Distributed Embedded Systems and realtime networks

Size: px
Start display at page:

Download "Distributed Embedded Systems and realtime networks"

Transcription

1 STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January Abstract Requirements for TT Systems The Time Triggered Protocol Objectives Frame Architecture 2 Marie-agnès Peraldi-Frati- UNSA 1

2 Requirements for communication architecture Time-triggered control system Determinism : All activities are carried out at certain points in time know a priori at design time (based on a globally synchronized time base) Transmission of messages All nodes have a common notion of time Monitoring of external states Fault tolerance : detection monitoring recovery Composability, extensibility Temporal : the temporal control of the communication network is determined predictable and independent from the application. 3 SAE Communication Classes SAE: Society of Automotive Engineers Three Communication System Classes Class A For systems with low speed networks Soft Real-Time systems Class B For systems with high speed networks, but without safety-critical requirements Class C For systems with safety-critical requirements Hard Real-Time systems 4 Marie-agnès Peraldi-Frati- UNSA 2

3 Time-Triggered Protocol TTP: Family of TDMA based, fault tolerant protocols TDMA: Time Division Multiple Access TTP/C: A communication protocol specifically designed for safety-related automotive applications The development of TTP and TTP/C has been led by Prof. Hermann Kopetz, Technical University of Vienna The commercial development of TTP/C tools and products is led by TTTech ( Existing protocols J1850 and CAN meet the bandwidth specification for an SAE Class C protocol, but not the fault tolerant requirements 5 Two TTP Protocols TTP/A (Automotive Class A = Soft Real-Time) A scaled-down version of TTP A cheaper master/slave variant TTP/C (Automotive Class C = Hard Real-Time) A full version of TTP A fault-tolerant distributed variant Bandwith : 500kbit/s, 1Mbit/s, 2Mbit/s, 5Mbit/s, 25Mbit/s 6 Marie-agnès Peraldi-Frati- UNSA 3

4 TTP Protocol Objectives Message transport with low latency and minimal jitter Support for composition Provision of a fault-tolerant membership service Fault-tolerant clock synchronization Distributed redundancy management Minimal overhead Scalability to high data rates efficient operation both on twisted wires and on optical fibers 7 TTP/C Cluster 8 Marie-agnès Peraldi-Frati- UNSA 4

5 Definitions SRU: Smallest Replaceable Unit A single node consisting of a TTP protocol processor and a Host processor Shadow SRU : the unit emits in case of failure of the main node FTUs: Fault Tolerant Units Group of actively replicated units, each unit emits the same information 2 nodes : protection in temporal domain 3 nodes : protection in the value domain CNI: Communication Network Interface The Host programming interface to the Time-triggered network 9 TTP/C Bus Access Scheme 10 Marie-agnès Peraldi-Frati- UNSA 5

6 TDMA: Time Division Multiple Access A distributed static medium access strategy The right to transmit a frame is controlled by the progression of real time Requires that a fault-tolerant global time-base is available to all nodes The channel capacity is statically divided into a number of slots A unique sending slot is assigned to every node A node can only send one frame in every TDMA round If there are no data to send, an empty frame is transmitted The sequence of sending slots within a group of nodes is called a TDMA round The sequence of all different TDMA rounds is called a cluster cycle 11 TTP/C Frame Types: N-Frames I/N Message Mode bit 1 Mode bit 2 4 bit Header Frame type Mode change request Mode bit 3 16 bit Data = Application Data + Explicit C-State Or Data = Application Data 12 Marie-agnès Peraldi-Frati- UNSA 6

7 TTP/C Frame types: Cold start frame I/N Message Mode bit 1 4 bit Header Mode bit 2 Mode bit 3 C-State: Controller state Current clock Sender slot Current mode 16 bit 13 Continuous state agreement : CRC Calculation C-State is not emitted in each message The CRC at the sender is calculated over the message contents concatenated with the sender C-State At the receiver side the CRC is recalculated with the receiver C-State. If CRC are different, the message has been corrupted or there is a disagreement on C-States. Message must be discarded 14 Marie-agnès Peraldi-Frati- UNSA 7

8 Continuous state agreement : CRC Calculation CRC calculation at sender Header Data Field C-State of Sender CRC Message on the network Header Data Field CRC CRC calculation at receiver Header Data Field C-State of Receiver CRC 15 TTP/C Frame validity To be acceptable by the receiver node : A frame must be valid according to the MEDL table of the receiver i.e. Correct slot Correct length And correct CRC sender side = CRC receiver side 16 Marie-agnès Peraldi-Frati- UNSA 8

9 TTP/C frame transmission phases Slot duration for the i node Slot duration for the i +1 node PRP idle PSP TP PRP idle PSP TP PRP idle PSP slot i in the «TDMA round» slot i+1 in the «TDMA round» AT Action Time IFG Inter Frame Gap PSP (Pre Send Phase) TP (Transmission Phase) PRP (Post Receive Phase) 17 TTP/C : C-State C-State is a data structure generated by each node and transmitted during the slot node. C-State of a node N may contains : Clock of the N node (master clock only) Slot number associated with the N node in the current TDMA round Demand for a mode switching at the next cluster cycle Local vector of the Membership. 18 Marie-agnès Peraldi-Frati- UNSA 9

10 Membership The node membership vector contains as many bits as there are nodes in a cluster each node is assigned to a specific bit position True indicates that the node was operating successfully during the last sending slot False indicates that the node was not operating successfully The position bit of the bit membership indicates the position point for the node to send or receive. Update every SRU slot after a CRC checking on the received messages (PRP phase). The delay for updating all membership information is at most one TDMA round Consequence : a node is considered operational or not until its following membership point in the next TDMA round 19 Membership A node which doesn t receive any correct message assumes that the sending node has crashed and it eliminates the sending node from its membership vector If however the conclusion is different for the other nodes, from this moment two cliques have formed that cannot communicates with each other because they don t have the same C-State In such conflict, TTP ensure that the majority view wins, and the nodes with the failed input port is eliminated from the membership. 20 Marie-agnès Peraldi-Frati- UNSA 10

11 TTP/C System Architecture 21 TTP Node Configuration CNI: Communication Network Interface Dual Port RAM TTP/C Controller Host Processor «global clock tick» Protocol Processor Bus Guardian ROM TTP/C Control Data (MEDL) Driver Driver 22 Marie-agnès Peraldi-Frati- UNSA 11

12 Bus guardian Open the bus access at determined slots Slots are specified in the MEDL Protection from desynchronized units Protection from babbling idiot unit 23 Clock synchronization Not managed with additional traffic A minimum of 4 Master Clocks (MC) nodes Maximum jitter between MC is 10-4 s/s Each node compares its clock with the one of the sender node (if it is a master clock node) If the difference is greater than a precision, the reception node disconnect from the network Otherwise, the reception node updates its clock and the associated data with the a fault tolerant synchronization algorithm. 24 Marie-agnès Peraldi-Frati- UNSA 12

13 Conceptual Layers of TTP/C Host Layer FTU Layer RM Layer Application Software in Host FTU Membership Permanent value management Redundancy Management FTU CNI Basic CNI SRU Layer Data Link/Physical Layer SRU Membership Clock Synchronization Media Access: TDMA 25 The Basic CNI Structure Updated by TTP Controller Status Registers Global Internal Times SRU-Time (part of C state) Dual Port Ram Control Registers Watchdog Timeout Register Updated by Host MEDL (part of C state) Membership (part of C state) Status Information Mode Change Request Reconfiguration Request External Rate Correction Message Area 26 Marie-agnès Peraldi-Frati- UNSA 13

14 Communication Network Interface - CNI CNI : Dual Port RAM + registers Consistent Data Transfert : Arbitration of the DPRAM access Host may derive read access interval from the global time base and the MEDL Host may access the RAM arbitrarily to read/modify the communication objects. In that case a Non Blocking Write Protocol is provided to ensure integrity of data. The TTP controller is never delayed. 27 The Message Descriptor List (MEDL) MEDL SRU-Time message time Address Attributes D L I A Message Area Message D: Direction input/output message L: Length of message I: Initialization Initialization or normal message A: Additional parameter protective information concerning mode change The MEDL s of a cluster are generated automatically by a cluster compiler 28 Marie-agnès Peraldi-Frati- UNSA 14

15 Operating Modes Different operating modes require different message schedules Accelerating vs. cruise might need different information Operation vs. diagnosis need emphasis on different aspects of the vehicle Failure recovery might need access to different message traffic TTP solution: use multiple schedules Precompute a different MeDL for every possible situation Currently used on TTP/A; but could be used on TTP/C with special care ) 29 Fault-tolerant Node 30 Marie-agnès Peraldi-Frati- UNSA 15

16 Conclusion : TTP/C Properties Static Scheduling Guaranteed delivery times with known variance (jitter) Clock Synchronization All nodes synchronized to within one microsecond each TDMA round Composability TTP/C nodes are temporally composable as well as functionally composable Fail Silent The bus guardians ensure transmission only during the correct timeslot in all cases Membership Every node s membership is available during each TDMA round 31 Advantages/Disadvantages of TTP Advantages Simple protocol to implement Deterministic response time No wasted time for Master polling message Disadvantages Wasted bandwidth when some nodes are idle Fixed network size after installation 32 Marie-agnès Peraldi-Frati- UNSA 16

17 TTP/TTA References Real-Time Systems Research Group at the Vienna University of Technology TTA Group Forum (the open industry consortium for time-triggered systems today) TTTech Computertechnik AG supplier of technology in the field of time-triggered systems and TTP (Time-Triggered Protocol) Informations on these slides are extracted from : - [1] H. Kopetz course and from its textbook: Real-Time Systems Design Principles for Distributed Embedded Applications Chapter 8: The Time-Triggered Protocol Chapter 14: The Time-Triggered Architecture - [2] P. Koopman Course ( -[3] Slides TTPtech ( ) [4] Course F. Simonot-Lion, TDMA 34 Marie-agnès Peraldi-Frati- UNSA 17

16 Time Triggered Protocol

16 Time Triggered Protocol 16 Time Triggered Protocol [TTtech04] (TTP) 18-549 Distributed Embedded Systems Philip Koopman October 25, 2004 Significant material drawn from: Prof. H. Kopetz [Kopetz] TTP Specification v 1.1 [TTTech]

More information

A Fault Management Protocol for TTP/C

A Fault Management Protocol for TTP/C A Fault Management Protocol for TTP/C Juan R. Pimentel Teodoro Sacristan Kettering University Dept. Ingenieria y Arquitecturas Telematicas 1700 W. Third Ave. Polytechnic University of Madrid Flint, Michigan

More information

Field buses (part 2): time triggered protocols

Field buses (part 2): time triggered protocols Field buses (part 2): time triggered protocols Nico Fritz Universität des Saarlandes Embedded Systems 2002/2003 (c) Daniel Kästner. 1 CAN and LIN LIN CAN Type Arbitration Transfer rate Serial communication

More information

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded

Systems. Roland Kammerer. 10. November Institute of Computer Engineering Vienna University of Technology. Communication Protocols for Embedded Communication Roland Institute of Computer Engineering Vienna University of Technology 10. November 2010 Overview 1. Definition of a protocol 2. Protocol properties 3. Basic Principles 4. system communication

More information

FlexRay International Workshop. Protocol Overview

FlexRay International Workshop. Protocol Overview FlexRay International Workshop 4 th March 2003 Detroit Protocol Overview Dr. Christopher Temple - Motorola FlexRay principles Provide a communication infrastructure for future generation highspeed control

More information

Various Emerging Time- Triggered Protocols for Driveby-Wire

Various Emerging Time- Triggered Protocols for Driveby-Wire Various Emerging Time- Triggered for Driveby-Wire Applications Syed Masud Mahmud, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 smahmud@eng.wayne.edu January 11, 2007

More information

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao Chapter 39: Concepts of Time-Triggered Communication Wenbo Qiao Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic

More information

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems

Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Developing deterministic networking technology for railway applications using TTEthernet software-based end systems Project n 100021 Astrit Ademaj, TTTech Computertechnik AG Outline GENESYS requirements

More information

Communication in Avionics

Communication in Avionics Communication in Avionics 1 Outline Basic Overview Communication architectures Event Triggered Time Triggered Communication architecture examples Case Study: How Data Communication Affects Scheduling 2

More information

For the Literature Review portion of our project, the following represent three key papers:

For the Literature Review portion of our project, the following represent three key papers: The Modeling and Simulation of an Automotive Braking System Using the TTP/C Protocol Robert France and Howard Curtis (EE382C Embedded Software Systems) ***************************** Abstract: TTP/C, which

More information

Dependable Computer Systems

Dependable Computer Systems Dependable Computer Systems Part 6b: System Aspects Contents Synchronous vs. Asynchronous Systems Consensus Fault-tolerance by self-stabilization Examples Time-Triggered Ethernet (FT Clock Synchronization)

More information

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

Automotive and highly dependable Networks!

Automotive and highly dependable Networks! Automotive and highly dependable Networks H. Kopetz, TU Wien (see references in the introduction) Excellent surveys: TTP: Hermann Kopetz, Günther Bauer: "The Time-Triggered Architecture" http://www.tttech.com/technology/docs/history/hk_2002-10-tta.pdf

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

CORBA in the Time-Triggered Architecture

CORBA in the Time-Triggered Architecture 1 CORBA in the Time-Triggered Architecture H. Kopetz TU Wien July 2003 Outline 2 Hard Real-Time Computing Event and State Messages The Time Triggered Architecture The Marriage of CORBA with the TTA Conclusion

More information

A Comparison of TTP/C and FlexRay

A Comparison of TTP/C and FlexRay 1 A Comparison of TTP/C and FlexRay Research Report 10/2001 5 10 H. Kopetz hk@vmars.tuwien.ac.at Institut für Technische Informatik Technische Universität Wien, Austria May 9, 2001 15 20 25 30 Abstract:

More information

subsystem Host Communication Subsystem TTP/C Bus Data Data TTP/C Firmware ROM Code/ Static Host CPU Application Tasks Host OS RAM Dyn.

subsystem Host Communication Subsystem TTP/C Bus Data Data TTP/C Firmware ROM Code/ Static Host CPU Application Tasks Host OS RAM Dyn. A Prototype Implementation of a TTP/C Controller Hermann Kopetz, Rene Hexel, Andreas Kruger, Dietmar Millinger, Roman Nossal, Andreas Steininger, Christopher Temple, Thomas Fuhrer, Roman Pallierer, Markus

More information

Evaluation of numerical bus systems used in rocket engine test facilities

Evaluation of numerical bus systems used in rocket engine test facilities www.dlr.de Chart 1 > Numerical bus systems > V. Schmidt 8971_151277.pptx > 13.06.2013 Evaluation of numerical bus systems used in rocket engine test facilities Volker Schmidt Pavel Georgiev Harald Horn

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

FlexRay and Automotive Networking Future

FlexRay and Automotive Networking Future FlexRay and Automotive Networking Future Chris Quigley Warwick Control Technologies Presentation Overview High Speed and High Integrity Networking Why FlexRay? CAN Problems Time Triggered Network Principles

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Deterministic Ethernet & Unified Networking

Deterministic Ethernet & Unified Networking Deterministic Ethernet & Unified Networking Never bet against Ethernet Mirko Jakovljevic mirko.jakovljevic@tttech.com www.tttech.com Copyright TTTech Computertechnik AG. All rights reserved. About TTTech

More information

TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12.

TU Wien. Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet. H Kopetz TU Wien December H. Kopetz 12. TU Wien 1 Shortened by Hermann Härtig The Rationale for Time-Triggered (TT) Ethernet H Kopetz TU Wien December 2008 Properties of a Successful Protocol 2 A successful real-time protocol must have the following

More information

A CAN-Based Architecture for Highly Reliable Communication Systems

A CAN-Based Architecture for Highly Reliable Communication Systems A CAN-Based Architecture for Highly Reliable Communication Systems H. Hilmer Prof. Dr.-Ing. H.-D. Kochs Gerhard-Mercator-Universität Duisburg, Germany E. Dittmar ABB Network Control and Protection, Ladenburg,

More information

Communication (III) Kai Huang

Communication (III) Kai Huang Communication (III) Kai Huang Ethernet Turns 40 12/17/2013 Kai.Huang@tum 2 Outline Bus basics Multiple Master Bus Network-on-Chip Examples o SPI o CAN o FlexRay o Ethernet Basic OSI model Real-Time Ethernet

More information

Protocols for Aerospace Control Systems A Comparison of AFDX, ARINC 429, CAN, and TTP

Protocols for Aerospace Control Systems A Comparison of AFDX, ARINC 429, CAN, and TTP Protocols for Aerospace Controls Page 1 Protocols for Aerospace Control Systems A Comparison of AFDX, ARINC 429, CAN, and TTP A number of new and existing data buses are being proposed for use by aircraft

More information

Applying CORBA to embedded time-triggered real-time systems. S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA

Applying CORBA to embedded time-triggered real-time systems. S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA Applying CORBA to embedded time-triggered real-time systems S. Aslam-Mir (Sam) Principal CORBA Architect Vertel USA sam@vertel.com Synopsis! Motivation Time Triggered vs Event Triggered! Real-time CORBA

More information

Real-Time Systems. Real-Time Communication. Hermann Härtig, Jork Löser (following Kopetz, Liu, Almeida, Jon Currey, Schönberg)

Real-Time Systems. Real-Time Communication. Hermann Härtig, Jork Löser (following Kopetz, Liu, Almeida, Jon Currey, Schönberg) Real-Time Systems Real-Time Communication Hermann Härtig, Jork Löser (following Kopetz, Liu, Almeida, Jon Currey, Schönberg) Contents General Concepts IO Busses: PCI Networks as schedulable resources:

More information

The Time-Triggered Architecture

The Time-Triggered Architecture The Time-Triggered Architecture HERMANN KOPETZ, FELLOW, IEEE AND GÜNTHER BAUER Invited Paper The time-triggered architecture (TTA) provides a computing infrastructure for the design and implementation

More information

DISTRIBUTED REAL-TIME SYSTEMS

DISTRIBUTED REAL-TIME SYSTEMS Distributed Systems Fö 11/12-1 Distributed Systems Fö 11/12-2 DISTRIBUTED REAL-TIME SYSTEMS What is a Real-Time System? 1. What is a Real-Time System? 2. Distributed Real Time Systems 3. Predictability

More information

Content. Deterministic Access Polling(1) Master-Slave principles: Introduction Layer 2: Media Access Control

Content. Deterministic Access Polling(1) Master-Slave principles: Introduction Layer 2: Media Access Control Content Introduction Layer 2: Frames Error Handling Media Access Control General approaches and terms Network Topologies Media Access Principles (Random) Aloha Principles CSMA, CSMA/CD, CSMA / CA Media

More information

Real-Time (Paradigms) (47)

Real-Time (Paradigms) (47) Real-Time (Paradigms) (47) Memory: Memory Access Protocols Tasks competing for exclusive memory access (critical sections, semaphores) become interdependent, a common phenomenon especially in distributed

More information

A Time-Triggered Ethernet (TTE) Switch

A Time-Triggered Ethernet (TTE) Switch A Time-Triggered Ethernet () Switch Klaus Steinhammer Petr Grillinger Astrit Ademaj Hermann Kopetz Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria E-mail:{klaus,grilling,ademaj,hk}@vmars.tuwien.ac.at

More information

ESCAN An Open Source, High Bandwidth, Event Scheduled Controller Area Network

ESCAN An Open Source, High Bandwidth, Event Scheduled Controller Area Network ESCAN An Open Source, High Bandwidth, Event Scheduled Controller Area Network A. Williams, C. Quigley, R. McLaughlin, Warwick Control Event Scheduled CAN (ESCAN) is an open source, scheduling protocol

More information

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 2: Data link layer specification

ISO INTERNATIONAL STANDARD. Road vehicles FlexRay communications system Part 2: Data link layer specification INTERNATIONAL STANDARD ISO 17458-2 First edition 2013-02-01 Road vehicles FlexRay communications system Part 2: Data link layer specification Véhicules routiers Système de communications FlexRay Partie

More information

An Introduction to TTEthernet

An Introduction to TTEthernet An Introduction to thernet TU Vienna, Apr/26, 2013 Guest Lecture in Deterministic Networking (DetNet) Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com Copyright TTTech Computertechnik

More information

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems

Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems Deterministic Ethernet as Reliable Communication Infrastructure for Distributed Dependable Systems DREAM Seminar UC Berkeley, January 21 st, 2014 Wilfried Steiner, Corporate Scientist wilfried.steiner@tttech.com

More information

Comparison of In-Vehicle Communication Protocols for Critical Applications

Comparison of In-Vehicle Communication Protocols for Critical Applications IVSS-2005-ARC-03 Comparison of In-Vehicle Communication Protocols for Critical Applications Edward Robert Gundlach and Syed Masud Mahmud Electrical and Computer Engineering Department, Wayne State University,

More information

Communication Networks for the Next-Generation Vehicles

Communication Networks for the Next-Generation Vehicles Communication Networks for the, Ph.D. Electrical and Computer Engg. Dept. Wayne State University Detroit MI 48202 (313) 577-3855, smahmud@eng.wayne.edu January 13, 2005 4 th Annual Winter Workshop U.S.

More information

Theory, Concepts and Applications

Theory, Concepts and Applications Theory, Concepts and Applications ETR 2015 Rennes August, the 27 th Jean-Baptiste Chaudron jean-baptiste.chaudron@tttech.com Copyright TTTech Computertechnik AG. All rights reserved. Page 1 AGENDA Introduction

More information

Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized Embedded Systems

Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized Embedded Systems Fault Tolerance Tradeoffs in Moving from Decentralized to Centralized Embedded Systems Jennifer Morris ECE Department Carnegie Mellon University jenmorris@cmu.edu Daniel Kroening CS Department Carnegie

More information

Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

More information

The Time-Triggered Ethernet (TTE) Design

The Time-Triggered Ethernet (TTE) Design The Time-Triggered Ethernet (TTE) Design Hermann Kopetz Astrit Ademaj Petr Grillinger Klaus Steinhammer Vienna University of Technology Real-Time Systems Group Treitlstr. 3/182-1, A-1040 Vienna, Austria

More information

Fault Effects in FlexRay-Based Networks with Hybrid Topology

Fault Effects in FlexRay-Based Networks with Hybrid Topology The Third International Conference on Availability, Reliability and Security Fault Effects in -Based Networks with Hybrid Topology Mehdi Dehbashi, Vahid Lari, Seyed Ghassem Miremadi, Mohammad Shokrollah-Shirazi

More information

Scheduling Mechanisms for SpaceWire Networks

Scheduling Mechanisms for SpaceWire Networks Scheduling Mechanisms for SpaceWire Networks Ilya Korobkov, Elena Podgornova, Dmitry Raszhivin, Valentin Olenev, Irina Lavrovskaya {ilya.korobkov, alena.podgornova, dmitry.raszhivin, valentin.olenev, irina.lavrovskaya}@guap.ru

More information

FlexRay The Hardware View

FlexRay The Hardware View A White Paper Presented by IPextreme FlexRay The Hardware View Stefan Schmechtig / Jens Kjelsbak February 2006 FlexRay is an upcoming networking standard being established to raise the data rate, reliability,

More information

Smart Transducer Networks. Embedded Systems Engineering Armin Wasicek

Smart Transducer Networks. Embedded Systems Engineering Armin Wasicek Smart Transducer Networks Embedded Systems Engineering Armin Wasicek Overview Motivation & Design Principles TTP/A Fieldbus Protocol Implementation Requirements Smart Transducer Interface Standard Conclusion

More information

Smart Transducer Networks

Smart Transducer Networks Smart Transducer Networks Wilfried Elmenreich Bernhard Huber Implementation Requirements 2 Definition A smart transducer is the integration of an analog or digital sensor or actuator element, a processing

More information

Embedded Software Engineering

Embedded Software Engineering Embedded Software Engineering 3 Unit Course, Spring 2002 EECS Department, UC Berkeley Christoph Kirsch www.eecs.berkeley.edu/~fresco/giotto/course-2002 It s significant $4 billion development effort >

More information

An Improved Scheduling Technique for Time-Triggered Embedded Systems

An Improved Scheduling Technique for Time-Triggered Embedded Systems An Improved Scheduling Technique for Time-Triggered Embedded Systems Abstract In this paper we present an improved scheduling technique for the synthesis of time-triggered embedded systems. Our system

More information

In Vehicle Networking : a Survey and Look Forward

In Vehicle Networking : a Survey and Look Forward In Vehicle Networking : a Survey and Look Forward Nicolas Navet Workshop on Specialized Networks, ETFA09, Palma, Spain - 25/09/2009 Complexity Mastered Outline 1. Architecture of Automotive Embedded Systems

More information

Hardware platform architecture

Hardware platform architecture Interfacing 1 Hardware platform architecture Fall 2005 2 Bus Means for transferring bits wired or wireless Bus Connectivity scheme (serial, etc.) Protocol Ports Single function (data bus) or complex protocol

More information

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Gonzalo Carvajal 1,2 and Sebastian Fischmeister 1 1 University of Waterloo, ON, Canada 2 Universidad de Concepcion,

More information

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren Lecture 9: Bridging CSE 123: Computer Networks Alex C. Snoeren Lecture 9 Overview Finishing up media access Ethernet Contention-free methods (rings) Moving beyond one wire Link technologies have limits

More information

Sharif University of Technology, Tehran, Iran

Sharif University of Technology, Tehran, Iran EVALUATION OF BABBLING IDIOT FAILURES IN FLEXRAY-BASED NETWORKES * Vahid Lari, Mehdi Dehbashi, Seyed Ghassem Miremadi, Mojtaba Amiri Sharif University of Technology, Tehran, Iran Abstract: This paper evaluates

More information

A Comparison of LIN and TTP/A

A Comparison of LIN and TTP/A 1 Research Report 4/2000 Institut für Technische Informatik, TU Wien, Austria A Comparison of LIN and TTP/A H. Kopetz W. Elmenreich C. Mack hk@vmars.tuwien.ac.at Institut für Technische Informatik Technische

More information

X-by-wire systems and time-triggered protocols

X-by-wire systems and time-triggered protocols 1(43) X-by-wire systems and 2(43) ABSTRACT Electronic systems in vehicles are becoming more and more common. X-by-wire systems are electronic systems without mechanical backup where the x stands for safety

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

An Introduction to FlexRay as an Industrial Network

An Introduction to FlexRay as an Industrial Network An Introduction to FlexRay as an Industrial Network Robert Shaw, Brendan Jackman Automotive Control Group, Waterford Institute of Technology, Waterford, Ireland. E-mail: rshaw@wit.ie, bjackman@wit.ie Website:

More information

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols Lecture 2. Basics of networking in automotive systems: Network topologies, communication principles and standardised protocols Objectives Introduce basic concepts used in building networks for automotive

More information

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties

Outline. Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Outline Introduction to Networked Embedded Systems - Embedded systems Networked embedded systems Embedded Internet - Network properties Layered Network Architectures - OSI framework descriptions of layers

More information

Embedded Systems. 8. Communication

Embedded Systems. 8. Communication Embedded Systems 8. Communication Lothar Thiele 8-1 Contents of Course 1. Embedded Systems Introduction 2. Software Introduction 7. System Components 10. Models 3. Real-Time Models 4. Periodic/Aperiodic

More information

Introduction to the Distributed Real-Time System

Introduction to the Distributed Real-Time System Introduction to the Distributed Real-Time System Insup Lee Department of Computer and Information Science School of Engineering and Applied Science University of Pennsylvania www.cis.upenn.edu/~lee/ CIS

More information

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien Operating Systems, Concurrency and Time real-time communication and CAN Johan Lukkien (Courtesy: Damir Isovic, Reinder Bril) Question Which requirements to communication arise from real-time systems? How

More information

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory

Commercial Real-time Operating Systems An Introduction. Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory Commercial Real-time Operating Systems An Introduction Swaminathan Sivasubramanian Dependable Computing & Networking Laboratory swamis@iastate.edu Outline Introduction RTOS Issues and functionalities LynxOS

More information

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols

Adaptors Communicating. Link Layer: Introduction. Parity Checking. Error Detection. Multiple Access Links and Protocols Link Layer: Introduction daptors ommunicating hosts and routers are nodes links connect nodes wired links wireless links layer-2 packet is a frame, encapsulates datagram datagram controller sending host

More information

CSE/EE 461 Section 2

CSE/EE 461 Section 2 CSE/EE 461 Section 2 Latency in a store-and-forward network 4ms, 10MB/s B How long does it take to send a 2kB packet from to B? 2ms, 10MB/s C 2ms, 10MB/s B What if it has to pass through a node C? Plan

More information

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN?

Today. Last Time. Motivation. CAN Bus. More about CAN. What is CAN? Embedded networks Characteristics Requirements Simple embedded LANs Bit banged SPI I2C LIN Ethernet Last Time CAN Bus Intro Low-level stuff Frame types Arbitration Filtering Higher-level protocols Today

More information

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang

Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application. Ling Wang Networked Control Systems for Manufacturing: Parameterization, Differentiation, Evaluation, and Application Ling Wang ling.wang2@wayne.edu Outline Introduction Parameterization Differentiation Evaluation

More information

Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems

Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems Schedulability-Driven Communication Synthesis for Time Triggered Embedded Systems Paul Pop, Petru Eles, and Zebo Peng Dept. of Computer and Information Science, Linköping University, Sweden {paupo, petel,

More information

FlexRay Requirements Specification

FlexRay Requirements Specification FlexRay - Requirements Specification FlexRay Requirements Specification Authors: Ralf Belschner 2, Josef Berwanger 1, Christian Ebner 1, Harald Eisele 4, Sven Fluhrer 2, Thomas Forest 4, Thomas Führer

More information

Institutionen för datavetenskap Department of Computer and Information Science

Institutionen för datavetenskap Department of Computer and Information Science Institutionen för datavetenskap Department of Computer and Information Science Final thesis A SystemC simulator for the dynamic segment of the FlexRay protocol by Venkata Rama Krishna Reddy Podduturi LIU-IDA/LITH-EX-A--/9--SE

More information

Flexray Communication Controller for Intra-Vehicular Communication and Its Realization in FPGA

Flexray Communication Controller for Intra-Vehicular Communication and Its Realization in FPGA 2016 IJSRSET Volume 2 Issue 1 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Flexray Communication Controller for Intra-Vehicular Communication and Its Realization

More information

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems

Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Data Acquisition in High Speed Ethernet & Fibre Channel Avionics Systems Troy Troshynski Avionics Interface Technologies (A Division of Teradyne) Omaha, NE U.S.A. troyt@aviftech.com http://www.aviftech.com/aggregator

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

1 November Basics of In-Vehicle Networking (IVN) Protocols

1 November Basics of In-Vehicle Networking (IVN) Protocols 1 November 2011 Basics of In-Vehicle Networking (IVN) Protocols Available IVN Protocols There are many Bus Systems used in a car but... "It is becoming clear that regardless of carmaker, new vehicles will

More information

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21!

CSE 123: Computer Networks Alex C. Snoeren. HW 2 due Thursday 10/21! CSE 123: Computer Networks Alex C. Snoeren HW 2 due Thursday 10/21! Finishing up media access Contention-free methods (rings) Moving beyond one wire Link technologies have limits on physical distance Also

More information

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과. Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과 ahn@venus.uos.ac.kr Data Link Layer Goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Reducing SpaceWire Time-code Jitter

Reducing SpaceWire Time-code Jitter Reducing SpaceWire Time-code Jitter Barry M Cook 4Links Limited The Mansion, Bletchley Park, Milton Keynes, MK3 6ZP, UK Email: barry@4links.co.uk INTRODUCTION Standards ISO/IEC 14575[1] and IEEE 1355[2]

More information

Additional Slides (informative)

Additional Slides (informative) Automation Systems Discrete Event Control Systems and Networked Automation Systems Additional Slides (informative) Application Automotive Networks (LIN, CAN, FlexRay, MOST) Vorlesungstitel Vehicle Bus

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

Real-Time Communication

Real-Time Communication TU Wien 1 Real-Time Communication Importance of Real-Time Communication 2 For the following reasons, distributed systems are the dominant architectural choice for many real-time applications: Composability:

More information

Page 1. Real-Time Communication. TU Wien. Outline. Example of the Networks onboar a Car. Requirements on RT Communication Protocols

Page 1. Real-Time Communication. TU Wien. Outline. Example of the Networks onboar a Car. Requirements on RT Communication Protocols TU Wien utline eal-time Communication Flow Control ET versus TT Protocols Protocol verview The Time-Triggered Protocols Example of the Networks onboar a Car equirements on T Communication Protocols 4 Small

More information

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007 TU Wien 1 Fault Isolation and Error Containment in the TT-SoC H. Kopetz TU Wien July 2007 This is joint work with C. El.Salloum, B.Huber and R.Obermaisser Outline 2 Introduction The Concept of a Distributed

More information

Evaluation of numerical bus systems used in rocket engine test facilities

Evaluation of numerical bus systems used in rocket engine test facilities Evaluation of numerical bus systems used in rocket engine test facilities Schmidt, Volker Georgiev, Pavel Horn, Harald Neumann, Heike Hätte, Inna Fricke, Matthias 1 Introduction Currently measurement,

More information

Local Area Networks (LANs) SMU CSE 5344 /

Local Area Networks (LANs) SMU CSE 5344 / Local Area Networks (LANs) SMU CSE 5344 / 7344 1 LAN/MAN Technology Factors Topology Transmission Medium Medium Access Control Techniques SMU CSE 5344 / 7344 2 Topologies Topology: the shape of a communication

More information

Redes de Computadores. Medium Access Control

Redes de Computadores. Medium Access Control Redes de Computadores Medium Access Control Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto 1 » How to control the access of computers to a communication medium?» What is the ideal Medium

More information

Trends in Automotive Communication Systems

Trends in Automotive Communication Systems Trends in Automotive Communication Systems NICOLAS NAVET, YEQIONG SONG, FRANÇOISE SIMONOT-LION, AND CÉDRIC WILWERT Invited Paper The use of networks for communications between the electronic control units

More information

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control

Message, Segment, Packet, and Frame Link-layer services Encoding, framing, error detection, transmission control Error correction and flow control Links EE 122: Intro to Communication Networks Fall 2007 (WF 4-5:30 in Cory 277) Vern Paxson TAs: Lisa Fowler, Daniel Killebrew & Jorge Ortiz http://inst.eecs.berkeley.edu/~ee122/ Announcements Homework

More information

A journey into time-triggered communication protocols with a focus on Ethernet TSN

A journey into time-triggered communication protocols with a focus on Ethernet TSN A journey into time-triggered communication protocols with a focus on Ethernet TSN Nicolas NAVET, University of Luxembourg http://labex-digicosme.fr/gt+ovstr Working Group Paris June 11, 2018 Outline 1.

More information

CSMA based Medium Access Control for Wireless Sensor Network

CSMA based Medium Access Control for Wireless Sensor Network CSMA based Medium Access Control for Wireless Sensor Network H. Hoang, Halmstad University Abstract Wireless sensor networks bring many challenges on implementation of Medium Access Control protocols because

More information

CS 428/528 Computer Networks Lecture 01. Yan Wang

CS 428/528 Computer Networks Lecture 01. Yan Wang 1 CS 428/528 Computer Lecture 01 Yan Wang 2 Motivation: Why bother? Explosive growth of networks 1989, 100,000 hosts on the Internet Distributed Applications and Systems E-mail, WWW, multimedia, distributed

More information

A Time-Triggered Network-on-Chip

A Time-Triggered Network-on-Chip A Time-Triggered Network-on-Chip Abstract Martin Schoeberl Institute of Computer Engineering Vienna University of Technology, Austria mschoebe@mail.tuwien.ac.at In this paper we propose a time-triggered

More information

Presented by: Murad Kaplan

Presented by: Murad Kaplan Presented by: Murad Kaplan Introduction. Design of SCP-MAC. Lower Bound of Energy Performance with Periodic Traffic. Protocol Implementation. Experimental Evaluation. Related Work. 2 Energy is a critical

More information

Reaching for the sky with certified and safe solutions for the aerospace market

Reaching for the sky with certified and safe solutions for the aerospace market www.tttech.com/aerospace Reaching for the sky with certified and safe solutions for the aerospace market More about our certified and safe products inside Advancing safe technologies, improving human lives

More information

Real-Time Communications. LS 12, TU Dortmund

Real-Time Communications. LS 12, TU Dortmund Real-Time Communications Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 20, Jan., 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 29 Random Access no access control; requires low medium utilization Prof.

More information

Goals of Today s Lecture. Adaptors Communicating

Goals of Today s Lecture. Adaptors Communicating Goals of Today s Lecture EE 122: Link Layer Ion Stoica TAs: Junda Liu, DK Moon, David Zats http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues

More information

A Study of Time Triggered Systems

A Study of Time Triggered Systems A Study of Time Triggered Systems John Gittings Advisor: Dr. J. Zalewski FGCU Ft. Myers, FL 33965 December 11, 2009 Table of Contents 1. Introduction to time-triggered systems... 4 2. Problem Description

More information

Component-Based Design of Large Distributed Real-Time Systems

Component-Based Design of Large Distributed Real-Time Systems Component-Based Design of Large Distributed Real-Time Systems H. Kopetz Technical University of Vienna, Austria hk@vmars.tuwien.ac.at Abstract: Large distributed real-time systems can be built effectively

More information

Design For High Performance Flexray Protocol For Fpga Based System

Design For High Performance Flexray Protocol For Fpga Based System IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) e-issn: 2319 4200, p-issn No. : 2319 4197 PP 83-88 www.iosrjournals.org Design For High Performance Flexray Protocol For Fpga Based System E. Singaravelan

More information