Chapter 4 Network Layer

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 4 Network Layer"

Transcription

1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones proided by the textbook authors. Network Layer 4-1

2 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-2

3 Router architecture oeriew two key router functions: run routing algorithms/protocol (RIP, OSPF, BGP) forwarding datagrams from incoming to outgoing link forwarding tables computed, pushed to input ports routing processor routing, management control plane (software) forwarding data plane (hardware) high-seed switching fabric router input ports router output ports Network Layer 4-3

4 Switching fabrics transfer packet from input buffer to appropriate output buffer switching rate: rate at which packets can be transfer from inputs to outputs often measured as multiple of input/output line rate N inputs: switching rate N times line rate desirable three types of switching fabrics memory memory bus crossbar Network Layer 4-4

5 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-5

6 IP datagram format IP protocol ersion number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol to delier payload to how much oerhead? 20 bytes of TCP 20 bytes of IP = 40 bytes + app layer oerhead er head. len 16-bit identifier time to lie type of serice upper layer 32 bits flgs length fragment offset header checksum 32 bit source IP address 32 bit destination IP address options (if any) data (ariable length, typically a TCP or UDP segment) total datagram length (bytes) for fragmentation/ reassembly e.g. timestamp, record route taken, specify list of routers to isit. Network Layer 4-6

7 IP fragmentation, reassembly network links hae MTU (max.transfer size) - largest possible link-leel frame different link types, different MTUs large IP datagram diided ( fragmented ) within net one datagram becomes seeral datagrams reassembled only at final destination IP header bits used to identify, order related fragments reassembly fragmentation: in: one large datagram out: 3 smaller datagrams Network Layer 4-7

8 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-8

9 IP4 Addressing Classful addressing Fixed subnet/host address length Inflexible CIDR: Classless InterDomain Routing subnet portion of address of arbitrary length address format: a.b.c.d/x, where x is # bits in subnet portion of address 9

10 DHCP: Dynamic Host Configuration Protocol goal: allow host to dynamically obtain its IP address from network serer when it joins network can renew its lease on address in use allows reuse of addresses (only hold address while connected/ on ) support for mobile users who want to join network (more shortly) DHCP oeriew: host broadcasts DHCP discoer msg [optional] DHCP serer responds with DHCP offer msg [optional] host requests IP address: DHCP request msg DHCP serer sends address: DHCP ack msg Network Layer 4-10

11 NAT: network address translation implementation: NAT router must: outgoing datagrams: replace (source IP address, port #) of eery outgoing datagram to (NAT IP address, new port #)... remote clients/serers will respond using (NAT IP address, new port #) as destination addr remember (in NAT translation table) eery (source IP address, port #) to (NAT IP address, new port #) translation pair incoming datagrams: replace (NAT IP address, new port #) in dest fields of eery incoming datagram with corresponding (source IP address, port #) stored in NAT table Network Layer 4-11

12 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-12

13 ICMP: internet control message protocol used by hosts & routers to communicate network-leel information error reporting: unreachable host, network, port, protocol echo request/reply (used by ping) ICMP message: type, code plus first 8 bytes of IP datagram causing error Case study: traceroute implementation source sends series of UDP segments to dest with TTL set to n nth router sends source ICMP messages (type 11, code 0) Network Layer 4-13

14 IP6 datagram format initial motiation: 32-bit address space soon to be completely allocated. additional motiation: header format helps speed processing/forwarding header changes to facilitate QoS er pri flow label payload len next hdr hop limit source address (128 bits) destination address (128 bits) data 32 bits Network Layer 4-14

15 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-15

16 Graph abstraction 5 graph: G = (N,E) u 1 2 x w y z N = set of routers = { u,, w, x, y, z } E = set of links ={ (u,), (u,x), (,x), (,w), (x,w), (x,y), (w,y), (w,z), (y,z) } Network Layer 4-16

17 Graph abstraction: costs u x w y z c(x,x ) = cost of link (x,x ) e.g., c(w,z) = 5 cost could always be 1, or inersely related to bandwidth, or inersely related to congestion cost of path (x 1, x 2, x 3,, x p ) = c(x 1,x 2 ) + c(x 2,x 3 ) + + c(x p-1,x p ) key question: what is the least-cost path between u and z? routing algorithm: algorithm that finds that least cost path Network Layer 4-17

18 Routing algorithm classification Q: global or decentralized information? global: all routers hae complete topology, link cost info link state algorithms decentralized: router knows physicallyconnected neighbors, link costs to neighbors iteratie process of computation, exchange of info with neighbors distance ector algorithms Q: static or dynamic? static: routes change slowly oer time dynamic: routes change more quickly periodic update in response to link cost changes Network Layer 4-18

19 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-19

20 A Link-State Routing Algorithm Dijkstra s algorithm net topology, link costs known to all nodes accomplished ia link state broadcast all nodes hae same info computes least cost paths from one node ( source ) to all other nodes gies forwarding table for that node iteratie: after k iterations, know least cost path to k dest. s notation: c(x,y): link cost from node x to y; = if not direct neighbors D(): current alue of cost of path from source to dest. p(): predecessor node along path from source to N': set of nodes whose least cost path definitiely known Network Layer 4-20

21 Dijkstra s algorithm: example D() p() D(w) p(w) D(x) p(x) D(y) p(y) D(z) p(z) Step N' 0 u 7,u 3,u 5,u 1 uw 6,w 5,u 11,w 2 uwx 6,w 11,w 14,x 3 uwx 10, 14,x 4 uwxy 12,y 5 uwxyz notes: construct shortest path tree by tracing predecessor nodes ties can exist (can be broken arbitrarily) u 5 3 x w y z 2 Network Layer 4-21

22 Dijsktra s Algorithm 1 Initialization: 2 N' = {u} 3 for all nodes 4 if adjacent to u 5 then D() = c(u,) 6 else D() = 7 8 Loop 9 find w not in N' such that D(w) is a minimum 10 add w to N' 11 update D() for all adjacent to w and not in N' : 12 D() = min( D(), D(w) + c(w,) ) 13 /* new cost to is either old cost to or known 14 shortest path cost to w plus cost from w to */ 15 until all nodes in N' Network Layer 4-22

23 Network Layer 4-23 Dijkstra s algorithm: another example Step N' u ux uxy uxy uxyw uxywz D(),p() 2,u 2,u 2,u D(w),p(w) 5,u 4,x 3,y 3,y D(x),p(x) 1,u D(y),p(y) 2,x D(z),p(z) 4,y 4,y 4,y u y x w z

24 Dijkstra s algorithm: example (2) resulting shortest-path tree from u: w u z x y resulting forwarding table in u: destination x y w z link (u,) (u,x) (u,x) (u,x) (u,x) Network Layer 4-24

25 Dijkstra s algorithm, discussion algorithm complexity: n nodes each iteration: need to check all nodes, w, not in N n(n+1)/2 comparisons: O(n 2 ) more efficient implementations possible: O(nlogn) oscillations possible: e.g., support link cost equals amount of carried traffic: 1 D A 1 1+e C e initially e B 1 A 2+e 0 D 0 1+e 1 C B gien these costs, find new routing. resulting in new costs 0 D A 0 2+e C 1+e B gien these costs, find new routing. resulting in new costs A 2+e 0 D 0 1+e 1 C B gien these costs, find new routing. resulting in new costs 0 Network Layer 4-25

26 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-26

27 Distance ector algorithm Bellman-Ford equation (dynamic programming) let d x (y) := cost of least-cost path from x to y then d x (y) = min {c(x,) + d (y) } cost from neighbor to destination y cost to neighbor min taken oer all neighbors of x Network Layer 4-27

28 Bellman-Ford example u x w y z clearly, d (z) = 5, d x (z) = 3, d w (z) = 3 B-F equation says: d u (z) = min { c(u,) + d (z), c(u,x) + d x (z), c(u,w) + d w (z) } = min {2 + 5, 1 + 3, 5 + 3} = 4 node achieing minimum is next hop in shortest path, used in forwarding table Network Layer 4-28

29 Distance ector algorithm D x (y) = estimate of least cost from x to y x maintains distance ector D x = [D x (y): y є N ] node x: knows cost to each neighbor : c(x,) maintains its neighbors distance ectors. For each neighbor, x maintains D = [D (y): y є N ] Network Layer 4-29

30 Distance ector algorithm key idea: from time-to-time, each node sends its own distance ector estimate to neighbors when x receies new DV estimate from neighbor, it updates its own DV using B-F equation: D x (y) min {c(x,) + D (y)} for each node y N under minor, natural conditions, the estimate D x (y) conerge to the actual least cost d x (y) Network Layer 4-30

31 node x table from x y z cost to x y z D x (y) = min{c(x,y) + D y (y), c(x,z) + D z (y)} = min{2+0, 7+1} = 2 from x y z x y z 0 cost to D x (z) = min{c(x,y) + D y (z), c(x,z) + D z (z)} = min{2+1, 7+0} = 3 node y table from x y z cost to x y z x 2 y 7 1 z node z table from cost to x y z x y z time Network Layer 4-31

32 node x table from x y z node y table from x y z cost to x y z x y z D x (y) = min{c(x,y) + D y (y), c(x,z) + D z (y)} = min{2+0, 7+1} = 2 cost to from from x y z x y z x y z 0 cost to 2 cost to x y z from from x y z x y z cost to x y z cost to x y z D x (z) = min{c(x,y) + D y (z), c(x,z) + D z (z)} = min{2+1, 7+0} = 3 y 2 1 x 7 z node z table from cost to x y z x y z from x y z cost to x y z from x y z cost to x y z time Network Layer 4-32

33 Distance ector algorithm iteratie, asynchronous: each local iteration caused by: local link cost change DV update message from neighbor distributed: each node notifies neighbors only when its DV changes neighbors then notify their neighbors if necessary each node: wait for (change in local link cost or msg from neighbor) recompute estimates if DV to any dest has changed, notify neighbors Network Layer 4-33

34 Distance ector: link cost changes link cost changes: node detects local link cost change updates routing info, recalculates distance ector if DV changes, notify neighbors x 1 4 y 50 1 z good news traels fast t 0 : y detects link-cost change, updates its DV, informs its neighbors. t 1 : z receies update from y, updates its table, computes new least cost to x, sends its neighbors its DV. t 2 : y receies z s update, updates its distance table. y s least costs do not change, so y does not send a message to z. Network Layer 4-34

35 Distance ector: link cost changes link cost changes: node detects local link cost change bad news traels slow - count to infinity problem! 44 iterations before algorithm stabilizes: see text poisoned reerse: If Z routes through Y to get to X : Z tells Y its (Z s) distance to X is infinite (so Y won t route to X ia Z) 60 x 4 y 50 1 z Network Layer 4-35

36 Comparison of LS and DV algorithms message complexity LS: with n nodes, E links, O(nE) msgs sent DV: exchange between neighbors only conergence time aries speed of conergence LS: O(n 2 ) algorithm requires O(nE) msgs may hae oscillations DV: conergence time aries may be routing loops count-to-infinity problem robustness: what happens if router malfunctions? LS: node can adertise incorrect link cost each node computes only its own table DV: DV node can adertise incorrect path cost each node s table used by others error propagate thru network Network Layer 4-36

37 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-37

38 Hierarchical routing our routing study thus far - idealization all routers identical network flat not true in practice scale: with 600 million destinations: can t store all dest s in routing tables! routing table exchange would swamp links! administratie autonomy internet = network of networks each network admin may want to control routing in its own network Network Layer 4-38

39 Hierarchical routing aggregate routers into regions, autonomous systems (AS) routers in same AS run same routing protocol intra-as routing protocol routers in different AS can run different intra- AS routing protocol gateway router: at edge of its own AS has link to router in another AS Network Layer 4-39

40 Interconnected ASes 3c 3a 3b AS3 1a 1c 1d 1b Intra-AS Routing algorithm AS1 Forwarding table Inter-AS Routing algorithm 2a 2c AS2 2b forwarding table configured by both intraand inter-as routing algorithm intra-as sets entries for internal dests inter-as & intra-as sets entries for external dests Network Layer 4-40

41 Inter-AS tasks suppose router in AS1 receies datagram destined outside of AS1: router should forward packet to gateway router, but which one? AS1 must: 1. learn which dests are reachable through AS2, which through AS3 2. propagate this reachability info to all routers in AS1 job of inter-as routing! 3c other networks 3b 3a AS3 1a AS1 1c 1d 1b 2a AS2 2c 2b other networks Network Layer 4-41

42 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-42

43 Intra-AS Routing also known as interior gateway protocols (IGP) most common intra-as routing protocols: RIP: Routing Information Protocol OSPF: Open Shortest Path First IGRP: Interior Gateway Routing Protocol (Cisco proprietary) Network Layer 4-43

44 RIP ( Routing Information Protocol) included in BSD-UNIX distribution in 1982 distance ector algorithm distance metric: # hops (max = 15 hops), each link has cost 1 DVs exchanged with neighbors eery 30 sec in response message (aka adertisement) each adertisement: list of up to 25 destination subnets (in IP addressing sense) from router A to destination subnets: z u A C B D y w x subnet hops u 1 2 w 2 x 3 y 3 z 2 Network Layer 4-44

45 RIP: example w x y A D B z C routing table in router D destination subnet next router # hops to dest w A 2 y B 2 z B 7 x Network Layer 4-45

46 RIP: example A-to-D adertisement next hops dest w - 1 x - 1 z C w x y A D B z C routing table in router D destination subnet next router # hops to dest w A 2 y B 2 A z B 7 5 x Network Layer 4-46

47 OSPF (Open Shortest Path First) open : publicly aailable uses link state algorithm LS packet dissemination topology map at each node route computation using Dijkstra s algorithm OSPF adertisement carries one entry per neighbor adertisements flooded to entire AS Network Layer 4-47

48 OSPF adanced features (not in RIP) security: all OSPF messages authenticated (to preent malicious intrusion) ECMP: equal cost multiple paths allowed (only one path in RIP) for each link, multiple cost metrics for different TOS (e.g., satellite link cost set low for best effort ToS; high for real time ToS) integrated uni- and multicast support: Multicast OSPF (MOSPF) uses same topology data base as OSPF hierarchical OSPF in large domains. Network Layer 4-48

49 Hierarchical OSPF boundary router backbone router area border routers backbone area 3 area 1 area 2 internal routers Network Layer 4-49

50 Hierarchical OSPF two-leel hierarchy: local area, backbone. link-state adertisements only in area each nodes has detailed area topology; only know direction (shortest path) to nets in other areas. area border routers: summarize distances to nets in own area, adertise to other Area Border routers. backbone routers: run OSPF routing limited to backbone. boundary routers: connect to other AS s. Network Layer 4-50

51 Internet inter-as routing: BGP BGP (Border Gateway Protocol): the de facto inter-domain routing protocol glue that holds the Internet together BGP proides each AS a means to: ebgp: obtain subnet reachability information from neighboring ASs. ibgp: propagate reachability information to ASinternal routers. determine good routes to other networks based on reachability information and policy. allows subnet to adertise its existence to rest of Internet: I am here Network Layer 4-51

52 BGP basics BGP session: two BGP routers ( peers ) exchange BGP messages: adertising paths to different destination network prefixes ( path ector protocol) when AS3 adertises a prefix to AS1: AS3 promises it will forward datagrams towards that prefix AS3 can aggregate prefixes in its adertisement other networks 3b 3c AS3 3a 1a AS1 BGP message 1c 1d 1b 2a AS2 2c 2b other networks Network Layer 4-52

53 BGP basics: distributing path information using ebgp session between 3a and 1c, AS3 sends prefix reachability info to AS1. 1c can then use ibgp do distribute new prefix info to all boundary routers in AS1 1b can then re-adertise new reachability info to AS2 oer 1b-to- 2a ebgp session when router learns of new prefix, it creates entry for prefix in its forwarding table. other networks 3b 3a AS3 1a AS1 1c 1d ebgp session ibgp session 1b 2a AS2 2c 2b other networks Network Layer 4-53

54 Path attributes and BGP routes adertised prefix includes BGP attributes prefix + attributes = route two important attributes: AS-PATH: contains ASs through which prefix adertisement has passed: e.g., AS 67, AS 17 NEXT-HOP: indicates specific internal-as router to nexthop AS. (may be multiple links from current AS to nexthop-as) gateway router receiing route adertisement uses import policy to accept/decline e.g., neer route through AS x policy-based routing Network Layer 4-54

55 BGP route selection router may learn about more than 1 route to destination AS, selects route based on: 1. local preference alue attribute: policy decision 2. shortest AS-PATH 3. closest NEXT-HOP router: hot potato routing 4. additional criteria Network Layer 4-55

56 Example Consider the network shown below. Suppose AS3 and AS2 are running OSPF for their intra-as routing protocol. Suppose AS1 and AS4 are running RIP for their intra-as routing protocol. Suppose E-BGP and I-BGP are used for the inter-as routing protocol. Initially suppose there is no physical link between AS2 and AS4. a. Router 3c learns about prefix x from which routing protocol: OSPF, RIP, E-BGP, or I-BGP? b. How about 3a, 1c, and 1d. 56

57 Example Referring to the preious network, once router 1d learns about x it will put an entry (x, I) in its forwarding table. a. Will I be equal to I 1 or I 2 for this entry? b. Now suppose that there is a physical link between AS2 and AS4, shown by the dotted line. Suppose router 1d learns that x is accessible ia AS2 as well as ia AS3. Will? c. Now suppose there is another AS, called AS5, which lies on the path between AS2 and AS4. Suppose router 1d learns that x is accessible ia AS2 AS5 AS4 as well as ia AS3 AS4. Will? 57

58 Chapter 4: outline 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IP4 addressing ICMP IP6 4.5 routing algorithms link state distance ector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing Network Layer 4-58

59 Multicast and broadcast Multicast - one to many transmission Special case: broadcast - one to all transmission Solutions to both are similar source duplication is inefficient: duplicate R1 duplicate creation/transmission R1 R2 R2 duplicate R3 R4 R3 R4 source duplication in-network duplication Network Layer 4-59

60 Broadcast: in-network duplication flooding: when node receies broadcast packet, sends copy to all neighbors problems: cycles & broadcast storm controlled flooding: node only broadcasts pkt if it hasn t broadcast same packet before node keeps track of packet ids already broadacsted or reerse path forwarding (RPF): only forward packet if it arried on shortest path between node and source spanning tree: no redundant packets receied by any node Network Layer 4-60

61 Broadcast: controlled flooding Node S is the broadcast source. S E A B H C I G F K J D M N L 61

62 Broadcast: controlled flooding S E A B H C I G F K J D M N L To aoid forwarding the same packet multiple times (forming a loop), each node remembers the receied packet id. - Second copy receied by E from C is discarded - Second copy receied by C from E is discarded as well - Node H receies two copies from two neighbors, and will discard one of them 62

63 Broadcast: spanning tree first construct a spanning tree nodes then forward/make copies only along spanning tree A A c B c B F E D F E D (a) broadcast initiated at A G G (b) broadcast initiated at D Network Layer 4-63

64 Broadcast: spanning tree: creation center node each node sends unicast join message to center node message forwarded until it arries at a node already belonging to spanning tree F 1 c A 4 E 3 2 B D 5 G (a) stepwise construction of spanning tree (center: E) F c A E B D (b) constructed spanning tree G Network Layer 4-64

65 Multicast routing: problem statement goal: find a tree (or trees) connecting routers haing local mcast group members tree: not all paths between routers used shared-tree: same tree used by all group members source-based: different tree from each sender to rcrs legend group member not group member router with a group member router without group member shared tree source-based trees Network Layer 4-65

66 Approaches for building mcast trees approaches: source-based tree: one tree per source shortest path trees reerse path forwarding group-shared tree: group uses one tree minimal spanning (Steiner) center-based trees we first look at basic approaches, then specific protocols adopting these approaches Network Layer 4-66

67 Shortest path tree mcast forwarding tree: tree of shortest path routes from source to all receiers Dijkstra s algorithm s: source LEGEND R1 1 2 R4 router with attached group member R3 R2 3 4 R6 6 R7 5 R5 i router with no attached group member link used for forwarding, i indicates order link added by algorithm Network Layer 4-67

68 Reerse path forwarding rely on router s knowledge of unicast shortest path from it to sender each router has simple forwarding behaior: if (mcast datagram receied on incoming link on shortest path back to center) then flood datagram onto all outgoing links else ignore datagram Network Layer 4-68

69 Reerse path forwarding: example s: source R2 R1 R4 LEGEND router with attached group member R5 router with no attached group member R3 R6 R7 datagram will be forwarded datagram will not be forwarded result is a source-specific reerse SPT may be a bad choice with asymmetric links Network Layer 4-69

70 Reerse path forwarding: pruning forwarding tree contains subtrees with no mcast group members no need to forward datagrams down subtree prune msgs sent upstream by router with no downstream group members s: source R3 R2 R1 R6 P R4 P R5 R7 LEGEND P router with attached group member router with no attached group member prune message links with multicast forwarding Network Layer 4-70

71 Center-based trees single deliery tree shared by all one router identified as center of tree to join: edge router sends unicast join-msg addressed to center router join-msg processed by intermediate routers and forwarded towards center join-msg either hits existing tree branch for this center, or arries at center path taken by join-msg becomes new branch of tree for this router Network Layer 4-71

72 Center-based trees: example suppose R6 chosen as center: LEGEND R1 3 R4 router with attached group member R3 R2 1 R6 2 R5 R7 1 router with no attached group member path order in which join messages generated Network Layer 4-72

73 Internet Multicasting Routing: DVMRP DVMRP: distance ector multicast routing protocol, RFC1075 flood and prune: reerse path forwarding, sourcebased tree RPF tree based on DVMRP s own routing tables constructed by communicating DVMRP routers no assumptions about underlying unicast initial datagram to mcast group flooded eerywhere ia RPF routers not wanting group: send upstream prune msgs Network Layer 4-73

74 PIM: Protocol Independent Multicast not dependent on any specific underlying unicast routing algorithm (works with all) two different multicast distribution scenarios : dense: group members densely packed, in close proximity. group membership by routers assumed until explicitly prune flood-and-prune RPF sparse: group members widely dispersed no membership until routers explicitly join center-based approach Network Layer 4-74

75 Chapter 4: done! 4.1 introduction 4.2 irtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format, IP4 addressing, ICMP, IP6 4.5 routing algorithms link state, distance ector, hierarchical routing 4.6 routing in the Internet RIP, OSPF, BGP 4.7 broadcast and multicast routing understand principles behind network layer serices: network layer serice models, forwarding ersus routing how a router works, routing (path selection), broadcast, multicast instantiation, implementation in the Internet Network Layer 4-75

Chapter 4: Network Layer, partb

Chapter 4: Network Layer, partb Chapter 4: Network Layer, partb The slides are adaptations of the slides available by the main textbook authors, Kurose&Ross Network Layer 4-1 Interplay between routing, forwarding routing algorithm local

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst

Internet rou)ng. V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Internet rou)ng V. Arun CS491G: Computer Networking Lab University of MassachuseFs Amherst Slide material copyright 1996-2013 J.F Kurose and K.W. Ross, All Rights Reserved Graph abstraction 5 graph: G

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm

Last time. Transitioning to IPv6. Routing. Tunneling. Gateways. Graph abstraction. Link-state routing. Distance-vector routing. Dijkstra's Algorithm Last time Transitioning to IPv6 Tunneling Gateways Routing Graph abstraction Link-state routing Dijkstra's Algorithm Distance-vector routing Bellman-Ford Equation 10-1 This time Distance vector link cost

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

CSC 4900 Computer Networks: Routing Algorithms

CSC 4900 Computer Networks: Routing Algorithms CSC 4900 Computer Networks: Routing Algorithms Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

Module 3 Network Layer CS755! 3-1!

Module 3 Network Layer CS755! 3-1! Module 3 Network Layer CS755 3-1 Please note: Most of these slides come from this book. Note their copyright notice below A note on the use of these ppt slides: We re making these slides freely available

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 40 Data and Computer Communications Networks Network Layer NAT, Routing, Link State, Distance Vector Prof. Lina Battestilli Fall 07 Chapter 4 Outline Network Layer: Data Plane 4. Overview of Network

More information

The Internet network layer

The Internet network layer The Internet network layer host, router network layer functions: transport layer: TCP, UDP network layer routing protocols path selection RIP, OSPF, BGP forwarding table link layer physical layer IP protocol

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer IV Dmitri Loguinov Texas A&M University April 12, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter

More information

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet

5.1 introduction 5.5 The SDN control 5.2 routing protocols plane. Control Message 5.3 intra-as routing in Protocol the Internet Chapter 5: outline 5.1 introduction 5.5 The SDN control 5.2 routing protocols plane link state 5.6 ICMP: The Internet distance vector Control Message 5.3 intra-as routing in Protocol the Internet t 5.7

More information

Network Layer: Routing

Network Layer: Routing Network Laer: Routing Instructor: Anirban Mahanti Office: ICT 74 Email: mahanti@cpsc.ucalgar.ca Class Location: ICT Lectures: MWF :00 :0 hours Notes derived Computer Networking: A Top Down Approach Featuring

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.15 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

CSC 8560 Computer Networks: Control Plane

CSC 8560 Computer Networks: Control Plane CSC 8560 Computer Networks: Control Plane Professor Henry Carter Fall 2017 Last Time Subnets provide granularity for address assignment and ease management. What is 192.168.8.0? 192.168.32.0? 192.168.8.0:

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part II Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 06 A-term Some slides are originall from the course materials of the tetbook Computer

More information

CSC 4900 Computer Networks: Routing Protocols

CSC 4900 Computer Networks: Routing Protocols CSC 4900 Computer Networks: Routing Protocols Professor Henry Carter Fall 2017 Last Time Link State (LS) versus Distance Vector (DV) algorithms: What are some of the differences? What is an AS? Why do

More information

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20

CMPE 80N: Introduction to Networking and the Internet. Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 20 CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 0 Announcements Final exam: June 7 th at 4pm. Comprehensive. Photo id required.

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Mecanismes d Echange d Informations Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4.5 Routing algorithms

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 56: Adanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 0 Fall 07 A-term Some slides are originall the course materials of the tetbook Computer Networking:

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

UNIT III THE NETWORK LAYER

UNIT III THE NETWORK LAYER UNIT III THE NETWORK LAYER Introduction-Virtual Circuit and Datagram Networks- Inside a Router- The Internet Protocol (IP): Forwarding and Addressing in the Internet-Routing Algorithms Routing in the Internet-Broadcast

More information

All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 4 Network Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. All

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

COMP211 Chapter 5 Network Layer: The Control Plane

COMP211 Chapter 5 Network Layer: The Control Plane COMP211 Chapter 5 Network Layer: The Control Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 018 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 017 1 Network

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 017 Lecture 16 Network Layer Routing Protocols Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-007

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Network Laer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP IPv6 4. Routing algorithms Link

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms

Announcements. CS 5565 Network Architecture and Protocols. Project 2B. Project 2B. Project 2B: Under the hood. Routing Algorithms Announcements CS 5565 Network Architecture and Protocols Lecture 20 Godmar Back Project 2B due in 2 parts: Apr 29 and May 6 Extra Credit Opportunities: Expand simulator (and your implementation) to introduce

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 14 1 Two notes on routing algorithm Do not believe ou can understand an routing protocol, e.g.,

More information

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017

CS 43: Computer Networks Internet Routing. Kevin Webb Swarthmore College November 16, 2017 CS 43: Computer Networks Internet Routing Kevin Webb Swarthmore College November 16, 2017 1 Hierarchical routing Our routing study thus far - idealization all routers identical network flat not true in

More information

Computer Networks. Instructor: Niklas Carlsson

Computer Networks. Instructor: Niklas Carlsson Computer Networks Instructor: Niklas Carlsson Email: niklas.carlsson@liu.se Notes derived Computer Networking: A Top Down Approach, b Jim Kurose and Keith Ross, Addison-Wesle. The slides are adapted and

More information

KR_4. Strato di rete

KR_4. Strato di rete INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza KR_4. Strato di rete TELECOMUNICAZIONI per Ingegneria Informatica (secondo

More information

Routing. Outline. Algorithms Scalability

Routing. Outline. Algorithms Scalability Routing Outline Algorithms Scalability 1 Internetworking What is internetwork An arbitrary collection of networks interconnected to provide some sort of host-host to packet delivery service A simple internetwork

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

Inter-AS routing and BGP. Network Layer 4-1

Inter-AS routing and BGP. Network Layer 4-1 Inter-AS routing and BGP Network Layer 4-1 Review: intra-as routing v Also known as interior gateway protocols (IGP) v Most common intra-as routing protocols: RIP: Routing Information Protocol, distance

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm

Computer Networking. Rou1ng Algorithms. Rou1ng Algorithms. Interplay between rou1ng, forwarding. routing algorithm Computer Networking Interpla between roung, forwarding routing algorithm local forwarding table header alue output link 000 00 0 00 alue in arriing packet s header 0 Graph abstracon Graph: G = (N,E) u

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Modified form the following All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Resered Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith

More information

Interplay between routing, forwarding

Interplay between routing, forwarding Chapter 4: outline 4. introduction 4. virtual circuit and datagram networks 4. what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 4.5 routing algorithms link state

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Chapter 5 Network Layer: The Control Plane

Chapter 5 Network Layer: The Control Plane Chapter 5 Network Layer: The Control Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you

More information

EECS 3214: Computer Networks Protocols and Applications

EECS 3214: Computer Networks Protocols and Applications EECS 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides

More information

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links

Network Layer: Routing. Routing. Routing protocol. Graph abstraction for routing algorithms: graph nodes are routers graph edges are physical links Network Layer: Routing A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Network Layer: Control Plane 5-2

Network Layer: Control Plane 5-2 Network Laer: Control Plane EECS34 8-03-05 4- Chapter 5: network laer control plane chapter goals: understand principles behind network control plane traditional routing algorithms SDN controlllers Internet

More information

Review. Some slides are in courtesy of J. Kurose and K. Ross

Review. Some slides are in courtesy of J. Kurose and K. Ross Review The Internet (IP) Protocol Datagram format IP fragmentation ICMP: Internet Control Message Protocol NAT: Network Address Translation Routing in the Internet Intra-AS routing: RIP and OSPF Inter-AS

More information

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

Intra-AS Routing. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. Intra-AS Routing Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesle http://xkcd.com/85/ Some materials copright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

More information

The Network Layer Forwarding Tables and Switching Fabric

The Network Layer Forwarding Tables and Switching Fabric The Network Layer Forwarding Tables and Switching Fabric Smith College, CSC 49 February 7, 07 Network Layer Oeriew q Network layer serices Desired serices and tasks Actual serices and tasks q Forwarding

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer V Dmitri Loguinov Texas A&M University April 17, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross Chapter 4:

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Modified form the following All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction

Chapter 4: Network Layer. TDTS06 Computer networks. Subnets. Subnets. Subnets. IP Addressing: introduction hapter 4: Network Layer TDTS06 omputer s Lecture 6: Network layer III Routing in the Internet Jose M. Peña, jospe@ida.liu.se ID/DIT, LiU 2009-09-16 4. 1 Introduction 4.2 Virtual circuit and datagram s

More information

Routing in the Internet

Routing in the Internet Routing in the Internet Daniel Zappala CS 460 Computer Networking Brigham Young University Scaling Routing for the Internet 2/29 scale 200 million destinations - can t store all destinations or all prefixes

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

DATA COMMUNICATOIN NETWORKING

DATA COMMUNICATOIN NETWORKING DATA COMMUNICATOIN NETWORKING Instructor: Ouldooz Baghban Karimi Course Book & Slides: Computer Networking, A Top-Down Approach By: Kurose, Ross Introduction Course Overview Basics of Computer Networks

More information

Chapter 4: Network Layer: Part II

Chapter 4: Network Layer: Part II 4: Network Laer Chapter 4: Network Laer: Part II (last revision 9/04/05. v3) 4. Introduction 4. Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format

More information

Dynamic Routing. The Protocols

Dynamic Routing. The Protocols Dynamic Routing The Protocols Desirable Characteristics of Dynamic Routing Automatically detect and adapt to topology changes Provide optimal routing Scalability Robustness Simplicity Rapid convergence

More information

Network Layer II. Getting IP addresses. DHCP client-server scenario. DHCP client-server scenario. C compiler. You writing assignment 2

Network Layer II. Getting IP addresses. DHCP client-server scenario. DHCP client-server scenario. C compiler. You writing assignment 2 Network Layer II Still chapter 4 in the textbook C compiler You writing assignment 2 Getting IP addresses ARP is the simplest way, which we will barely discuss (now) It s a mapping between Ethernet MAC

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications OMP /9: omputer Networks and pplications Week 9 Network Layer: Routing Reading Guide: hapter 4: Sections 4.5 Network Layer nnouncements v Labs Lab 4 ongestion ontrol Lab 5 Simple Router (start up for ssignment,

More information

CS/ECE 438: Communication Networks Fall Network Layer

CS/ECE 438: Communication Networks Fall Network Layer CS/ECE 438: Communication Networks Fall 2017 4. Network Layer 1 Chapter 4: Network Layer application transport network link physical 2 Chapter 4: Network Layer Kurose & Ross 6 th Edition: Chapter 4: Network

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli

Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Shortest Paths Algorithms and the Internet: The Distributed Bellman Ford Lecturer: Prof. Chiara Petrioli Dipartimento di Informatica Rome University La Sapienza G205: Fundamentals of Computer Engineering

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Slides adopted from original ones provided by the textbook authors. Network

More information

Telecomunicazioni. Docente: Andrea Baiocchi DIET - Stanza 107, 1 piano palazzina P. Piga Via Eudossiana 18

Telecomunicazioni. Docente: Andrea Baiocchi DIET - Stanza 107, 1 piano palazzina P. Piga Via Eudossiana 18 University of Roma La Sapienza Telecomunicazioni Docente: Andrea Baiocchi DIET - Stanza 07, piano palazzina P. Piga Via Eudossiana 8 E-mail: andrea.baiocchi@uniroma.it Corso di Laurea in Ingegneria Gestionale

More information

Broadcast Routing. Multicast. Flooding. In-network duplication. deliver packets from source to all other nodes source duplication is inefficient:

Broadcast Routing. Multicast. Flooding. In-network duplication. deliver packets from source to all other nodes source duplication is inefficient: Broadcast Routing Multicast deliver packets from source to all other nodes source duplication is inefficient: duplicate duplicate creation/transmission duplicate source duplication in-network duplication

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Telecomunicazioni. Docente: Andrea Baiocchi. DIET - Stanza 107, 1 piano palazzina P. Piga Via Eudossiana 18

Telecomunicazioni. Docente: Andrea Baiocchi. DIET - Stanza 107, 1 piano palazzina P. Piga Via Eudossiana 18 University of Roma La Sapiena Telecomunicaioni Docente: Andrea Baiocchi DIET - Stana 07, piano palaina P. Piga Via Eudossiana 8 E-mail: andrea.baiocchi@uniroma.it Corso di Laurea in Ingegneria Gestionale

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2010 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Project #2 Due Thursday, Nov 10 th Homework #5 Due Thursday, Nov 17 th Later this semester: Homework #6 - Presentation

More information

Routing Algorithms : Fundamentals of Computer Networks Bill Nace

Routing Algorithms : Fundamentals of Computer Networks Bill Nace Routing Algorithms 4-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Recall from Last Time Routing Algorithm

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24 EE 586 Communication and Switching Networks (Fall 2010) Lecture 24 October 25, 2010 1-1 Announcements Midterm 1: Mean = 92.2 Stdev = 8 Still grading your programs (sorry about the delay) Network Layer

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

Internetworking Part 2

Internetworking Part 2 CMPE 344 Computer Networks Spring 2012 Internetworking Part 2 Reading: Peterson and Davie, 3.2, 4.1 19/04/2012 1 Aim and Problems Aim: Build networks connecting millions of users around the globe spanning

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer II Dmitri Loguinov Texas A&M University April 3, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter 4:

More information

Inter-Domain Routing: BGP

Inter-Domain Routing: BGP Inter-Domain Routing: BGP Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Inter-Domain Routing Internet is a network of networks Hierarchy

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 17 CMPE 80N Spring'10 1 Announcements Next class: Presentation of fun projects

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 3-bit address space soon to be completel allocated. Additional motivation: Header format helps speed processing/forwarding Header changes to facilitate QoS (service classes) Reduction

More information

Interconexão à Internet. Professor Gabriel Francisco Pistillo Fernandes

Interconexão à Internet. Professor Gabriel Francisco Pistillo Fernandes Interconexão à Internet Professor Gabriel Francisco Pistillo Fernandes gabriel@gabrielfernandes.pro.br gabrielf@uninove.edu.br Os slides a seguir foram traduzidos e adaptados do conteúdo original disponibilizado

More information