to point, no MAC address, DHCP not suitable How? Similar to (simpler than) DHCP PPPv4 for IPv4 PPPv6 for IPv6 23

12 Stateless Address Autoconfiguration (SLAAC) = Plug and Play Why invented: avoid configuring DHCP servers Fully automatic How it works : First host auto configures a link local address Second, host tries to add globally valid addresses by obtaining network prefix from routers if any present; Only for IPv6, in principle 24 Autoconfiguration of Link Local Address: Part 1: Duplicate Test ff02::1:ff78:30f9 Host part is determined using one of these possible methods Manually assigned, e.g. ::1 Derived from MAC address Randomly assigned Cryptographically generated address (CGA) not seen here 25

13 Host Part derived from MAC Address MAC address is 48 bit, it is translated to a 64 bit host part called «modified EUI» Pad with «fffe» in the middle Invert 7th bit, so that; 7th bit of modified EUI ==0 address is locally assigned 64 bit host part (Modified End MAC User Identifier = modified EUI) Hexa 08:00:20:78:30:f9 0a00:20ff:fe78:30f9 Binary Globally assigned EUI ( = MAC address assigned by manufacturer) 26 From MAC address to Modified EUI Bit 7 of EUI is 1 for EUI derived from globally assigned MAC addresses Bit 7 of EUI is 0 for locally assigned address Ex: 2001:620:618:100::1 27

14 Randomly Assigned Host Part Privacy concern: MAC address allows tracking a mobile node Randomly assigned Host Part can be used as alternative 7th bit of address must be 0 Host randomly computes one tentative host part Duplicate test is used to avoid (unlikely) collisions Has a limited lifetime Limited lifetime, renewed before expiration Preferred Successful timer Duplicate test expires Valid timer expires tentative preferred deprecated invalid - Address cannot be used to start new TCP connections - Host should obtain a new address 28 The 7th bit of the host part of this interface is It is impossible to determine it 4. I don t know 25% 25% 25% 25%

15 Autoconfiguration of Link Local Address Part 2: Obtaining Network Prefix host A other host on-link router on-link A attempts to acquire its link local unicast address: fe80::0a00:20ff:fe78:30f9 1. Neighbour Solicitation, multicast to ff02::1:ff78:30f9 (dupl test) A accepts its link local unicast address: fe80::0a00:20ff:fe78:30f9 2. Router Solicitation, multicast to ff02::2 All routers on link A accepts its global unicast address: 2001:620:618:1ad:0a00:20ff:fe78:30f9 router response with prefix 2001:620:618:1ad (if M flag set : use DHCP instead) 31 At the end of this process, an IPv6 host has 1. A link local address and, if a routers is present in the subnet, also a global unicast address 2. If a routers is present in the subnet a global unicast address and no link local address 3. None of the above 4. I don t knww 25% 25% 25% 25%

16 Stateless DHCPv6 Why invented: solve problem left by stateless autoconfiguration E.g. DNS server address is not provided to host by stateless autoconfiguration How: Stateless autoconfiguraiton is performed first Router response contains a flag = USE STATELESS DHCP Host sends a query to DHCP server to obtain missing info, such as DNS server address Why called stateless? A: DHCP servers does not keep state information 33 Multiple Addresses per Interface are the Rule with IPv6 A host interface typically has One or several link local addresses Plus one or several global unicast addresses The preference selection algorithm, configured by operating, says which address should be used as source address see RFC 3484 In contrast, there is usually only one IPv4 address per interface 34

17 IPv4 Link Local Addresses Some form of autoconfiguration also exists with IPv4 When host boots, if no DHCP and no configuration info available, it picks a link local address at random in the /16 block Address duplicate test is performed by broacast Allows to operate in routerless network («Dentist s Office») Not supported by the Linux version we use in the lab 35 Zone Index Identifies an interface inside one machine that has several interfaces typically visible in Windows machines Never inside an IP packet E.g. fe80::1%2 means: the destination IPv6 address fe80::1 on interface %2 36

18 Ipconfig example Wireless LAN adapter Wireless Network Connection: Physical Address : 10 0B A9 A DHCP Enabled : Yes Autoconfiguration Enabled.... : Yes Link local IPv6 Address..... : fe80::945c:d22c:b0e2:a885%16(preferred) IPv4 Address : (Preferred) Subnet Mask : Lease Obtained : mercredi 25 juillet :05:03 Lease Expires : mercredi 25 juillet :35:02 Default Gateway : DHCP Server : IAID = logical number of this interface, assigned by client DHCPv6 IAID : DHCPv6 Client DUID : E F0 DE F1 BE ED EB DNS Servers : NetBIOS over Tcpip : Enabled Ethernet MAC address Identifies this host in the DHCP database 37 When an IPv4 host uses DHCP, which of the following information does it acquire: A. its IP address; B. its subnet mask C. its default gateway address D. its DNS server address 1. A 2. A, B 3. A, B, C 4. A, B, C, D 5. None of the above 6. I don t know 0% 0% 0% 0% 0% 0%

19 When an IPv6 host uses DHCP, which of the following information does it acquire: A. its IP address; B. its subnet mask C. its default gateway address D. its DNS server address 1. A 2. A, B 3. A, B, C 4. A, B, C, D 5. None of the above 6. I don t know 0% 0% 0% 0% 0% 0% When an IPv6 host uses SLAAC, which of the following information does it acquire: A. its IP address; B. its subnet mask C. its default gateway address D. its DNS server address 1. A 2. A, B 3. A, B, C 4. A, B, C, D 5. None of the above 6. I don t know 0% 0% 0% 0% 0% 0%

20 When an IPv6 host uses SLAAC, the host part is 1. Mapped from MAC address 2. Randomly chosen 3. Both of the above are possible 4. None of the above are possible 5. I don t know 0% 0% 0% 0% 0% IPv6 Header Hop Limit: 0 255; router :, if 0, drop and send ICMP packet to source Used by traceroute Default is 64 at source 42

21 IPv4 Packet Format Hop Limit is called TTL (Time to live) 43 Other fields Type of service / Traffic Class Differentiated Services (6bits) sort of priority eg voice over IP Used only in corporate networks Explicit Congestion Notification (2bits) see congestion control Total length / Payload length in bytes including header 64 Kbytes; limited in practice by link level MTU (Maximum Transmission Unit) every subnet should forward packets of 576 = bytes Protocol / Next Header = identifier of protocol 6 = TCP, 17 = UDP 1 = ICMP for IPv4, 58 = ICMP for IPv6 4 = IPv4; 41 = IPv6 (encapsulation = tunnels) 50 = ESP (encrypted payload) 51 = AH (authentication header) Checksum IPv4 only, protects header against bit errors Absent in IPv6 layer 2 and router hardware assumed to have efficient error detection ICMP is used to carry error messages 44

22 Look inside an IPv4 packet Ethernet II Destination: 00:03:93:a3:83:3a (Apple_a3:83:3a) Source: 00:10:83:35:34:04 (HEWLETT-_35:34:04) Type: IP (0x0800) Internet Protocol, Src Addr: ( ), Dst Addr: ( ) Version: 4 Header length: 20 bytes Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) Total Length: 1500 Identification: 0x624d Flags: 0x04 Fragment offset: 0 Time to live: 64 Protocol: TCP (0x06) Header checksum: 0x82cf (correct) Source: ( ) Destination: ( ) 45 Look inside an IPv6 packet IPv6 ICMP for IPv6 (this is an NDP packet used for address resolution) solicited node multicast address 46

23 The destination MAC address is 1. A group address derived from the last 23 bits of the IPv6 target address 2. A group address derived from the last 24 bits of the IPv6 target address 3. A group address derived from the last 32 bits of the IPv6 target address 4. A broadcast address 5. The MAC address of an ARP server 6. I don t know 17% 17% 17% 17% 17% 17% 47 A host generates a packet with Hop Limit = 1 1. This packet is invalid 2. This packet will never be forwarded by a router but may be forwarded by a bridge 3. This packet will never be forwarded by a bridge but may be forwarded by a router 4. This packet will never be forwarded by a bridge nor by a router 5. None of the above is true 6. I don t know 17% 17% 17% 17% 17% 17%

24 Conclusion IP is built on two principles: one IP address per interface and longest prefix match; this allows to compress routing tables by aggregation inside subnet, don t use routers The goal of ARP/NDP is to find the MAC address corresponding to an IP address DHCP is used to allocate IP address, network mask and DNS server s IP address TTL/HC limits the number of hops of an IP packet 49

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2015 1 Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer

More information

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local 1 v4 & v6 Header Comparison v6 Ver Time to Live v4 Header IHL Type of Service Identification Protocol Flags Source Address Destination Address Total Length Fragment Offset Header Checksum Ver Traffic Class

More information

The Netwok 15 Layer IPv4 and IPv6 Part 3

The Netwok 15 Layer IPv4 and IPv6 Part 3 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok 15 Layer IPv4 and IPv6 Part 3 Jean Yves Le Boudec 2015 Contents 1. Fragmentation 2. Interworking h4 h6 with NATs 3. Proxy ARP Textbook Chapter 5: The

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Introduction to IPv6 - II

Introduction to IPv6 - II Introduction to IPv6 - II Building your IPv6 network Alvaro Vives 27 June 2017 Workshop on Open Source Solutions for the IoT Contents IPv6 Protocols and Autoconfiguration - ICMPv6 - Path MTU Discovery

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Workshop on Scientific Applications for the Internet of Things (IoT) March

Workshop on Scientific Applications for the Internet of Things (IoT) March Workshop on Scientific Applications for the Internet of Things (IoT) March 16-27 2015 IP Networks: From IPv4 to IPv6 Alvaro Vives - alvaro@nsrc.org Contents 1 Digital Data Transmission 2 Switched Packet

More information

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER CHAPTER 3 This chapter describes how to configure Internet Protocol version 6 (IPv6), which includes addressing, Neighbor Discovery Protocol (ND), and Internet Control Message Protocol version 6 (ICMPv6),

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

Addressing protocols. TELE3118 lecture notes Copyright by Tim Moors Aug-09. Copyright Aug-09, Tim Moors

Addressing protocols. TELE3118 lecture notes Copyright by Tim Moors Aug-09. Copyright Aug-09, Tim Moors Addressing protocols TELE3118 lecture notes Copyright by Tim Moors Aug-09 2 Which address(es) to use? How does source determine addresses when sending to www.example.com? o Source has its MAC address o

More information

IPv6. (Internet Protocol version 6)

IPv6. (Internet Protocol version 6) IPv6 Réseaux 1 IPv6 (Internet Protocol version 6) 2 IPv6 IP version 6 is the new version of the Internet Protocol (IP) The standardization process started in the 90s The main elements of IPv4 are still

More information

HPE FlexNetwork 5510 HI Switch Series

HPE FlexNetwork 5510 HI Switch Series HPE FlexNetwork 5510 HI Switch Series Layer 3 IP Services Command Reference Part number: 5200-0078b Software version: Release 11xx Document version: 6W102-20171020 Copyright 2015, 2017 Hewlett Packard

More information

HPE 5920 & 5900 Switch Series

HPE 5920 & 5900 Switch Series HPE 5920 & 5900 Switch Series Layer 3 IP Services Command Reference Part number: 5998-6643t Software version: Release 2422P01 Document version: 6W101-20171030 Copyright 2016, 2017 Hewlett Packard Enterprise

More information

Athanassios Liakopoulos

Athanassios Liakopoulos Introduction to IPv6 (Part B) Athanassios Liakopoulos (aliako@grnet.gr) Greek IPv6 Training, Athens, May 2010 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The

More information

HP FlexFabric 5930 Switch Series

HP FlexFabric 5930 Switch Series HP FlexFabric 5930 Switch Series Layer 3 IP Services Command Reference Part number: 5998-4568 Software version: Release 2406 & Release 2407P01 Document version: 6W101-20140404 Legal and notice information

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

Internet Control Message Protocol

Internet Control Message Protocol Internet Control Message Protocol The Internet Control Message Protocol is used by routers and hosts to exchange control information, and to inquire about the state and configuration of routers and hosts.

More information

HPE ArubaOS-Switch IPv6 Configuration Guide YA/YB.16.02

HPE ArubaOS-Switch IPv6 Configuration Guide YA/YB.16.02 HPE ArubaOS-Switch IPv6 Configuration Guide YA/YB.16.02 Part Number: 5200-1665 Published: July 2016 Edition: 1 Copyright Copyright 2016 Hewlett Packard Enterprise Development LP The information contained

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc.

IPv6 Protocol. Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer Cisco Systems, Inc. IPv6 Protocol Does it solve all the security problems of IPv4? Franjo Majstor EMEA Consulting Engineer fmajstor@cisco.com Cisco Systems, Inc. 1 Agenda IPv6 Primer IPv6 Protocol Security Dual stack approach

More information

IPv6 address configuration and local operation

IPv6 address configuration and local operation IPv6 address configuration and local operation Amsterdam, 16 february 2012 Iljitsch van Beijnum Today's topics IPv6 address configuration stateless autoconfig DHCPv6 DAD, NUD, timers Router solicitations/advertisements

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. Hans Peter Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Lecture Computer Networks Internet Protocol

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery IPv6 Neighbor Discovery Last Updated: September 19, 2012 The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

HPE FlexNetwork 5510 HI Switch Series

HPE FlexNetwork 5510 HI Switch Series HPE FlexNetwork 5510 HI Switch Series Layer 3 IP Services Command Reference Part number: 5200-3837 Software version: Release 13xx Document version: 6W100-20170315 Copyright 2015, 2017 Hewlett Packard Enterprise

More information

IPv6 ND Configuration Example

IPv6 ND Configuration Example IPv6 ND Configuration Example Keywords: IPv6 ND Abstract: This document describes the application environment and typical configuration of IPv6 ND. Acronyms: Acronym Full spelling ARP FIB Address Resolution

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Internet Protocol v6.

Internet Protocol v6. Internet Protocol v6 October 25, 2016 v6@nkn.in Table of Content Why IPv6? IPv6 Address Space Customer LAN Migration Why IPv6? IPv6 Address Space Customer LAN migration IPv4 DASH BOARD THE REASON For IPv6

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery About, page 1 Prerequisites for, page 2 Guidelines for, page 2 Defaults for, page 4 Configure, page 5 Monitoring, page 10 History for, page 11 About The IPv6 neighbor discovery process uses ICMPv6 messages

More information

Network Management. IPv6 Bootcamp. Zhiyi Huang University of Otago

Network Management. IPv6 Bootcamp. Zhiyi Huang University of Otago TELE301 Network Management IPv6 Bootcamp! Zhiyi Huang University of Otago Overview Brief look at current deployment status Recap common IPv6 addresses Basic mechanisms of IPv6 StateLess

More information

Mobile Communications Mobility Support in Network Layer

Mobile Communications Mobility Support in Network Layer Motivation Mobility support needed to be able to use mobile devices in the Mobile devices need IP address for their communication Applications would like to communicate while being on the move Mobile Communications

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Chapter 2 Advanced TCP/IP

Chapter 2 Advanced TCP/IP Tactical Perimeter Defense 2-1 Chapter 2 Advanced TCP/IP At a Glance Instructor s Manual Table of Contents Overview Objectives Teaching Tips Quick Quizzes Class Discussion Topics Additional Projects Additional

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

IPv6 associated protocols

IPv6 associated protocols IPv6 associated protocols Address auto-configuration in IPv6 Copy Rights This slide set is the ownership of the 6DISS project via its partners The Powerpoint version of this material may be reused and

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Introduction to IPv6. IPv6 addresses

Introduction to IPv6. IPv6 addresses Introduction to IPv6 (Chapter 4 in Huitema) IPv6,Mobility-1 IPv6 addresses 128 bits long Written as eight 16-bit integers separated with colons E.g. 1080:0000:0000:0000:0000:0008:200C:417A = 1080::8:800:200C:417A

More information

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT ISO 9001:2008 Pankaj Kumar Dir, TEC, DOT AWARENESS OBJECTIVES IPv6 Address Format & Basic Rules Understanding the IPv6 Address Components Understanding & Identifying Various Types of IPv6 Addresses 3/25/2012

More information

Configuring IPv6 basics

Configuring IPv6 basics Contents Configuring IPv6 basics 1 IPv6 overview 1 IPv6 features 1 IPv6 addresses 2 IPv6 neighbor discovery protocol 5 IPv6 PMTU discovery 8 IPv6 transition technologies 8 Protocols and standards 9 IPv6

More information

ArubaOS-Switch IPv6 Configuration Guide for YA/YB.16.04

ArubaOS-Switch IPv6 Configuration Guide for YA/YB.16.04 ArubaOS-Switch IPv6 Configuration Guide for YA/YB.16.04 Part Number: 5200-3121 Published: July 2017 Edition: 1 Copyright 2017 Hewlett Packard Enterprise Development LP Notices The information contained

More information

IPv6 Cyber Security Briefing May 27, Ron Hulen VP and CTO Cyber Security Solutions Command Information, Inc.

IPv6 Cyber Security Briefing May 27, Ron Hulen VP and CTO Cyber Security Solutions Command Information, Inc. IPv6 Cyber Security Briefing May 27, 2010 Ron Hulen VP and CTO Cyber Security Solutions Command Information, Inc. 2610:f8:ffff:2010:05:27:85:1 Attack Surfaces Protocol Translator IPv4 Native Dual-Stack

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

HPE FlexFabric 7900 Switch Series

HPE FlexFabric 7900 Switch Series HPE FlexFabric 7900 Switch Series Layer 3 IP Services Command Reference Part number: 5200-0982a Software version: Release 2150 and later Document version: 6W101-20170622 Copyright 2016, 2017 Hewlett Packard

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

FiberstoreOS IPv6 Service Configuration Guide

FiberstoreOS IPv6 Service Configuration Guide FiberstoreOS IPv6 Service Configuration Guide Contents 1 Configuring IPv6 over IPv4 Tunnel...5 1.1 Overview...5 1.1.2 Manual Tunnel...6 1.1.3 6to4 Tunnel...6 1.1.4 ISATAP Tunnel...7 1.2 Configure Manual

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Step 2. Manual configuration of global unicast and link-local addresses

Step 2. Manual configuration of global unicast and link-local addresses Lab: DHCPv6 CIS 116 IPv6 Fundamentals Enter your answers to the questions in this lab using Canvas Quiz DHCPv6 Lab. Step 1. Setup a. Log into NetLab: ccnp.bayict.cabrillo.edu b. Schedule IPv6 Pod 1: no

More information

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Reading Assignment Information Network 1 / 2012 2 Network Layer

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

Lecture 2: Basic routing, ARP, and basic IP

Lecture 2: Basic routing, ARP, and basic IP Internetworking Lecture 2: Basic routing, ARP, and basic IP Literature: Forouzan, TCP/IP Protocol Suite: Ch 6-8 Basic Routing Delivery, Forwarding, and Routing of IP packets Connection-oriented vs Connectionless

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

CSCI-1680 Network Layer:

CSCI-1680 Network Layer: CSCI-1680 Network Layer: Wrapup Rodrigo Fonseca Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John JannoA Administrivia Homework 2 is due tomorrow So we can

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Mobile Communications Chapter 9: Network Protocols/Mobile IP

Mobile Communications Chapter 9: Network Protocols/Mobile IP Mobile Communications Chapter 9: Network Protocols/Mobile IP Motivation Data transfer Encapsulation Security IPv6 Problems DHCP Ad-hoc s Routing protocols 9.0.1 Motivation for Mobile IP Routing based on

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Address Resolution Protocol (ARP), RFC 826

Address Resolution Protocol (ARP), RFC 826 Address Resolution Protocol (ARP), RFC 826 Prof. Lin Weiguo Copyleft 2009~2017, School of Computing, CUC Sept. 2017 ARP & RARP } Note: } The Internet is based on IP addresses } Data link protocols (Ethernet,

More information

Transition to IPv6. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Transition to IPv6. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 Transition to IPv6 Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806 10/12/2015 CSCI 445 Fall 2015 1 Acknowledgements Some pictures used in this presentation

More information

TD#RNG#2# B.Stévant#

TD#RNG#2# B.Stévant# TD#RNG#2# B.Stévant# En1tête#des#protocoles#IP# IPv4 Header IPv6 Extensions ICMPv6 s & 0...7...15...23...31 Ver. IHL Di Serv Packet Length Identifier flag O set TTL Checksum Source Address Destination

More information

FiberstoreOS IPv6 Security Configuration Guide

FiberstoreOS IPv6 Security Configuration Guide FiberstoreOS IPv6 Security Configuration Guide Contents 1 Configuring IPv6 over IPv4 Tunnel...4 1.1 Overview... 4 1.1.2 Manual Tunnel... 5 1.1.3 6to4 Tunnel... 6 1.1.4 ISATAP Tunnel...7 1.2 Configure Manual

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

Step 2. Manual configuration of global unicast and link-local addresses

Step 2. Manual configuration of global unicast and link-local addresses Lab: ICMPv6 and ICMPv6 Neighbor Discovery CIS 116 IPv6 Fundamentals Enter your answers to the questions in this lab using Canvas Quiz DHCPv6 Lab. Part 1: Setup Step 1. Basics a. Log into NetLab: ccnp.bayict.cabrillo.edu

More information

IP Multicast Jean Yves Le Boudec 2014

IP Multicast Jean Yves Le Boudec 2014 IP Multicast Jean Yves Le Boudec 2014 1 IP Multicast Unicast = send to one destination Multicast = send to a group of destinations IP has multicast addresses: IPv4 : 224.0.0.0 to 239.255.255.255; IPv6:

More information

CSEP 561 Internetworking. David Wetherall

CSEP 561 Internetworking. David Wetherall CSEP 561 Internetworking David Wetherall djw@cs.washington.edu Internetworking t Focus: Joining multiple, different networks into one larger network Forwarding models Application Heterogeneity Transport

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

Tunnels. Jean Yves Le Boudec 2015

Tunnels. Jean Yves Le Boudec 2015 Tunnels Jean Yves Le Boudec 2015 1. Tunnels Definition: a tunnel, also called encapsulation occurs whenever a communication layer carries packets of a layer that is not the one above e.g.: IP packet in

More information

COSC4377. TCP vs UDP Example Statistics

COSC4377. TCP vs UDP Example Statistics Lecture 16 TCP vs UDP Example Statistics Trace Sample UDP/TCP Ratio Total IP Traffic (pkts/bytes/flows) pkts bytes flows CAIDA OC48 08 2002 0.11 0.03 0.11 (1371M/838GB/79M) 01 2003 0.12 0.05 0.27 (463M/267GB/26M)

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

C. Perkins, Nokia Research Center M. Carney, Sun Microsystems June 9, 2002

C. Perkins, Nokia Research Center M. Carney, Sun Microsystems June 9, 2002 Internet Engineering Task Force R. Droms (ed.), Cisco INTERNET DRAFT J. Bound, Hewlett Packard DHC Working Group Bernie Volz, Ericsson Obsoletes: draft-ietf-dhc-dhcpv6-25.txt Ted Lemon, Nominum C. Perkins,

More information

IPv6 Feature Facts

IPv6 Feature Facts 12.1.2 IPv6 Feature Facts The current IP addressing standard, version 4, will eventually run out of unique addresses, so a new system is being developed. It is named IP version 6 or IPv6. You should know

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

Tunnels. Jean Yves Le Boudec 2014

Tunnels. Jean Yves Le Boudec 2014 Tunnels Jean Yves Le Boudec 2014 2 Menu Today: lecture Tunnels, 6to4 Link State Routing Tomorrow 11:15 12:15 Last clicker test How TOR works (presentation of best research exercise award) No lab Lab 3

More information

Implementing DHCP for IPv6

Implementing DHCP for IPv6 Implementing DHCP for IPv6 First Published: June 26, 2006 Last Updated: June 26, 2006 The Implementing DHCP for IPv6 module describes how to configure Dynamic Host Configuration Protocol (DHCP) for IPv6

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Connection Oriented Networking MPLS and ATM

Connection Oriented Networking MPLS and ATM ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Connection Oriented Networking MPLS and ATM Jean-Yves Le Boudec Fall 0 Contents. Connection Oriented network layer. ATM.MPLS (Multi Protocol Label Switching) .

More information

(Chapters 2 3 in Huitema) E7310/Internet basics/comnet 1

(Chapters 2 3 in Huitema) E7310/Internet basics/comnet 1 Introduction to routing in the Internet Ethernet, switching vs. routing Internet architecture IPv4 Addressing Routing principles Protocols: IPv4, ICMP, ARP (Chapters 2 3 in Huitema) E7310/Internet basics/comnet

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Dynamic Host Configuration Protocol for IPv6 (DHCPv6)

Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Network Working Group Request for Comments: 3315 Category: Standards Track R. Droms, Ed. Cisco J. Bound Hewlett Packard B. Volz Ericsson T. Lemon Nominum C. Perkins Nokia Research Center M. Carney Sun

More information

IPv6 migration challenges and Security

IPv6 migration challenges and Security IPv6 migration challenges and Security ITU Regional Workshop for the CIS countries Recommendations on transition from IPv4 to IPv6 in the CIS region, 16-18 April 2014 Tashkent, Republic of Uzbekistan Desire.karyabwite@itu.int

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

Cpsc527 - Lecture 3. IPv6 (RFC1883) Dr. Son Vuong UBC

Cpsc527 - Lecture 3. IPv6 (RFC1883) Dr. Son Vuong UBC Cpsc527 - Lecture 3 IPv6 (RFC1883) Dr. Son Vuong UBC 1 Overview Limitations of current Internet Protocol (IP) How many addresses do we need? Features of new IP Address Allocation Provider selection Mobility

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2015

The TCP/IP Architecture. Jean Yves Le Boudec 2015 The TCP/IP Architecture Jean Yves Le Boudec 2015 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 Why? TCP/IP

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

Basic L2 and L3 security in Campus networks. Matěj Grégr CNMS 2016

Basic L2 and L3 security in Campus networks. Matěj Grégr CNMS 2016 Basic L2 and L3 security in Campus networks Matěj Grégr CNMS 2016 1/ Communication in v4 network Assigning v4 address using DHCPv4 Finding a MAC address of a default gateway Finding mapping between DNS

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

IPv6 Specifications to Internet Standard

IPv6 Specifications to Internet Standard IPv6 Specifications to Internet Standard Bob Hinden, Ole Trøan 6MAN chairs 1 Requirements for Internet Standard (RFC6410) There are at least two independent interoperating implementations with widespread

More information

CCNA 2 (v v6.0) Chapter 10 Exam Answers % Full

CCNA 2 (v v6.0) Chapter 10 Exam Answers % Full CCNA 2 (v5.0.3 + v6.0) Chapter 10 Exam Answers 2017 100% Full ccnav6.com /ccna-2-v5-0-3-v6-0-chapter-10-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 2 (v5.0.3 + v6.0) Chapter 10 Exam Answers

More information

IPv6 tutorial. RedIRIS Miguel Angel Sotos

IPv6 tutorial. RedIRIS Miguel Angel Sotos IPv6 tutorial RedIRIS Miguel Angel Sotos miguel.sotos@rediris.es Agenda History Why IPv6 IPv6 addresses Autoconfiguration DNS Transition mechanisms Security in IPv6 IPv6 in Windows and Linux IPv6 now 2

More information

Network Model. Why a Layered Model? All People Seem To Need Data Processing

Network Model. Why a Layered Model? All People Seem To Need Data Processing Network Model Why a Layered Model? All People Seem To Need Data Processing Layers with Functions Packet Propagation Each router provides its services to support upper-layer functions. Headers (Encapsulation

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information