CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514

Size: px
Start display at page:

Download "CPEG 514. Lecture 11 Asynchronous Transfer Mode (ATM) CPEG 514"

Transcription

1 Lecture 11 Asynchronous Transfer Mode ()

2 Outline Introduction Virtual Circuit Setup PVC vs. SVC Quality of Service and Congestion Control IP over and Frame Relay interworking

3 Network (integrated voice, video, and data services) Private Carrier to carrier Is not really common Integrated via IP

4 Standards ITU-T, Forum, IETF User-to-Network Interface (UNI) 2.0 UNI 3.0, UNI 3.1, UNI 4.0 Network-to-Network Interface (NNI) PNNI Private NNI Public-Network Node Interface RFC 2684 (Multiprotocol encapsulation over ) LAN Emulation (LANE) Multiprotocol over (MPoA)

5 Synchronous vs. Asynchronous - cell switching technology (asynchronous) NO clock synch between xmt/rcv TDM circuit switching technology (synchronous) clock synch between xmt/rcv is more efficient than TDM. (why?) TDM: dedicated time slots. : time slots are available on demand with information identifying the destination address of the transmission contained in the header of each cell.

6 Network Components? Network If i/f is not, the switch would have to do the interworking function

7 PCI NIC ( to the desktop) OC-3c OC-3 155Mbps Network Price: $605 (cf. how much is Gigabit-E NIC?) 330d316d317d314d315 Q: is there still a market for to the desktop? why? Ethernet is cheaper even at the Gbps, 1Gb Ethernet = $30, 100 BaseT = $7-10

8 UNI, PNNI, and NNI PNNI NNI? Is there a public? Is there a public Frame Relay? Private NNI (PNNI): connecting two private networks through a public one. or Inside the same carrier s network

9 Cell Format

10 Cell Format Generic Flow Control (GFC) typically not used. Virtual Path Identifier (VPI) 8 (UNI) or 12 (NNI) bits Virtual Channel Identifier (VCI) 16 bits Payload Type (PT) 3 bits first bit: user data (0) or control data (1) second bit: Congestion Indicator 0 = no congestion, 1 = congestion), Set to 1 if pkt encountered congestion third bit: whether the cell is the last cell (1) in a series of AAL5 frame Cell Loss Priority (CLP) Indicates whether the cell should be discarded (1) if it encounters extreme congestion as it moves through the network. Similar to - DE (Discard Eligibility in Frame Relay) Header Error Control (HEC) checksum on the first 4 bytes of the header.

11 PVC and SVC PVC (permanent virtual circuit ) allows direct connectivity between sites, and is similar to a leased line. +++ guarantees availability of a connection +++ does not require call setup procedures between switches. --- requires manual setup between the source and the destination. --- no network resiliency/flexibility is available with PVC. SVC (Switched virtual circuits) is created and released dynamically and remains in use only as long as data is being transferred. In this sense, it is similar to a telephone call. Dynamic call control requires a signaling protocol between the endpoint and the switch. +++ connection flexibility +++ call setup that can be handled automatically by a networking device. --- the extra time and overhead required to set up the connection. --- network management and trouble shooting due to dynamic nature of SVC

12 Virtual Connections switching is based on VPI/VCI However, VPI+VPI is not called address. VPI/VCI has local significance only at the port level of the switch.

13 Physical Layer over T1 over multiple T1 - Inverse Multiplexing over (IMA) Up 8 T1s as one link using IMA over DS3, OC-3, OC-12, OC-48, and OC Note: Marconi bought Fore Switch in Q; What is the max speed for Frame Relay? Up to 30Mbps

14 video data audio data Switching P1 P3 P4 10 P2 P IN/port VPI/VCI OUT/port VPI/VCI P1 0/10 P3 0/11 P1 0/20 P4 0/21 P2 0/10 P4 0/12 P2 0/30 P5 0/30 For PVC, table done Manually SVC, table is done dynamically/ondemand

15 Reference Model AAL

16 Protocol Layers Applications Adaptive Layer (AAL) Layer Physical Layer Layer Physical Layer Applications Adaptive Layer (AAL) Layer Physical Layer End Station Switch End Station

17 Adaptation Layer Function: Add control information and break Protocol Data Unit (PDU) into cells Segmentation and Reassembly (SAR) AAL1: Designed for voice application Constant Bit Rate (CBR) Circuit Emulation Service (CES) (emulates TDM circuit) AAL2 (Not covered in this class) Variable Bit Rate (VBR) VBR-rt (voice) VBR-nrt (data) AAL5: AAL Physical Designed for data application Unspecified Bit Rate (UBR)

18 AAL1 Convergence Sublayer Sends 47 bytes to SAR Which adds 1 byte of SAR hdr SAR Hdr Payload = 47 SN: Sequence Number 1 bit Convergence Sublayer Indicator (Clock recovery) + 3 bit Sequence Count (for entire PDU from convergence sublayer) SNP: Sequence Number Protection: 3 bit CRC for the SN + Last bit, parity check for the previous 7 bits (SN and CRC) Q: How much overhead in an AAL1 cell?

19 AAL5 CPCS-PDU Payload Padding (0-47) up to Carries upper other Protocols inside CPCS payload (i.e. tcp/ip, ethernet why do we need padding? 8 byte trailer CPCS-UU (1) CPI (1) Length (2) CRC (4) Trailer alignment to 32 bit CPCS Payload Not including PAD CPCS: Common Part Convergence Sublayer PDU: Protocol Data Unit UU: User-to-user interface information CPI: Common Part Indicator 48 bytes (0..47) Cell payload To make the Full PDU Divisible by 48 Bytes And divide it Evenly into 48 byte segments

20 Segmentation and Reassembly (SAR) H:5-bytes H Cell 1 H Cell 2 H Cell n AAL5 Frame

21 NSAP Address This is required for NNI, but it is rarely used. Note NSAP has global significance while VPI/VCI is an addressing scheme that has local significance only. NNI: same issue with Frame Relay. NSAP: Network Service Access Point based on E.164 (phone #) 20 bytes

22 Connection Establishment A B Goal: setup VPI/VCI between any two devices

23 UNI Signaling (Q.2931) - SVC End Device SETUP PROCEEDING ALERT Switch SETUP PROCEEDING ALERT Switch SETUP ALERT CONNECT End Device VPI/VCI Will be Setup For each Direction CONNECT CONNECT Why do we need this signaling protocol? Connection Established, control, mgmt, Does it look familiar (Q.931)?

24 Signaling VCI (VPI=0) (UNI) e.g. VPI =0, VCI for connection establishment signaling Q; What is the VPI/VCI in the Q.2931 SETUP message? VPI= 0 VCI = 5

25 ILMI (mgmt plain) Integrated Local Management Interface (ILMI) enables devices to determine status of components at the other end of a physical link and to negotiate a common set of operational parameters to ensure interoperability. ILMI operates over a reserved VCC of VPI = X, VCI = 16. Administrators may enable or disable ILMI at will, but it is highly recommended to enable it. Doing so allows the devices to determine the highest UNI interface level to operate (3.0, 3.1, 4.0), UNI vs. NNI, as well as numerous other items. Furthermore, ILMI allows devices to share information such as NSAP addresses, peer interface names, and IP addresses. Without ILMI, many of these parameters must be manually configured for the attached devices to operate correctly.

26 PVC or SVC Q1: What is the purpose of PVC and SVC? Q2: What are differences between PVC and SVC? Q3: For data services, is it better to use PVC or SVC? Core (SVC) vs. Access (PVC) Using the dynamic setup in the core would be easier Q4: For voice services, is it better to use PVC or SVC? Core (PVC trunks are already there) vs. Access (SVC)

27 Quality of Service (QoS) CBR: Constant Bit Rate Guaranteed transmission rate EMULATING TDM circuit VBR: Variable Bit Rate (Requires QoS attention) rtvbr and nrtvbr (rt = real time) Peak Cell Rate (PCR) MAX allowed data rate The maximum cell rate at which the user will transmit Sustained Cell Rate (SCR) allowable cell rate over time Max Burst Size (MBR) Minimum Cell Rate (MCR) UBR: Unspecified Bit Rate No guarantee, best effort Service Bit Rate CBR PCR SCR VBR UBR

28 QoS How does a carrier ensure that QOS can be met? Connection Admission Control (CAC) Procedure for determining whether each new SETUP request should be granted or denied based on current network conditions Usage Parameter Control (UPC) Procedure for verifying whether customer is conforming to their contractual Traffic Parameters. PER the SLA Resource Management (RM) Procedure for notifying ABR users when they should slow down ABR: Available Bit Rate Selective Cell Discard (SCD) Procedure for discarding cells (CLP=1)during congestion.

29 IP over Protocol (RFC 2684) / /24 IP Both and Ethernet Switching IP PHY PHY RFC 2684 RFC 2684 PHY PHY AAL5 PHY AAL5 PHY Same Subnet Then we are Using switches 802.3: IEEE Media Access Control layer (also know as Ethernet)

30 Frame Relay and Interworking Frame Relay is an access technology, and it is rarely used on the carrier backbone (core). The backbone is usually the network, slowly migrating to IP/MPLS backbone. How is Frame Relay carried over the network?

31 /FR IWF Frame Relay Service Specific Convergence Sublayer (FR-SSCS) uses the same PDU format as Frame Relay (Q.922) minus the FCS and FLAG. FR traffic parameters (FECN, BECN, and DI) are maintained in FR-SSCS PDU. FRF.5 supports both one-to-one (one DLCI to one VPI/VCI) and many-to-one (many DLCIs to one VPI/VCI) mappings. Q: is DLCI in FR-SSCS used for addressing?

32 /FR Network Interworking (FRF.5) p1r1 FR (T1) OC-3 FR (T1) p1r3 FRF.5 Convert FR frames to cells Core Network FRF.5 Convert cells to FR frames

33 /FR Network Interworking (FRF.5) FR-SSCS: Frame Relay Service Specific Convergence Sublayer IWF: Interworking Function p1r1 Core p1r3 /FR IWF /FR IWF ULP FR PHY FR PHY FR-SSCS AAL5 PHY FR-SSCS AAL5 PHY FR PHY ULP FR PHY

34 /FR Network Interworking (FRF.8) FR-SSCS: Frame Relay Service Specific Convergence Sublayer IWF: Interworking Function Core p1r1 FR p1r3 /FR IWF IP RFC2427 IP FR FR FR-SSCS (FRF.8) RFC2684 PHY PHY AAL5 AAL5 PHY PHY PHY

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy)

ATM. Asynchronous Transfer Mode. (and some SDH) (Synchronous Digital Hierarchy) ATM Asynchronous Transfer Mode (and some SDH) (Synchronous Digital Hierarchy) Why use ATM? Circuit switched connections: After initial setup no processing in network nodes Fixed bit rates, fixed time delay

More information

ATM Technology in Detail. Objectives. Presentation Outline

ATM Technology in Detail. Objectives. Presentation Outline ATM Technology in Detail Professor Richard Harris Objectives You should be able to: Discuss the ATM protocol stack Identify the different layers and their purpose Explain the ATM Adaptation Layer Discuss

More information

Asynchronous. nous Transfer Mode. Networks: ATM 1

Asynchronous. nous Transfer Mode. Networks: ATM 1 Asynchronous nous Transfer Mode (ATM) Networks: ATM 1 Issues Driving LAN Changes Traffic Integration Voice, video and data traffic Multimedia became the buzz word One-way batch Two-way batch One-way interactive

More information

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline

ATM. Asynchronous Transfer Mode. these slides are based on USP ATM slides from Tereza Carvalho. ATM Networks Outline ATM Asynchronous Transfer Mode these slides are based on USP ATM slides from Tereza Carvalho 1 ATM Networks Outline ATM technology designed as a support for ISDN Definitions: STM and ATM Standardization

More information

ATM Logical Connections: VCC. ATM Logical Connections: VPC

ATM Logical Connections: VCC. ATM Logical Connections: VPC ATM Logical Connections: VCC Logical Connections in ATM are referred to as virtual channel connections (VCCs). Virtual channel (VC) is a generic term used to describe unidirectional transport of ATM cells

More information

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis

Bandwidth-on-Demand up to very high speeds. Variety of physical layers using optical fibre, copper, wireless. 3BA33 D.Lewis Broadband ISDN 3BA33 David Lewis 3BA33 D.Lewis 2007 1 B-ISDN Model has 3 planes User Control Management 3BA33 D.Lewis 2007 3 Broadband ISDN Was Expected to be the Universal Network of the future Takes

More information

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching.

! Cell streams relating to different media types are multiplexed together on a statistical basis for transmission and switching. Asynchronous Transfer Mode (ATM) Networks! All source media is first broken down into a stream of fixed sized units known as cells.! Cell streams relating to different media types are multiplexed together

More information

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM

CISC452 Telecommunications Systems. Lesson 6 Frame Relay and ATM CISC452 Telecommunications Systems Lesson 6 Frame Relay and ATM 1 Technology Comparison Private Line X.25 SMDS Frame Relay ATM IP Speed 56K - 622M 9.6K - 2.048M 56K - 34M Dial - 45M 1.5M - 622M Dial -

More information

ATM Asynchronous Transfer Mode revisited

ATM Asynchronous Transfer Mode revisited ATM Asynchronous Transfer Mode revisited ACN 2007 1 ATM GOAL To establish connections between an arbitrary number of hosts...... over channels that fulfills a certain QoS level. -> ATM networks make it

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode ATM Asynchronous Transfer Mode CS420/520 Axel Krings Page 1 Protocol Architecture (diag) CS420/520 Axel Krings Page 2 1 Reference Model Planes User plane Provides for user information transfer Control

More information

Asynchronous Transfer Mode (ATM) ATM concepts

Asynchronous Transfer Mode (ATM) ATM concepts Asynchronous Transfer Mode (ATM) Asynchronous Transfer Mode (ATM) is a switching technique for telecommunication networks. It uses asynchronous time-division multiplexing,[1][2] and it encodes data into

More information

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross

Part 5: Link Layer Technologies. CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross Part 5: Link Layer Technologies CSE 3461: Introduction to Computer Networking Reading: Chapter 5, Kurose and Ross 1 Outline PPP ATM X.25 Frame Relay 2 Point to Point Data Link Control One sender, one receiver,

More information

Configuring Frame Relay-ATM Interworking

Configuring Frame Relay-ATM Interworking Configuring -ATM Interworking The -ATM Interworking features enable and ATM networks to exchange data, despite differing network protocols. There are two types of -ATM Interworking: FRF.5 -ATM Network

More information

Chapter 10. Circuits Switching and Packet Switching 10-1

Chapter 10. Circuits Switching and Packet Switching 10-1 Chapter 10 Circuits Switching and Packet Switching 10-1 Content Switched communication networks Circuit switching networks Circuit-switching concepts Packet-switching principles X.25 (mentioned but not

More information

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections

Protocol Architecture (diag) Computer Networks. ATM Connection Relationships. ATM Logical Connections 168 430 Computer Networks Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks Multiple logical connections over

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode

William Stallings Data and Computer Communications 7 th Edition. Chapter 11 Asynchronous Transfer Mode William Stallings Data and Computer Communications 7 th Edition Chapter 11 Asynchronous Transfer Mode Protocol Architecture Similarities between ATM and packet switching Transfer of data in discrete chunks

More information

Configuring Frame Relay-ATM Interworking

Configuring Frame Relay-ATM Interworking The Frame Relay-ATM Interworking features enable Frame Relay and ATM networks to exchange data, despite differing network protocols. There are two types of Frame Relay-ATM Interworking: FRF.5 Frame Relay-ATM

More information

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN)

Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Asynchronous Transfer Mode (ATM) Broadband ISDN (B-ISDN) Petr Grygárek rek 1 ATM basic characteristics Integrates transfer of voice, video, data and other media using statistical al multiplexing ing multiplexes

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS INTRODUCTION ATM stands for Asynchronous Transfer Mode ATM is a flexible high bandwidth, low delay network technology that is: Capable of handling voice, video and data

More information

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X.

This Lecture. BUS Computer Facilities Network Management X.25. X.25 Packet Switch. Wide Area Network (WAN) Technologies. X. This ecture BUS350 - Computer Facilities Network Management Wide rea Network (WN) Technologies. X.5 Frame Relay TM Faculty of Information Technology Monash University Faculty of Information Technology

More information

Ethernet Switches (more)

Ethernet Switches (more) Ethernet Switches layer 2 (frame) forwarding, filtering using LAN addresses Switching: A-to-B and A - to-b simultaneously, no collisions large number of interfaces often: individual hosts, star-connected

More information

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas

ATM Introduction. The Grand Unification 2005/03/11. (C) Herbert Haas ATM Introduction The Grand Unification Agenda What is it? Who wants it? Who did it? Header and Switching ATM Layer Hypercube Adaptation Layers Signaling Addresses 2 What is ATM? High-Speed Virtual Circuits

More information

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers

Introduction to ATM Traffic Management on the Cisco 7200 Series Routers CHAPTER 1 Introduction to ATM Traffic Management on the Cisco 7200 Series Routers In the latest generation of IP networks, with the growing implementation of Voice over IP (VoIP) and multimedia applications,

More information

Advanced Internet Technologies

Advanced Internet Technologies Advanced Internet Technologies Chapter 2 ATM Dr.-Ing. Falko Dressler Chair for Computer Networks & Internet Wilhelm-Schickard-Institute for Computer Science University of Tübingen http://net.informatik.uni-tuebingen.de/

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

ATM Quality of Service (QoS)

ATM Quality of Service (QoS) ATM Quality of Service (QoS) Traffic/Service Classes, Call Admission Control Usage Parameter Control, ABR Agenda Introduction Service Classes and Traffic Attributes Traffic Control Flow Control Special

More information

Intermediate Traffic Management

Intermediate Traffic Management Intermediate Traffic Management This presentation has been generated by the ATM Forum for the purpose of educating the public on ATM Technology and the ATM Forum s activities. This presentation is the

More information

Lesson 3 Network technologies - Controlling

Lesson 3 Network technologies - Controlling Lesson 3 Network technologies - Controlling Objectives : Network control or traffic engineering is one of the important techniques in the network. Understanding QoS control, traffic engineering and OAM

More information

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1

A T M. Cell Switched Technology. not SMDS. Defacto Standard Multimedia capable Use with SONET or SDH. Fixed Length - 53 bytes. DigiPoints Volume 1 A T M Cell Switched Technology Fixed Length - 53 bytes not SMDS Defacto Standard Multimedia capable Use with SONET or SDH SCTE VA 12.1 SONET Optical Carrier (OC) Rates and SDH Synchronous Transport Module

More information

Introduction. ATM Technology. What is ATM? Agenda

Introduction. ATM Technology. What is ATM? Agenda Introduction Technology Asynchronous Transfer Mode Principles, ing, AAL, Signaling In 1986 the CCITT (now ITU-T) adopted as background technology for B-ISDN B-ISDN intended to replace several widespread

More information

Wireless Networks. Communication Networks

Wireless Networks. Communication Networks Wireless Networks Communication Networks Types of Communication Networks Traditional Traditional local area network (LAN) Traditional wide area network (WAN) Higher-speed High-speed local area network

More information

MPLS AToM Overview. Documentation Specifics. Feature Overview

MPLS AToM Overview. Documentation Specifics. Feature Overview MPLS AToM Overview This document provides an introduction to MPLS AToM and includes the following sections: Documentation Specifics, page 14 Feature Overview, page 14 Benefits, page 26 What To Do Next,

More information

Appendix 5 - ATM Technology in Detail

Appendix 5 - ATM Technology in Detail Technology Asynchronous Transfer Mode Principles, Layering, AAL, Signaling Agenda Introduction Reference Model Physical Layer Layer Switching Details Adaptation Layer Signaling and Addressing Technology,

More information

1997, Scott F. Midkiff 1

1997, Scott F. Midkiff 1 Welcome to! Loooooooooooooooots of acronyms! By Scott Midkiff ECpE/CS 5516, VPI Spring 1997 (modified by Marc Abrams for Spring 1998) A lot of what s in came from the phone and ing worlds, not the LAN

More information

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION

PRODUCT SUMMARY. SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION SARA-Lite SAR for AAL Type 0/5 with UBR Traffic, Frame Relay and LANE Support INTRODUCTION PRODUCT SUMMARY SARA-Lite ATM AAL0/5 Segmentation and Reassembly Product TheTranSwitchSARA-Lite product provides

More information

ACE-2002, ACE-2002E. Multiservice Access Concentrators/ ATM Network Termination Units FEATURES

ACE-2002, ACE-2002E. Multiservice Access Concentrators/ ATM Network Termination Units FEATURES Multiservice Access Concentrators/ ATM Network Termination Units FEATURES Multiservice/ATM network demarcation device or access concentrator (ACE-2002), cellular access concentrator () Offer converged

More information

ATM Networks. Raj Jain

ATM Networks. Raj Jain ATM Networks Professor of Computer and Information Sciences The Ohio State University Columbus, OH 43210-1277 http://www.cis.ohio-state.edu/~jain/ 1 Overview ATM: Overview ATM Protocol Layers Network Interfaces

More information

Asynchronous_Transfer_Mode_Switching

Asynchronous_Transfer_Mode_Switching Asynchronous Transfer Mode (ATM) is an International Telecommunication Union-Telecommunications Standards Section (ITU-T) standard for cell relay wherein information for multiple service types, such as

More information

Voice And Telephony over ATM: Status

Voice And Telephony over ATM: Status Voice And Telephony over ATM: Status Columbus, OH 43210 Jain@CIS.Ohio-State.Edu http://www.cis.ohio-state.edu/~jain/ March 1998 1 Overview VTOA: Protocol Stack and Services AAL: AAL1, AAL5, New AAL2 Interworking

More information

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory

ATM networks. C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory ATM networks C. Pham Université de Pau et des Pays de l Adour LIUPPA Laboratory http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Issues Driving LAN Changes Traffic Integration Voice, video and data

More information

Basic concept of ATM communication

Basic concept of ATM communication Lesson 3 AM Network (2days) Basic concept of AM communication Protocol structure of AM network Hardware routing OSI reference model AM network protocols Objectives : AM concepts are typical connection

More information

Lecture 03 Chapter 11 Asynchronous Transfer Mode

Lecture 03 Chapter 11 Asynchronous Transfer Mode NET 456 High Speed Networks Lecture 03 Chapter 11 Asynchronous Transfer Mode Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c)

More information

Unspecified Bit Rate Plus and ATM Enhancements

Unspecified Bit Rate Plus and ATM Enhancements Unspecified Bit Rate Plus and ATM Enhancements Last Updated: December 4, 2012 Feature History Release 12.2(2)XB 12.2(8)T Modification The UBR+ and ATM Enhancements for Service Provider Integrated Access

More information

Hubs. Interconnecting LANs. Q: Why not just one big LAN?

Hubs. Interconnecting LANs. Q: Why not just one big LAN? Interconnecting LANs Q: Why not just one big LAN? Limited amount of supportable traffic: on single LAN, all stations must share bandwidth limited length: 802.3 specifies maximum cable length large collision

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

Asynchronous Transfer Mode

Asynchronous Transfer Mode CHAPTER 20 This chapter describes the level of support that Cisco ANA provides for ATM, as follows: Technology Description, page 20-1 Information Model Objects (IMOs), page 20-3 Vendor-Specific Inventory

More information

Network Working Group Request for Comments: 2761 Category: Informational February 2000

Network Working Group Request for Comments: 2761 Category: Informational February 2000 Network Working Group Request for Comments: 2761 Category: Informational J. Dunn C. Martin ANC, Inc. February 2000 Terminology for ATM Benchmarking Status of this Memo This memo provides information for

More information

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites

DigiPoints Volume 1. Leader Guide. Module 12 Asynchronous Transfer Mode. Summary. Outcomes. Objectives. Prerequisites Asynchronous Transfer Mode Page 12.i DigiPoints Volume 1 Module 12 Asynchronous Transfer Mode Summary This last module of, covers ATM, and provides an end-to-end data communications model that draws on

More information

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI 621 213 UNIT I HIGH SPEED NETWORKS Part A (2 Marks) 1. Differentiate Frame relay and X.25 packet-switching service. -> Call control signaling is carried on

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Asynchronous Transfer Mode Notice 2005 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

Configuring Inverse Muliplexing over ATM

Configuring Inverse Muliplexing over ATM This feature module describes how to configure Inverse Multiplexing over ATM (IMA) to transport ATM traffic over a bundle of T1 or E1 cables. This feature s the expansion of WAN bandwidth from T1 speeds,

More information

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14

Lecture 22 Overview. Last Lecture. This Lecture. Next Lecture. Internet Applications. ADSL, ATM Source: chapter 14 Last Lecture Lecture 22 Overview Internet Applications This Lecture ADSL, ATM Source: chapter 14 Next Lecture Wireless Networking Source: chapter 15 COSC244 & TELE202 Lecture 22 - ADSL, ATM 1 Modem Enable

More information

ATM Networks: An Overview

ATM Networks: An Overview ATM Networks: An Overview Professor of Computer and Information Sciences Columbus, OH 43210-1277 http://www.cis.ohio-state.edu/~jain/ 2-1 MBone Instructions Handouts for the class are available on-line:

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

11. Traffic management in ATM

11. Traffic management in ATM lect11.ppt S-38.145 - Introduction to Teletraffic Theory - Fall 2000 1 Contents Introduction ATM technique Service categories Traffic contract Traffic and congestion control in ATM Connection Admission

More information

Packet Switching. Packet Switching (CSE 573S) Packet Switching Methods. Packet Switching. Ken Wong Washington University

Packet Switching. Packet Switching (CSE 573S) Packet Switching Methods. Packet Switching. Ken Wong Washington University Packet Switching Packet Switching (CSE 57S) Ken Wong Washington University kenw@wustl.edu www.arl.wustl.edu/~kenw Key Idea: Transmit data in packets (short bundles) with headers (control)» Large messages

More information

Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs

Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs Understanding the Variable Bit Rate Real Time (VBR rt) Service Category for ATM VCs Document ID: 10414 Contents Introduction Prerequisites Requirements Components Used Conventions What is Variable Bit

More information

Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing.

Figure 10.1 Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing. Figure. Cell switching principles: (a) routing schematic; (b) VP routing; (c) VC routing. (a) PCI =,,, 4 4 PCI =, 4 4 6 PCI = 6, Link/Port RT Link/Port RT Link/Port RT In Port PCI 4 Out Port PCI 4 6 Port

More information

Configuring Layer 2 Local Switching

Configuring Layer 2 Local Switching CHAPTER 17 The Layer 2 Local Switching feature allows you to switch Layer 2 data between two physical or virtual interfaces of the same type on the same router. The interfaces can be on the same line card

More information

Packet Switching Techniques

Packet Switching Techniques Packet Switching Techniques 188lecture3.ppt Pasi Lassila 1 Problem Aim: Build larger networks connecting more users also spanning different network technologies Shared media networks limited number of

More information

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management

different problems from other networks ITU-T specified restricted initial set Limited number of overhead bits ATM forum Traffic Management Traffic and Congestion Management in ATM 3BA33 David Lewis 3BA33 D.Lewis 2007 1 Traffic Control Objectives Optimise usage of network resources Network is a shared resource Over-utilisation -> congestion

More information

11. Traffic management in ATM. lect11.ppt S Introduction to Teletraffic Theory Spring 2003

11. Traffic management in ATM. lect11.ppt S Introduction to Teletraffic Theory Spring 2003 lect11.ppt S-38.145 - Introduction to Teletraffic Theory Spring 2003 1 Contents Introduction ATM technique Service categories and traffic contract Traffic and congestion control in ATM Connection Admission

More information

The BISDN Inter-Carrier Interface

The BISDN Inter-Carrier Interface The BISDN Inter-Carrier Interface Topics Scope Permanent Virtual Connection (PVC) Support Service Independent Functions Services (CRS, CES, FRS and SMDS) Switched Virtual Connection (SVC) Support New Areas

More information

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction

Packet Switching - Asynchronous Transfer Mode. Introduction. Areas for Discussion. 3.3 Cell Switching (ATM) ATM - Introduction Areas for Discussion Packet Switching - Asynchronous Transfer Mode 3.3 Cell Switching (ATM) Introduction Cells Joseph Spring School of Computer Science BSc - Computer Network Protocols & Arch s Based on

More information

Core Network. Core Network Technologies. S Verkkopalvelujen tuotanto S Network Service Provisioning Lecture 2: Core Network Technologies

Core Network. Core Network Technologies. S Verkkopalvelujen tuotanto S Network Service Provisioning Lecture 2: Core Network Technologies Lic.(Tech.) Marko Luoma (1/37) Lic.(Tech.) Marko Luoma (2/37) S-38.192 Verkkopalvelujen tuotanto S-38.192 Network Service Provisioning Lecture 2: Core Network Technologies Connects MAN networks together

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SEED NETWORKS LAYERS The function and associated information of the planes is as follows: The reference model is composed of the following planes: Control lane manages the call and connection.

More information

ATM Software Segmentation and Reassembly

ATM Software Segmentation and Reassembly Feature History Release Modification 12.2(2)XB Cisco 2600 Series T1/E1 ATM and Cisco 3660 T1 Inverse Multiplexing over ATM (IMA) ATM Adaption Layer 2 (AAL2) Support was introduced. 12.2(8)T This feature

More information

Teldat Router ATM Doc. DM740-I Rev June, 2003

Teldat Router ATM Doc. DM740-I Rev June, 2003 Teldat Router ATM Doc. DM740-I Rev. 10.10 June, 2003 INDEX Chapter 1 The ATM protocol...1 1. Introduction... 2 2. General Overview of ATM protocol... 3 2.1. Reference Model... 4 2.2. Physical Layer...

More information

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB)

NETWORK PARADIGMS. Bandwidth (Mbps) ATM LANS Gigabit Ethernet ATM. Voice, Image, Video, Data. Fast Ethernet FDDI SMDS (DQDB) 1. INTRODUCTION NETWORK PARADIGMS Bandwidth (Mbps) 1000 ATM LANS Gigabit Ethernet ATM 100 10 Fast Ethernet FDDI SMDS (DQDB) Voice, Image, Video, Data 1 Ethernet/ Token Ring/ Token Bus Frame Relay X.25

More information

Recent Advances in Networking Including ATM, Traffic Management, Switching, and QoS

Recent Advances in Networking Including ATM, Traffic Management, Switching, and QoS Recent Advances in Networking Including ATM, Traffic Management, Switching, and QoS Columbus, OH 43210-1277 Jain@CIS.Ohio-State.Edu Chennai (Madras), India, December 18, 1998 http://www.cis.ohio-state.edu/~jain/talks/recent.htm

More information

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets

Cell Switching (ATM) Commonly transmitted over SONET other physical layers possible. Variable vs Fixed-Length Packets Cell Switching (ATM) Connection-oriented packet-switched network Used in both WAN and LAN settings Signaling (connection setup) Protocol: Q2931 Specified by ATM forum Packets are called cells 5-byte header

More information

UNI Signalling 4.0. Scope Connection Types Call Endpoints Signalling Mechanisms Traffic Contract Service Parameters Futures Summary.

UNI Signalling 4.0. Scope Connection Types Call Endpoints Signalling Mechanisms Traffic Contract Service Parameters Futures Summary. Signalling 4.0 Topics Scope ion Types Endpoints Signalling Mechanisms Traffic Contract Service Parameters Futures Summary Page 1 Scope of Signalling User-User Signalling User-Network Signalling Network-Network

More information

PRACTICES FNC Guide to ATM GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC.

PRACTICES FNC Guide to ATM GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC. PRACTICES GUIDE TO ATM CROSS PRODUCT DOCUMENTATION ISSUE 1, JANUARY 2002 FUJITSU NETWORK COMMUNICATIONS, INC. Copyrights, Trademarks, and Disclaimers All products or services mentioned in this document

More information

Multi-Service Interworking Frame Relay and ATM Service Interworking over MPLS. MFA Forum

Multi-Service Interworking Frame Relay and ATM Service Interworking over MPLS. MFA Forum Multi-Service Interworking Frame Relay and Service Interworking over MFA Forum 15.0.0 MFA Forum Technical Committee January 2007 and Service Interworking over MFA Forum 15.0.0 Note: The user s attention

More information

Cisco - Understanding the UBR Service Category for ATM Virtual Circuits

Cisco - Understanding the UBR Service Category for ATM Virtual Circuits Page 1 of 9 Understanding the UBR Service Category for ATM Virtual Circuits Document ID: 10530 Contents Introduction Prerequisites Requirements Components Used Conventions Advantages and Disadvantages

More information

Lecture 4 Wide Area Networks - Asynchronous Transfer Mode

Lecture 4 Wide Area Networks - Asynchronous Transfer Mode DATA AND COMPUTER COMMUNICATIONS Lecture 4 Wide Area Networks - Asynchronous Transfer Mode Mei Yang Based on Lecture slides by William Stallings 1 ATM a streamlined packet transfer interface similarities

More information

Chapter 1 Configuring ATM

Chapter 1 Configuring ATM Chapter 1 Configuring ATM This chapter introduces basic Asynchronous Transfer Mode (ATM) concepts, describes features of the ATM interfaces, and provides information for configuring ATM on E-series routers.

More information

Future Internet Technologies

Future Internet Technologies Future Internet Technologies Internet Backbone Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Contents Routing Protocols Classification

More information

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things 8-5: Introduction to Telecommunication Networks Lectures : Virtual Things Peter Steenkiste Spring 05 www.cs.cmu.edu/~prs/nets-ece Outline Circuit switching refresher Virtual Circuits - general Why virtual

More information

The Design and modeling of input and output modules for an ATM network switch

The Design and modeling of input and output modules for an ATM network switch Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 10-1-1997 The Design and modeling of input and output modules for an ATM network switch Darin Murphy Follow this

More information

Distributing Bandwidth Between Queues

Distributing Bandwidth Between Queues CHAPTER 5 Developing a queuing strategy is an important step in optimizing network functionality and services. Equally important is ensuring that bandwidth is shared fairly among the competing traffic

More information

Metropolitan Area Networks

Metropolitan Area Networks Metropolitan Area Networks Bridge larger distances than a LAN, usage e.g. within the city range or on a campus Only one or two cables, no switching elements. Thus a simple network design is achieved All

More information

ATM in TCP/IP environment: Adaptations and Effectiveness

ATM in TCP/IP environment: Adaptations and Effectiveness Bremen Institute of Industrial Technology and Applied Work Science ATM in TCP/IP environment: Adaptations and Effectiveness Dipl.-Ing. Kai-Oliver Detken, BIBA ATM Traffic Symposium, Mykonos, Greece, September

More information

ETSI TS V1.1.1 ( )

ETSI TS V1.1.1 ( ) TS 102 115-2 V1.1.1 (2002-10) Technical Specification Broadband Radio Access Networks (BRAN); HIPERACCESS; Cell based Convergence Layer; Part 2: UNI Service Specific Convergence Sublayer (SSCS) 2 TS 102

More information

PA-A6 Enhanced ATM Port Adapter for Cisco 7200, 7301, 7500, and 7600 Series Routers

PA-A6 Enhanced ATM Port Adapter for Cisco 7200, 7301, 7500, and 7600 Series Routers PA-A6 Enhanced ATM Port Adapter for Cisco 7200, 7301, 7500, and 7600 Series Routers The enhanced Cisco ATM Port Adapter (product number ATM PA-A6) is a single-port, single-wide ATM port adapter for the

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about landline backbone networks After this lecture, you should know WDM, PDH, SDH and

More information

Packet Switching. Hongwei Zhang Nature seems to reach her ends by long circuitous routes.

Packet Switching. Hongwei Zhang  Nature seems to reach her ends by long circuitous routes. Problem: not all networks are directly connected Limitations of directly connected networks: limit on the number of hosts supportable limit on the geographic span of the network Packet Switching Hongwei

More information

Computer Networks II

Computer Networks II Computer Networks II Asynchronous Transfer Mode Giorgio Ventre COMICS LAB Dipartimento di Informatica e Sistemistica Università di Napoli Federico II Nota di Copyright Quest insieme di trasparenze è stato

More information

Metropolitan Area Network. Core Network. Technologies

Metropolitan Area Network. Core Network. Technologies Lic.(Tech.) Marko Luoma (1/49) Lic.(Tech.) Marko Luoma (2/49) S-38.3192 Verkkopalvelujen tuotanto S-38.3192 Network Service Provisioning Lecture 2: Core and Metro Network Technologies Metropolitan Area

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther

More information

Common Protocols. The grand finale. Telephone network protocols. Traditional digital transmission

Common Protocols. The grand finale. Telephone network protocols. Traditional digital transmission The grand finale Common Protocols An Engineering Approach to Computer Networking Previous chapters presented principles, but not protocol details these change with time real protocols draw many things

More information

This chapter describes how to configure ATM on Cisco routers.

This chapter describes how to configure ATM on Cisco routers. Configuring ATM Last Updated: December 4, 2012 This chapter describes how to configure ATM on Cisco routers. Finding Feature Information, page 1 How to Configure ATM, page 1 ATM Configuration Examples,

More information

Module 10 Frame Relay and ATM

Module 10 Frame Relay and ATM Module 10 Frame Relay and ATM Lesson 34 ATM: Concepts And Header 10.2.1 INTRODUCTION IP has a varying packet size which causes no problem while multiplexing but makes switching difficult. ATM uses a fixed

More information

Traffic Management. Service Categories CHAPTER

Traffic Management. Service Categories CHAPTER CHAPTER 3 The following traffic management functions are supported on the PNNI node: Asymmetrical traffic requirements. Connection Admission Control (CAC). Qbin for AutoRoute and PNNI Mapping of SVC/SPVC

More information

ETSI TS V1.2.1 ( )

ETSI TS V1.2.1 ( ) TS 101 674-1 V1.2.1 (1999-10) Technical Specification Technical Framework for the provision of interoperable ATM services NNI-Interface; User and Control plane specification (including network functions

More information

2001 ALCATEL BELL N.V. ALL RIGHTS RESERVED VHBE Alcatel University. Page 1

2001 ALCATEL BELL N.V. ALL RIGHTS RESERVED VHBE Alcatel University. Page 1 1 Page 1 ADSL coaching team Frank Vercamme Frank.Vercamme@alcatel.be Marc Debacker Marc.Debacker@alcatel.be Werner Van Loock Werner.van_loock@alcatel.be Brian Bogaerts Brian.Bogaerts@alcatel.be Customer

More information

Communication Networks

Communication Networks Communication Networks Chapter 7 Connection Oriented Packet Data Networks Communication Networks - 7. Connection Oriented PDNs 236 Overview 1. Fundamentals of Connection-Oriented Packet Switching 2. X.25

More information

WAN Technologies (to interconnect IP routers) Mario Baldi

WAN Technologies (to interconnect IP routers) Mario Baldi WAN Technologies (to interconnect IP routers) Mario Baldi www.baldi.info WAN_Technologies - 1 Copyright: see page 2 Copyright Notice This set of transparencies, hereinafter referred to as slides, is protected

More information

Unit_2 The Telephone Network. Shikha Sharma RCET,Bhilai 1

Unit_2 The Telephone Network. Shikha Sharma RCET,Bhilai 1 Unit_2 The Telephone Network Shikha Sharma RCET,Bhilai 1 Is it a computer network? Specialized to carry voice Also carries telemetry video fax modem calls Internally, uses digital samples Switches and

More information

Configuring ATM QoS or Shaping

Configuring ATM QoS or Shaping Configuring ATM QoS or Shaping M7i, M1i, M4e, M12, and M32 routers with 4-port channelized OC3/STM1 Circuit Emulation PICs and 12-port T1/E1 Circuit Emulation PICs support ATM pseudowire service with QoS

More information