Stream Control Transmission Protocol - Wikipedia, the free encyclopedia

Size: px
Start display at page:

Download "Stream Control Transmission Protocol - Wikipedia, the free encyclopedia"

Transcription

1 Page 1 of 9 Stream Control Transmission Protocol From Wikipedia, the free encyclopedia In the field of The five-layer TCP/IP model 5. Application layer DHCP DNS FTP Gopher HTTP IMAP4 IRC NNTP XMPP MIME POP3 SIP SMTP SNMP SSH TELNET RPC RTP RTCP TLS/SSL SDP SOAP VPN PPTP L2TP GTP 4. Transport layer TCP UDP DCCP SCTP 3. Internet layer IP (IPv4 IPv6) IGMP ICMP RSVP BGP RIP OSPF ISIS IPsec ARP RARP 2. Data link layer ATM DTM Ethernet FDDI Frame Relay GPRS EVDO HSPA HDLC PPP 1. Physical layer Ethernet physical layer ISDN Modems PLC SONET/SDH G.709 WiMAX

2 Page 2 of 9 computer networking, the IETF Signaling Transport (SIGTRAN) working group defined the Stream Control Transmission Protocol (SCTP) as a transport layer protocol in RFC 2960 defines the protocol, with RFC 3286 providing an introductory text. As a transport protocol, SCTP operates analogously to TCP or UDP. Indeed it provides some similar services as TCP ensuring reliable, in-sequence transport of messages with congestion control. (In the absence of native SCTP support, it may sometimes be desirable to tunnel SCTP over UDP.) Contents 1 Message-based multi-streaming 2 Benefits 3 Motivations 4 Implementations 5 Packet structure 6 External links 6.1 RFCs 7 See also Message-based multi-streaming Whereas TCP transports a byte-stream, SCTP can transport multiple message-streams. All bytes sent in a TCP connection must be delivered in that order, which requires that a byte transmitted first must safely arrive at the destination before a

3 Page 3 of 9 second byte can be processed even if the second byte manages to arrive first. If an arbitrary number of bytes are sent in one step and later some more bytes are sent, these bytes will be received in order, but the receiver can not distinguish which bytes were sent in which step. SCTP in contrast, conserves message boundaries by operating on whole messages instead of single bytes. That means if one message of several related bytes of information is sent in one step, exactly that message is received in one step. The term "multi-streaming" refers to the capability of SCTP to transmit several independent streams of messages in parallel. For example, transmitting two images in a HTTP application in parallel over the same SCTP association. You might think of multi-streaming as bundling several TCP-connections in one SCTP-association operating with messages instead of bytes. TCP ensures the correct order of bytes in the stream by conceptually assigning a sequence number to each byte sent and ordering these bytes based on that sequence number when they arrive. SCTP, on the other hand, assigns different sequence numbers to messages sent in a stream. This allows independent ordering of messages in different streams. However, message ordering is optional in SCTP. If the user application so desires, messages will be processed in the order they are received instead of the order they were sent, should these differ. Signaling in Public Switched Telephone Networks PSTN requires message-based delivery. Multi-Streaming also provides

4 Page 4 of 9 an advantage when used to transport PSTN services. If an SCTP connection is set up to carry, say, ten phone calls with one call per stream, then if a single message is lost in only one phone call, the other nine calls will not be affected. To handle ten phone calls in TCP, some form of multiplexing would be required to put all ten phone calls into a single byte-stream. If a single packet for phone call #3 is lost then all packets after that could not be processed until the missing bytes are retransmitted, thus causing unnecessary delays in the other calls. Benefits Benefits of SCTP include: Multihoming support, where one (or both) endpoints of a connection can consist of more than one IP address, enabling transparent fail-over between redundant network paths. Delivery of data in chunks within independent streams - this eliminates unnecessary head-of-line blocking, as opposed to TCP byte-stream delivery. Path Selection and Monitoring - Selects a "primary" data transmission path and tests the connectivity of the transmission path. Validation and Acknowledgment mechanisms - Protects against flooding attacks and provides notification of duplicated or missing data chunks. Improved error detection suitable for jumbo Ethernet frames. The designers of SCTP originally intended it for the transport of

5 Page 5 of 9 telephony (SS7) protocols over IP, with the goal of duplicating some of the reliability attributes of the SS7 signaling network in IP. This IETF effort is known as SIGTRAN. In the meantime, other uses have been proposed, for example the DIAMETER protocol and Reliable server pooling (RSerPool). Motivations Transmission Control Protocol (TCP) has provided the primary means to transfer data across the Internet in a reliable way. However, TCP has imposed limitations on several applications. From RFC 2960: TCP provides both reliable data transfer and strict orderof-transmission delivery of data. Some applications need reliable transfer without sequence maintenance, while others would be satisfied with partial ordering of the data. In both of these cases the head-of-line blocking offered by TCP causes unnecessary delay. The stream-oriented nature of TCP is often an inconvenience. Applications must add their own record marking to delineate their messages, and must make explicit use of the push facility (PSH) to ensure that a complete message is transferred in a reasonable time. The limited scope of TCP sockets complicates the task of providing highly-available data transfer capability using multi-homed hosts. TCP is relatively vulnerable to denial of service attacks, such as SYN attacks. All these limitations affect the performance of IP over public

6 Page 6 of 9 switched telephone networks. Implementations The following operating systems implement SCTP: AIX Version 5 BSD with external patch at KAME project Cisco IOS 12 DragonFly BSD since version 1.4 FreeBSD version 7 Linux 2.4/2.6 QNX Neutrino Realtime OS Sun Solaris 10 Various third-party implementations implement SCTP for other operating systems. Userspace library: The SCTP library (sctplib), with Windows XP port Packet structure SCTP packets have a simpler basic structure than TCP or UDP packets. Each consists of two basic sections: 1. The common header, which occupies the first Bits Bits Destination +0 Source port port 32 Verification tag

7 Page 7 of 9 12 bytes and is highlighted in blue, and 2. The data chunks, which occupy the remaining portion of the packet. The first chunk is highlighted in green, and the last of N chunks (Chunk N) is highlighted in red. Each chunk has a type identifier that is one byte long yielding, at most, 255 different chunk types. RFC 2960 defines a list of chunk types and there are currently 15 types defined. The remainder of the chunk is a two byte length (maximum size of 65,535 bytes) and the data. If the chunk does not form a multiple of 4 bytes (i.e., the length is a multiple of 4) then it is implicitly padded with zeros which are not included in the chunk length. External links 64 Checksum 96 Chunk 1 type Chunk 1 flags 128 Chunk 1 data Chunk 1 length Better Networking with SCTP SCTP for QualNet network simulator from DEGAS networking group The Linux Kernel Stream Control Transmission Protocol (lksctp) project Chunk N type Chunk N flags Chunk N data Chunk N length

8 Page 8 of 9 SCTP Sequence Diagram - Setup, IP Address Reconfiguration and Release (PDF) Tunneling of SCTP over Single UDP Port Open Source / GPL Seagull test tool - with SCTP support Parallel computing using the Message-passing Interface (MPI) over SCTP SCTPscan: SCTP port scanner and network scanner, GPL RFCs RFC 4460 Stream Control Transmission Protocol (SCTP) Specification Errata and Issues RFC 3873 Stream Control Transmission Protocol (SCTP) Management Information Base (MIB) RFC 3758 Stream Control Transmission Protocol (SCTP) Partial Reliability Extension RFC 3554 On the Use of Stream Control Transmission Protocol (SCTP) with IPsec RFC 3436 Transport Layer Security over Stream Control Transmission Protocol RFC 3309 Stream Control Transmission Protocol (SCTP) Checksum Change RFC 3286 An Introduction to the Stream Control Transmission Protocol RFC 3257 Stream Control Transmission Protocol Applicability Statement RFC 2960 Stream Control Transmission Protocol See also

9 Page 9 of 9 Comparison with other transport protocols Retrieved from " Categories: Streaming Internet protocols Internet standards Transport layer protocols This page was last modified 21:16, 8 July All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501(c)(3) tax-deductible nonprofit charity.

IPSec. Dr.Talal Alkharobi. IPsec (IP security)

IPSec. Dr.Talal Alkharobi. IPsec (IP security) IPSec IPsec (IP security) 2 A suite of protocols for securing Internet Protocol (IP) communications by authenticating and/or encrypting each IP packet in a data stream. IPsec also includes protocols for

More information

ITCH Multicast for Genium INET (Nordics) Commodities feed

ITCH Multicast for Genium INET (Nordics) Commodities feed ITCH Multicast for Genium INET (Nordics) Commodities feed N.B: this document applies to the Genium INET system and the main Commodities feed. Separate documents explain the other Genium INET ITCH feeds:

More information

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University

Computer Network Programming. The Transport Layer. Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University Computer Network Programming The Transport Layer Dr. Sam Hsu Computer Science & Engineering Florida Atlantic University The Transport Layer The Big Picture Overview of TCP/IP protocols TCP Packet Exchanges

More information

ITCH Multicast for Genium INET (Nordics) AMD Derivatives feed

ITCH Multicast for Genium INET (Nordics) AMD Derivatives feed ITCH Multicast for Genium INET (Nordics) AMD Derivatives feed N.B: this document applies to the Genium INET system and the AMD (Auxiliary Market Data) Derivatives feed. Separate documents explain the other

More information

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A

5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI UNIT I FUNDAMENTALS AND LINK LAYER PART A 5105: BHARATHIDASAN ENGINEERING COLLEGE NATTARMPALLI 635 854. NAME OF THE STAFF : R.ANBARASAN DESIGNATION & DEPARTMENT : AP/CSE SUBJECT CODE : CS 6551 SUBJECT NAME : COMPUTER NETWORKS UNIT I FUNDAMENTALS

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Lecture 5: SCTP Litterature: Forouzan 3 rd ed, Chapter 13 RFC3257 SCTP Applicability Statement RFC3286 Introduction to SCTP Outline: What is SCTP? Why SCTP? SCTP Architecture SCTP

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Literature: Lecture 10: AAA RFC3286 RFC2881 RFC2905 RFC2903 Lecture 10: AAA Goals: 2004 Image Coding Group, Linköpings Universitet 2 Lecture 10: AAA AAA Introduction Outline: AAA introduction AAA in Network

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 5: SCTP Litterature: RFC3257 SCTP Applicability Statement RFC3286 Introduction to SCTP Forouzan 3 rd ed, Chapter 13 (optional) RFC2960 (optional extra material) RFC3309 (optional extra material)

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

SCTP. Stream Control Transmission Protocol. François Buntschu. Ecole d Ingénieurs et d Architectes de Fribourg HES-SO

SCTP. Stream Control Transmission Protocol. François Buntschu. Ecole d Ingénieurs et d Architectes de Fribourg HES-SO SCTP Stream Control Transmission Protocol François Buntschu Ecole d Ingénieurs et d Architectes de Fribourg HES-SO SCTP Stream Control Transmission Protocol EIA-FR, F.Buntschu August 2003 1 / 32 Agenda

More information

Mobile Systeme Grundlagen und Anwendungen standortbezogener Dienste. Location Based Services in the Context of Web 2.0

Mobile Systeme Grundlagen und Anwendungen standortbezogener Dienste. Location Based Services in the Context of Web 2.0 Mobile Systeme Grundlagen und Anwendungen standortbezogener Dienste Location Based Services in the Context of Web 2.0 Department of Informatics - MIN Faculty - University of Hamburg Lecture Summer Term

More information

Lecture-4. TCP/IP-Overview:

Lecture-4. TCP/IP-Overview: Lecture-4 TCP/IP-Overview: The history goes back to ARPANET a research network sponsored by DoD US Govt. It eventually connected hundreds of universities and govt installations, using leased telephone

More information

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol

Transport Layer. The transport layer is responsible for the delivery of a message from one process to another. RSManiaol Transport Layer Transport Layer The transport layer is responsible for the delivery of a message from one process to another Types of Data Deliveries Client/Server Paradigm An application program on the

More information

Reliability and Availability in Stream Control Transport Protocol (SCTP)

Reliability and Availability in Stream Control Transport Protocol (SCTP) Reliability and Availability in Stream Control Transport Protocol (SCTP) Research Seminar on Real Time and High Availability Autumn 2001 by Laila Daniel on 21 st Nov. 2001 Stream Control Transmission Protocol

More information

ITCH IP Multicast for INET (Nordic) feed

ITCH IP Multicast for INET (Nordic) feed ITCH IP Multicast for INET (Nordic) feed N.B: this document applies to the INET system (Equities market); multiple separate documents explain ITCH Multicast for the Genium INET system. INET Nordic ITCH

More information

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 5 TCP/IP suite, TCP and UDP Protocols 1 TCP/IP Suite: Application layer protocols TCP/IP Suite set of protocols with layers for the Internet TCP/IP communication 5 layers: L7, L4, L3, L2 and L1

More information

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 TRANSMISSION CONTROL PROTOCOL ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 ETI 2506 - TELECOMMUNICATION SYLLABUS Principles of Telecom (IP Telephony and IP TV) - Key Issues to remember 1.

More information

Lecture 1: Introduction to Communication Networks

Lecture 1: Introduction to Communication Networks Lecture 1: Introduction to Communication Networks Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks What is the Ineternet? 2 1 U PS ta tio n G X T +

More information

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects Internet 1) Internet basic technology (overview) 2) Mobility aspects 3) Quality of Service (QoS) aspects Relevant information: these slides (overview) course textbook (Part H) www.ietf.org (details) IP

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

OFTP2 kurs Odette File r Transfer ansfer Pr otocol

OFTP2 kurs Odette File r Transfer ansfer Pr otocol OFTP2 kurs Odette File Transfer Protocol 2 Version 0.8 Main data flows in between Trading Partners in various Business structures Bilateral Value chain Value network Flow of files in B2B EDI, sketch EDI

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled

More information

Computer Networks (Unit wise Questions)

Computer Networks (Unit wise Questions) Unit I Unit II 1. What are different transmission modes?[4] 2. Encode the following binary data stream into Manchester and differential Manchester codes 1 1 0 0 1 0 1 0 [8] 3. What are different topologies

More information

The Data Link Layer. 32 PART I Networking Basics

The Data Link Layer. 32 PART I Networking Basics 32 PART I Networking Basics weather station. More realistic devices use duplex mode, where all systems can send or receive with equal facility. This is often further distinguished as half-duplex (the system

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

Network Layer (1) Networked Systems 3 Lecture 8

Network Layer (1) Networked Systems 3 Lecture 8 Network Layer (1) Networked Systems 3 Lecture 8 Role of the Network Layer Application Application The network layer is the first end-to-end layer in the OSI reference model Presentation Session Transport

More information

Internetworking models

Internetworking models TEL3214 Computer Communication s Lecture 2 Internetworking models SSH (Secure Shell) SNMP (Simple Management Protocol) SMTP (Simple Mail Transfer Protocol) FTP (File Transfer Protocol) TFTP (Trivial File

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

Hands-On Ethical Hacking and Network Defense

Hands-On Ethical Hacking and Network Defense Hands-On Ethical Hacking and Network Defense Chapter 2 TCP/IP Concepts Review Last modified 1-11-17 Objectives Describe the TCP/IP protocol stack Explain the basic concepts of IP addressing Explain the

More information

SCTP: An innovative transport layer protocol for the web

SCTP: An innovative transport layer protocol for the web SCTP: An innovative transport layer protocol for the web (Position paper) P. Natarajan, J. Iyengar, P. Amer, & R. Stewart 1 HTTP over TCP Transmission Control Protocol (TCP) has been the default transport

More information

Reti di Calcolatori I

Reti di Calcolatori I Reti di Calcolatori I Prof. Roberto Canonico Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso di Laurea in Ingegneria delle Telecomunicazioni Corso di Laurea in Ingegneria

More information

Stream Control Transmission Protocol (SCTP)

Stream Control Transmission Protocol (SCTP) Stream Control Transmission Protocol (SCTP) Definition Stream control transmission protocol (SCTP) is an end-to-end, connectionoriented protocol that transports data in independent sequenced streams. SCTP

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

TCP/IP THE TCP/IP ARCHITECTURE

TCP/IP THE TCP/IP ARCHITECTURE TCP/IP-1 The Internet Protocol (IP) enables communications across a vast and heterogeneous collection of networks that are based on different technologies. Any host computer that is connected to the Internet

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS

BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS BLM6196 COMPUTER NETWORKS AND COMMUNICATION PROTOCOLS Prof. Dr. Hasan Hüseyin BALIK (2 nd Week) 2. Protocol Architecture, TCP/IP, and Internet-Based Applications 2.Outline The Need for a Protocol Architecture

More information

Chapter 2. Communicating Over The Network. CCNA1-1 Chapter 2

Chapter 2. Communicating Over The Network. CCNA1-1 Chapter 2 Chapter 2 Communicating Over The Network CCNA1-1 Chapter 2 Communicating Over the Network The Platform for Communications CCNA1-2 Chapter 2 Elements of Communication People communicate in many different

More information

Need For Protocol Architecture

Need For Protocol Architecture Chapter 2 CS420/520 Axel Krings Page 1 Need For Protocol Architecture E.g. File transfer Source must activate communications path or inform network of destination Source must check destination is prepared

More information

Need For Protocol Architecture

Need For Protocol Architecture Chapter 2 CS420/520 Axel Krings Page 1 Need For Protocol Architecture E.g. File transfer Source must activate communications path or inform network of destination Source must check destination is prepared

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Video Streaming with the Stream Control Transmission Protocol (SCTP)

Video Streaming with the Stream Control Transmission Protocol (SCTP) Chair for Network Architectures and Services Department of Informatics Technische Universität München Video Streaming with the Stream Control Transmission Protocol (SCTP) Lothar Braun, Andreas Müller Internet

More information

Introduction to TCP/IP networking

Introduction to TCP/IP networking Introduction to TCP/IP networking TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute TCP : Transmission Control Protocol HTTP, FTP, ssh What is an internet? A set

More information

Operating Systems and. Computer Networks. Introduction to Computer Networks. Operating Systems and

Operating Systems and. Computer Networks. Introduction to Computer Networks. Operating Systems and Computer Networks Introduction to Computer Networks Linux System Structure Corbet et al, Linux Device Drivers, O Reilly, 2005 Categories of System Calls Process Control load, execute, end, abort, create

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski

Operating Systems. 16. Networking. Paul Krzyzanowski. Rutgers University. Spring /6/ Paul Krzyzanowski Operating Systems 16. Networking Paul Krzyzanowski Rutgers University Spring 2015 1 Local Area Network (LAN) LAN = communications network Small area (building, set of buildings) Same, sometimes shared,

More information

Data Communications and Networks Spring Syllabus and Reading Assignments

Data Communications and Networks Spring Syllabus and Reading Assignments Data Communications and Networks Spring 2018 Syllabus and Assignments Revision Date: January 24, 2018 Course : This course teaches the design and implementation techniques essential for engineering robust

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Networking Fundamentals

Networking Fundamentals Networking Fundamentals Network Startup Resource Center www.nsrc.org These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin,

Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, Fundamental Questions to Answer About Computer Networking, Jan 2009 Prof. Ying-Dar Lin, ydlin@cs.nctu.edu.tw Chapter 1: Introduction 1. How does Internet scale to billions of hosts? (Describe what structure

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master

More information

CSE/EE 461 Introduction to Computer Communication Networks. Why Study Networks?

CSE/EE 461 Introduction to Computer Communication Networks. Why Study Networks? CSE/EE 461 Introduction to Computer Communication Networks Tom Anderson Janet Davis, Sushant Jain, Eric Lemar Why Study Networks? Large scale system design How do you get 100M+ hosts across tens of thousands

More information

Transport of (Legacy) Signaling over IP. Summary of course scope

Transport of (Legacy) Signaling over IP. Summary of course scope Transport of (Legacy) Signaling over SIGTRAN architecture (http://www.ietf.org/html.charters/sigtran-charter.html) Raimo Kantola S- 2004 Signaling Protocols 15-1 Summary of course scope PABX H.323 or S

More information

ITCH Mul)cast for Genium INET (Nordics) Commodi)es feed

ITCH Mul)cast for Genium INET (Nordics) Commodi)es feed ITCH Mul)cast for Genium INET (Nordics) Commodi)es feed N.B: this document applies to the Genium INET system and the main Commodities feed. Separate documents explain the other Genium INET ITCH feeds:

More information

Defining Networks with the OSI Model. Module 2

Defining Networks with the OSI Model. Module 2 Defining Networks with the OSI Model Module 2 Objectives Skills Concepts Objective Domain Description Objective Domain Number Understanding OSI Basics Defining the Communications Subnetwork Defining the

More information

Mainframe Networking 101 Share Session 15422

Mainframe Networking 101 Share Session 15422 Mainframe Networking 101 Share Session 15422 6 Laura Knapp WW Business Consultant Laurak@aesclever.com ipv6hawaii@outlook.com 06/23/2014 Applied Expert Systems, Inc. 2014 1 Agenda Requirements for Communication

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

ITCH IP Mul*cast for INET (Nordics) feed

ITCH IP Mul*cast for INET (Nordics) feed ITCH IP Mul*cast for INET (Nordics) feed N.: this document applies to the INET system (Equities market); multiple separate documents explain ITCH Multicast for the Genium INET system. This version applies

More information

Cisco Cisco Certified Network Associate (CCNA)

Cisco Cisco Certified Network Associate (CCNA) Cisco 200-125 Cisco Certified Network Associate (CCNA) http://killexams.com/pass4sure/exam-detail/200-125 Question: 769 Refer to exhibit: Which destination addresses will be used by Host A to send data

More information

OSI Reference Model. Computer Networks lab ECOM Prepared By : Eng. Motaz Murtaja Eng. Ola Abd Elatief

OSI Reference Model. Computer Networks lab ECOM Prepared By : Eng. Motaz Murtaja Eng. Ola Abd Elatief Islamic University of Gaza Faculty of Engineering Computer Engineering Department Computer Networks lab ECOM 4121 OSI Reference Model Prepared By : Eng. Motaz Murtaja Eng. Ola Abd Elatief May /2010 OSI

More information

Network and Security: Introduction

Network and Security: Introduction Network and Security: Introduction Seungwon Shin KAIST Some slides are from Dr. Srinivasan Seshan Some slides are from Dr. Nick Mckeown Network Overview Computer Network Definition A computer network or

More information

Network Model. Why a Layered Model? All People Seem To Need Data Processing

Network Model. Why a Layered Model? All People Seem To Need Data Processing Network Model Why a Layered Model? All People Seem To Need Data Processing Layers with Functions Packet Propagation Each router provides its services to support upper-layer functions. Headers (Encapsulation

More information

Time : 3 hours. Full Marks: 70. The figures in the margin indicate full marks. Answer from all the Groups are directed. Group A.

Time : 3 hours. Full Marks: 70. The figures in the margin indicate full marks. Answer from all the Groups are directed. Group A. COPYRIGHT RESERVED End Sem (III) MCA (XVIII) 2017 Time : 3 hours Full Marks: 70 Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate

More information

Chapter 2. Communicating Over The Network

Chapter 2. Communicating Over The Network Chapter 2 Communicating Over The Network CCNA1-1 Chapter 2 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario. Thanks

More information

Mainframe Networking 101 Share Session. Junie Sanders Kevin Manweiler -

Mainframe Networking 101 Share Session. Junie Sanders Kevin Manweiler - Mainframe Networking 101 Share Session 6 Junie Sanders jrsandler@cisco.com Kevin Manweiler - kmanweil@cisco.com 2 Agenda Requirements for Communication What are Networking Architectures? Networking Architectures

More information

Introduction to Networks

Introduction to Networks Introduction to Networks Khaled Harras School of Computer Science Carnegie Mellon University 15-349 Computer and Network Security Fall 2012 Some material borrowed from Hui Zhang and Adrian Perrig 1 Early

More information

Networks Fall This exam consists of 10 problems on the following 13 pages.

Networks Fall This exam consists of 10 problems on the following 13 pages. CSCI 466 Final Networks Fall 2011 Name: This exam consists of 10 problems on the following 13 pages. You may use your two- sided hand- written 8 ½ x 11 note sheet during the exam and a calculator. No other

More information

ECE4110 Internetwork Programming. Introduction and Overview

ECE4110 Internetwork Programming. Introduction and Overview ECE4110 Internetwork Programming Introduction and Overview 1 EXAMPLE GENERAL NETWORK ALGORITHM Listen to wire Are signals detected Detect a preamble Yes Read Destination Address No data carrying or noise?

More information

Outline. History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams

Outline. History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams Outline History Introduction Packets Association/ Termination Data Transmission concepts Multihoming Streams 1 History Developed by IETF SIGTRAN working group (Internet Engineering Task Force) (SIGnaling

More information

Hands-On TCP/IP Networking

Hands-On TCP/IP Networking Hands-On Course Description In this Hands-On TCP/IP course, the student will work on a live TCP/IP network, reinforcing the discussed subject material. TCP/IP is the communications protocol suite on which

More information

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao EEC-484/584 Computer Networks Lecture 16 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review Services provided by transport layer

More information

Network Programming. Introduction to Sockets. Dr. Thaier Hayajneh. Process Layer. Network Layer. Berkeley API

Network Programming. Introduction to Sockets. Dr. Thaier Hayajneh. Process Layer. Network Layer. Berkeley API Network Programming Outline Definitions Dr. Thaier Hayajneh Computer Engineering Department Berkeley API Socket definition and types Introduction to Sockets 1 2 Process Process Process Layer TCP SCTP UDP

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 16 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at

More information

Internet Transport Layer

Internet Transport Layer Internet Transport Layer TCP Fundamentals, TCP Performance Aspects, UDP (User Datagram Protocol) Agenda TCP Fundamentals UDP TCP Performance Slow Start and Congestion Avoidance Fast Retransmit and Fast

More information

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals Transport Layer Protocols Application SMTP HTTP FTP Telnet DNS BootP DHCP ( M I M E ) Presentation Session SNMP TFTP Internet Transport Layer TCP Fundamentals, TCP Performance Aspects, UDP (User Datagram

More information

Transport Layer Protocols. Internet Transport Layer. Agenda

Transport Layer Protocols. Internet Transport Layer. Agenda Transport Layer Protocols Application SMTP HTTP FTP Telnet DNS BootP DHCP ( M I M E ) Presentation Session SNMP TFTP Internet Transport Layer TCP Fundamentals, TCP Performance Aspects, UDP (User Datagram

More information

Table of Contents. Computer Networks and the Internet

Table of Contents. Computer Networks and the Internet Table of Contents Chapter 1 Computer Networks and the Internet 1.1 What Is the Internet? 1.1.1 A Nuts-and-Bolts Description 1.1.2 A Services Description 1.1.3 What Is a Protocol? 1.2 The Network Edge 1.2.1

More information

TCP/IP Protocol Suite 1

TCP/IP Protocol Suite 1 TCP/IP Protocol Suite 1 Stream Control Transmission Protocol (SCTP) TCP/IP Protocol Suite 2 OBJECTIVES: To introduce SCTP as a new transport-layer protocol. To discuss SCTP services and compare them with

More information

Performance Analysis of Stream Control Transmission Protocol

Performance Analysis of Stream Control Transmission Protocol Buletinul tiinific al Universitii "Politehnica" din Timioara Seria ELECTRONIC i TELECOMUNICAII TRANSACTIONS on ELECTRONICS and COMMUNICATIONS Tom 49(63), Fascicola 1-2, 2004 Performance Analysis of Stream

More information

Datagram Congestion Control Protocol (DCCP)

Datagram Congestion Control Protocol (DCCP) Datagram Congestion Control Protocol (DCCP) Chung, Kwangsue kchung@kw.ac.kr June, 2003 1 Contents Introduction & Motivation DCCP Mechanisms Current Issues & Implementations 2 DCCP: Introduction & Motivation

More information

Lecture 04: Networking & Internetworking

Lecture 04: Networking & Internetworking CSIE52400 Distributed Systems Lecture 04: Networking & Internetworking 吳秀陽 Shiow-yang Wu Department of Computer Science and Information Engineering National Dong Hwa University Communication Subsystem

More information

Application Layer Network Layer

Application Layer Network Layer Application Layer 1. What is job of Application Layer? 2. Which protocol is used at Application Layer? 3. What is DNS? How is works? 4. What protocols used is email? 5. Where to use SMTP protocol? 6. Where

More information

Lecture 3 Protocol Stacks and Layering

Lecture 3 Protocol Stacks and Layering Lecture 3 Protocol Stacks and ing Hui Zhang School of Computer Science Carnegie Mellon University 15-441 Networking, Fall 2007 http://www.cs.cmu.edu/~srini/15-441/f07/ 1 What is a Communication Network?

More information

On Inter-layer Assumptions

On Inter-layer Assumptions On Inter-layer Assumptions (A View from the Transport Area) Mark Handley ACIRI/ICSI mjh@aciri.org Ping The Internet Hourglass FTP HTTP NNTP SMTP NFS DNS Applications TCP UDP ICMP IP 802.x PPP SLIP RS232

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

Transporting Voice by Using IP

Transporting Voice by Using IP Transporting Voice by Using IP National Chi Nan University Quincy Wu Email: solomon@ipv6.club.tw 1 Outline Introduction Voice over IP RTP & SIP Conclusion 2 Digital Circuit Technology Developed by telephone

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

CPS221 Lecture: Layered Network Architecture

CPS221 Lecture: Layered Network Architecture CPS221 Lecture: Layered Network Architecture Objectives last revised 9/8/14 1. To discuss the OSI layered architecture model 2. To discuss the specific implementation of this model in TCP/IP Materials:

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

Chapter 2 Network Models 2.1

Chapter 2 Network Models 2.1 Chapter 2 Network Models 2.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2-1 LAYERED TASKS We use the concept of layers in our daily life. As an example,

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Review of Important Networking Concepts

Review of Important Networking Concepts Review of Important Networking Concepts Review: ed communication architecture The TCP/IP protocol suite 1 Networking Concepts Protocol Architecture Protocol s Encapsulation Network Abstractions 2 1 Sending

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

MULTIHOMING AND MULTISTREAM PROTOCOL IN COMPUTER NETWORKS

MULTIHOMING AND MULTISTREAM PROTOCOL IN COMPUTER NETWORKS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 3, March 2014,

More information

Data & Computer Communication

Data & Computer Communication Basic Networking Concepts A network is a system of computers and other devices (such as printers and modems) that are connected in such a way that they can exchange data. A bridge is a device that connects

More information

CS UDP: User Datagram Protocol, Other Transports, Sockets. congestion worse);

CS UDP: User Datagram Protocol, Other Transports, Sockets. congestion worse); CS314-26 UDP: User Datagram Protocol, Other Transports, Sockets! IP is an unreliable datagram protocol " congestion or transmission errors cause lost packets " multiple routes may lead to out-of-order

More information