Problem Set 7 Due: Start of Class, November 2

Size: px
Start display at page:

Download "Problem Set 7 Due: Start of Class, November 2"

Transcription

1 CS242 Computer Networks Handout # 14 Randy Shull October 26, 2017 Wellesley College Problem Set 7 Due: Start of Class, November 2 Reading: Kurose & Ross, Sections 3.6, 3.7, 3.8 Wireshark Lab [26] In these exercises, we ll investigate the IP protocol, focusing on the IP datagram. We ll do so by analyzing a trace of IP datagrams sent and received by an execution of the traceroute program. We ll investigate the various fields in the IP datagram, and study IP fragmentation in detail. In order to generate a trace of IP datagrams for this lab, we ll use the traceroute program to send datagrams of different sizes towards some destination, X. Recall that traceroute operates by first sending one or more datagrams with the time-to-live (TTL) field in the IP header set to 1; it then sends a series of one or more datagrams towards the same destination with a TTL value of 2; it then sends a series of datagrams towards the same destination with a TTL value of 3; and so on. A router must decrement the TTL in each received datagram by 1 (actually, RFC 791 says that the router must decrement the TTL by at least one). If the TTL reaches 0, the router returns an ICMP message (type 11 - TTL-exceeded) to the sending host. As a result of this behavior, a datagram with a TTL of 1 (sent by the host executing traceroute) will cause the router one hop away from the sender to send an ICMP TTL-exceeded message back to the sender; the datagram sent with a TTL of 2 will cause the router two hops away to send an ICMP message back to the sender; the datagram sent with a TTL of 3 will cause the router three hops away to send an ICMP message back to the sender; and so on. In this manner, the host executing traceroute can learn the identities of the routers between itself and destination X by looking at the source IP addresses in the datagrams containing the ICMP TTL-exceeded messages. We ll want to run traceroute and have it send datagrams of various lengths. With the Unix/MacOS traceroute command, the size of the UDP datagram sent towards the destination can be explicitly set by indicating the number of bytes in the datagram; this value is entered in the traceroute command line immediately after the name or address of the 1

2 destination. For example, to send traceroute datagrams of 2000 bytes towards gaia.cs.umass.edu, the command would be: traceroute gaia.cs.umass.edu 2000 Start up Wireshark and begin packet capture (Capture ->Start) and then press OK on the Wireshark Packet Capture Options screen (we ll not need to select any options here). Enter three traceroute commands, one with a length of 56 bytes and one with a length of 2000 bytes. Stop Wireshark tracing. Exercise 1 [7]: Traceroute UDP packets Start with the 56 byte trace. You should be able to see the UDP segment sent by your computer and the ICMP TTL-exceeded messages returned to your computer by the intermediate routers. Whenever possible, when answering a question below you should hand in a printout of the packet(s) within the trace that you used to answer the question asked. When you hand in your assignment, annotate the output so that it s clear where in the output you re getting the information for your answer (you may markup paper copies with a pen, or annotate electronic copies with text in a colored font). Follow the instructions in previous Wireshark labs to print your packets. Be sure to choose Selected packet only and select the minimum amount of packet detail that you need to answer the question. a [1]: IP addresses Select the first UDP message sent by traceroute and expand the Internet Protocol part of the packet in the packet details window. What is the IP address of your computer? b [2]: Upper layer protocol Within the IP packet header, what is the value in the upper layer protocol field? c [2]: IP header size How many bytes are in the IP header? How many bytes are in the payload of the IP datagram? Explain how you determined the number of payload bytes. d [2]: Fragmentation Has this IP datagram been fragmented? Explain how you determined whether or not the datagram has been fragmented. Exercise 2 [6]: IP datagram fields Sort the traced packets according to IP source address by clicking on the Source column header; a small upward pointing arrow should appear next to the word Source. If the arrow points 2

3 down, click on the Source column header again. Select the first ICMP Echo Request message sent by your computer, and expand the Internet Protocol portion in the details of selected packet header window. In the listing of captured packets window, you should see all of the subsequent ICMP messages (perhaps with additional interspersed packets sent by other protocols running on your computer) below this first ICMP. Use the down arrow to move through the ICMP messages sent by your computer. a [2]: Changing fields Which fields in the IP datagram always change from one datagram to the next within this series of ICMP messages sent by your computer? b [2]: Constant fields Which fields stay constant? Which of the fields must stay constant? Which fields must change? Why? c [2]: Identification field Describe the pattern you see in the values in the Identification field of the IP datagram Exercise 3 [5]: TTL-exceeded With the packets still sorted by source address find the series of ICMP TTL- exceeded replies sent to your computer by the nearest (first hop) router. a [2]: Identication field What is the value in the Identification field and the TTL field? What is the value in the Identification field and the TTL field? What is the upper level protocol and number of this packet? b [3]: TTL-exceeded replies Do these values remain unchanged for all of the ICMP TTL-exceeded replies sent to your computer by the nearest (first hop) router? What about other routers? Speculate on what s going on here. Exercise 4 [8]: Fragmentation Execute traceroute, with the Packet Size equal to By default the the packet listing should be sorted by increasing time. If not, click on the Time column and make sure the arrow is pointing up. Find the first traceroute UDP message that was sent by your computer after you increased the size to a [2] Has that message been fragmented across more than one IP datagram? (If your computer has an Ethernet interface, a packet size of 2000 should cause fragmentation.) 3

4 b [2] Print out the first fragment of the fragmented IP datagram. What information in the IP header indicates that the datagram been fragmented? What information in the IP header indicates whether this is the first fragment versus a latter fragment? How long is this IP datagram? c [2] Print out the second fragment of the fragmented IP datagram. What information in the IP header indicates that this is not the first datagram fragment? Are the more fragments? How can you tell? d [2] What fields change in the IP header between the first and second fragment? 4

5 Problems Problem 1 [9]: TCP Reno Consider the plot shown in Figure 3.58 of the text showing TCP window size as a function of time. Assuming TCP Reno is the protocol experiencing the behavior shown above, answer the following questions. In all cases, you should provide a short discussion justifying your answer. a [1] Identify the intervals of time when TCP slow start is operating. b [1] Identify the intervals of time when TCP congestion avoidance is operating. c [1] After the 16th transmission round, is segment loss detected by a triple duplicate ACK or by a timeout? d [1] After the 22nd transmission round is segment loss detected by a triple duplicate ACK or by a timeout? e [1] What is the initial value of Threshold at the first transmission round? f [1] What is the value of Threshold at the 18th transmission round? g [1] What is the value of Threshold at the 24th transmission round? h [1] During what transmission round is the 70th segment sent? i [1] Assuming a packet loss is detected after the 26th round by the receipt of a triple duplicate ACK, what will be the values of the congestion-window size and of Threshold? Problem 2 [4]: TCP additive increase/mult-decrease algorithm Refer to Figure 3.56, which illustrates the convergence of TCPs additive increase, multiplicative-decrease algorithm. Suppose that instead of a multiplicative decrease, TCP decreased the window size by a constant amount. Would the resulting additive-increase, additive-decrease converge to an equal share algorithm? Justify your answer using a diagram similar to Figure

6 Figure Throughput realized by TCP connections 1 and 2. Problem 3 [6]: Slow-start delays In this problem, we consider the delay introduced by the TCP slow-start phase. Consider a client and a Web server directly connected by one link of rate R. Suppose the client wants to retrieve an object whose size is exactly equal to 15 S, where S is the maximum segment size (MSS). Denote the round-trip time between client and server as RTT (assumed here, rather naively, to be a constant). Ignoring protocol headers, determine the time to retrieve the object (including TCP connection establishment) when a [2] 4S/R > S/R + RT T > 2S/R. b [2] S/R + RT T > 4S/R. c [2] S/R > RT T. Problem 4 [8]: Extra Credit General form of TCP latency: Generalize the arguments given in the previous problem to show that the TCP latency during slow start is given by expression: Latency = 2RT T + O K 1 R + k=1 [ S R + RT T S ] + 2k 1 R 6

7 where O is the size of the object in bytes, S is the segment size, R the transmission rate and K is equal to the number of congestion windows that cover the object. Problem 5 [8]: More Extra Credit Closed form of TCP latency: It is possible to given a closed form for the TCP latency under slow start. We do this in two steps. a [4]: Very large files Derive the formula ( Q = log RT T ) + 1 S/R giving the number of times the server would stall if the object contained an infinite number of segments. b [4]: Closed Form for Latency Use the identity P 2 k 1 = 2 P 1 k=1 and the previous problem to derive the formula Latency = 2RT T + O [ R + P RT T + S ] (2 P 1) S R R where P = min{q, K 1} is the actual number of stalls. Problem 6 [6]: More spoofing One question not addressed in class was the degree of end-point authentication provided by either UDP or TCP. a [2]: UDP Consider a server that receives a request within a UDP packet and responds to that request within a UDP packet. If a client with IP address X spoofs its address with address Y in the source field of the IP packet that encapsulates the UDP packet, where will the server send its response? b [4]: TCP Suppose a server receives a SYN with IP source address Y, and after responding with a SYNACK, receives an ACK with IP source address Y with the correct acknowledgment number. Assuming the server chooses a random initial sequence number and there is no woman-in-themiddle, can the server be certain that the client is indeed at Y (and not at some other address X that is spoofing Y)? 7

Lab Two Using Wireshark to Discover IP NAME:

Lab Two Using Wireshark to Discover IP NAME: Lab Two Using Wireshark to Discover IP NAME: In this lab, we ll investigate the IP protocol, focusing on the IP datagram. We ll do so by analyzing a trace of IP datagrams sent and received by an execution

More information

Lab Assignment 4 ECE374 Spring Posted: 03/22/18 Due: 03/29/18. In this lab, we ll take a quick look at the ICMP and IP protocols.

Lab Assignment 4 ECE374 Spring Posted: 03/22/18 Due: 03/29/18. In this lab, we ll take a quick look at the ICMP and IP protocols. Lab Assignment 4 ECE374 Spring 2018 Posted: 03/22/18 Due: 03/29/18 In this lab, we ll take a quick look at the ICMP and IP protocols. Whenever possible you should hand in Wireshark screenshots that you

More information

Wireshark Lab: IP v6.0

Wireshark Lab: IP v6.0 Wireshark Lab: IP v6.0 Supplement to Computer Networking: A Top-Down Approach, 6 th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand. Chinese proverb

More information

Problem Set 9 Due: Start of class, December 4

Problem Set 9 Due: Start of class, December 4 CS242 Computer Networks Handout # 18 Randy Shull November 27, 2017 Wellesley College Problem Set 9 Due: Start of class, December 4 Reading: Kurose & Ross, Sections 6.1 through 6.5 Wireshark Lab [16] In

More information

ECE 610: Homework 4 Problems are taken from Kurose and Ross.

ECE 610: Homework 4 Problems are taken from Kurose and Ross. ECE 610: Homework 4 Problems are taken from Kurose and Ross. Problem 1: Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 248. Suppose

More information

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class Computer Network Homework#2 COMPUTER NETWORK Homework #3 Due Date: May 22, 2017 in class Question 1 Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes

More information

Problem Set 6 Due: Start of Class, October 26

Problem Set 6 Due: Start of Class, October 26 CS242 Computer Networks Handout # 12 Randy Shull October 19, 2017 Wellesley College Problem Set 6 Due: Start of Class, October 26 Reading: Kurose & Ross, Sections 3.4, 3.5 Wireshark Lab [11] This exercise

More information

EE586 Homework and Laboratory #5 Due November 3, 2010

EE586 Homework and Laboratory #5 Due November 3, 2010 EE586 Homework and Laboratory #5 Due November 3, 2010 The first 5 problems are on chapter 4, while the last two, one for grad student only and one wireshark are on chapter 3. Maximum points for undergraduate:

More information

ICMP Computer Networks Lab Lab Course Number: Lab Course Name: Computer Networks (A) 3. Lab Name: ICMP

ICMP Computer Networks Lab Lab Course Number: Lab Course Name: Computer Networks (A) 3. Lab Name: ICMP 112039 Computer Networks Lab - 3 ICMP 1. Lab Course Number: 112039 2. Lab Course Name: Computer Networks (A) 3. Lab Name: ICMP 4. Lab Overview: In this lab, we ll investigate the ICMP protocol; examine

More information

Wireshark Lab: TCP v7.0

Wireshark Lab: TCP v7.0 Wireshark Lab: TCP v7.0 Supplement to Computer Networking: A Top-Down Approach, 7th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand. Chinese proverb

More information

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class

COMPUTER NETWORK. Homework #3. Due Date: May 22, 2017 in class Computer Network Homework#3 COMPUTER NETWORK Homework #3 Due Date: May 22, 2017 in class Question 1 Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes

More information

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. 1 Wireshark Lab: TCP Version: 2.0 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach, 4 th edition. In this lab, we ll investigate the behavior of TCP in detail. We

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes CS 4: COMPUTER NETWORKS FALL 00 FINAL January 0, 0 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative

4. What is the sequence number of the SYNACK segment sent by spinlab.wpi.edu to the client computer in reply to the SYN? Also Seq=0 (relative 1. What is the IP address and TCP port number used by your client computer (source) to transfer the file to spinlab.wpi.edu? My computer is at 10.211.55.3. The source port is 49247. See screenshot below.

More information

ICMP messages generating by the Ping program; ICMP messages generated by the Traceroute program; the format and contents of an ICMP message.

ICMP messages generating by the Ping program; ICMP messages generated by the Traceroute program; the format and contents of an ICMP message. Ethereal Lab: ICMP Version: 1.0 2005 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach Featuring the Internet, 3 rd edition. In this lab, we ll explore several aspects

More information

Your Name: Your student ID number:

Your Name: Your student ID number: CSC 573 / ECE 573 Internet Protocols October 11, 2005 MID-TERM EXAM Your Name: Your student ID number: Instructions Allowed o A single 8 ½ x11 (front and back) study sheet, containing any info you wish

More information

Review problems (for no credit): Transport and Network Layer

Review problems (for no credit): Transport and Network Layer Review problems (for no credit): Transport and Network Layer V. Arun CS 653, Fall 2018 09/06/18 Transport layer 1. Protocol multiplexing: (a) If a web server has 100 open connections, how many sockets

More information

Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP) Internet Control Message Protocol (ICMP) 1 Overview The IP (Internet Protocol) relies on several other protocols to perform necessary control and routing functions: Control functions (ICMP) Multicast signaling

More information

Problem Set 8 Due: Start of Class, November 16

Problem Set 8 Due: Start of Class, November 16 CS242 Computer Networks Handout # 16 Randy Shull November 9, 2017 Wellesley College Problem Set 8 Due: Start of Class, November 16 Reading: Kurose & Ross, Sections 4.1-4.4 Problem 1 [10]: Short answer

More information

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text.

Before beginning this lab, you ll probably want to review sections 3.5 and 3.7 in the text. Ethereal Lab: TCP In this lab, we ll investigate the behavior of TCP in detail. We ll do so by analyzing a trace of the TCP segments sent and received in transferring a 150KB file (containing the text

More information

Table of Contents 1 System Maintaining and Debugging 1-1

Table of Contents 1 System Maintaining and Debugging 1-1 Table of Contents 1 System Maintaining and Debugging 1-1 System Maintaining and Debugging 1-1 Ping 1-1 Introduction 1-1 Configuring Ping 1-1 Ping Configuration Example 1-2 Tracert 1-4 Introduction 1-4

More information

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination.

THE HONG KONG POLYTECHNIC UNIVERSITY. Department of Computing. This is an open-book examination. THE HONG KONG POLYTECHNIC UNIVERSITY Department of Computing This is an open-book examination. () Internetworking Protocols and Software 7 January 2013 3 hours [Answer all ten questions.] 2 Please answer

More information

15-441: Computer Networks Homework 3

15-441: Computer Networks Homework 3 15-441: Computer Networks Homework 3 Assigned: Oct 29, 2013 Due: Nov 12, 2013 1:30 PM in class Name: Andrew ID: 1 TCP 1. Suppose an established TCP connection exists between sockets A and B. A third party,

More information

15-441: Computer Networks Spring 2017 Homework 3

15-441: Computer Networks Spring 2017 Homework 3 15-441: Computer Networks Spring 2017 Homework 3 Assigned: Feb 15, 2018 Due: Mar 19, 2018 Lead TA: M.Ahmed Shah 1. Chapter 3: Exercise 41, page 294 2. Chapter 3: Exercise 43, page

More information

Network Layer (4): ICMP

Network Layer (4): ICMP 1 Network Layer (4): ICMP Required reading: Kurose 4.4.3, 4.4.4 CSE 4213, Fall 2006 Instructor: N. Vlajic 2 1. Introduction 2. Network Service Models 3. Architecture 4. Network Layer Protocols in the Internet

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

Computer Networks Spring 2017 Homework 2 Due by 3/2/2017, 10:30am

Computer Networks Spring 2017 Homework 2 Due by 3/2/2017, 10:30am 15-744 Computer Networks Spring 2017 Homework 2 Due by 3/2/2017, 10:30am (please submit through e-mail to zhuoc@cs.cmu.edu and srini@cs.cmu.edu) Name: A Congestion Control 1. At time t, a TCP connection

More information

Wireshark Lab: Ethernet and ARP v6.01

Wireshark Lab: Ethernet and ARP v6.01 Wireshark Lab: Ethernet and ARP v6.01 Supplement to Computer Networking: A Top-Down Approach, 6 th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand.

More information

Problems of IP. Unreliable connectionless service. Cannot acquire status information from routers and other hosts

Problems of IP. Unreliable connectionless service. Cannot acquire status information from routers and other hosts Chapter 09 ICMP Problems of IP Unreliable connectionless service Best effort service IP datagrams are discarded If destination is not found If TTL becomes 0 If reassembly timer expires Cannot acquire status

More information

CS Lecture 1 Review of Basic Protocols

CS Lecture 1 Review of Basic Protocols CS 557 - Lecture 1 Review of Basic Protocols IP - RFC 791, 1981 TCP - RFC 793, 1981 Spring 2013 These slides are a combination of two great sources: Kurose and Ross Textbook slides Steve Deering IETF Plenary

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Submit your captured trace file from the TCP lab exercise (Section 1 describes how this can be done).

Submit your captured trace file from the TCP lab exercise (Section 1 describes how this can be done). TCN 5030 - Project 2 Overview: This project will give you hands-on experience with the Wireshark network protocol analyzer, by investigating the behavior of TCP. Wireshack is a popular open-source tool

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link. Internet Layers Application Application Transport Transport Network Network Network Network Link Link Link Link Ethernet Fiber Optics Physical Layer Wi-Fi ARP requests and responses IP: 192.168.1.1 MAC:

More information

Transport: How Applications Communicate

Transport: How Applications Communicate Transport: How Applications Communicate Week 2 Philip Levis 1 7 Layers (or 4) 7. 6. 5. 4. 3. 2. 1. Application Presentation Session Transport Network Link Physical segments packets frames bits/bytes Application

More information

ICS 451: Today's plan

ICS 451: Today's plan ICS 451: Today's plan ICMP ping traceroute ARP DHCP summary of IP processing ICMP Internet Control Message Protocol, 2 functions: error reporting (never sent in response to ICMP error packets) network

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS 1. General (5p) a) The so-called hourglass model (sometimes referred to as a wine-glass ) has been used

More information

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang CS 356: Computer Network Architectures Lecture 10: IP Fragmentation, ARP, and ICMP Xiaowei Yang xwy@cs.duke.edu Overview Homework 2-dimension parity IP fragmentation ARP ICMP Fragmentation and Reassembly

More information

Problem Set 10 Due: Start of class December 11

Problem Set 10 Due: Start of class December 11 CS242 Computer Networks Handout # 20 Randy Shull December 4, 2017 Wellesley College Problem Set 10 Due: Start of class December 11 Reading: Kurose & Ross, Sections 7.1 7.3, 8.1 8.4 Wireshark Lab [16] Recall

More information

TCP : Fundamentals of Computer Networks Bill Nace

TCP : Fundamentals of Computer Networks Bill Nace TCP 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Lab #1 due now! Reminder: Paper Review

More information

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window.

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window. Part 1 Question 1 [0.5 Marks] Suppose an application generates chunks of 40 bytes of data every 20 msec, and each chunk gets encapsulated by a TCP segment and then an IP datagram. What percentage of each

More information

Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018

Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018 Exploring TCP and UDP based on Kurose and Ross (Computer Networking: A Top-Down Approach) May 15, 2018 Exploring TCP Description Capturing a bulk TCP transfer from your computer to a remote server. In

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2011 Some slides from Kurose and Ross, Computer Networking, 5 th Edition One of the core protocols in the Internet Primarily used to communicate errors among routers and hosts IP datagram

More information

Protocol Layers & Wireshark TDTS11:COMPUTER NETWORKS AND INTERNET PROTOCOLS

Protocol Layers & Wireshark TDTS11:COMPUTER NETWORKS AND INTERNET PROTOCOLS Protocol Layers & Wireshark TDTS11:COMPUTER NETWORKS AND INTERNET PROTOCOLS Mail seban649@student.liu.se Protocol Hi Hi Got the time? 2:00 time TCP connection request TCP connection response Whats

More information

Answers to Sample Questions on Transport Layer

Answers to Sample Questions on Transport Layer Answers to Sample Questions on Transport Layer 1) Which protocol Go-Back-N or Selective-Repeat - makes more efficient use of network bandwidth? Why? Answer: Selective repeat makes more efficient use of

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

Transport Protocols and TCP: Review

Transport Protocols and TCP: Review Transport Protocols and TCP: Review CSE 6590 Fall 2010 Department of Computer Science & Engineering York University 1 19 September 2010 1 Connection Establishment and Termination 2 2 1 Connection Establishment

More information

Note: This practice midterm only covers a subset of the topics you are required to know.

Note: This practice midterm only covers a subset of the topics you are required to know. CS144 Practice Midterm Fall 2010 Note: This practice midterm only covers a subset of the topics you are required to know. Question 1: Suppose you are writing a file copy program in TCP. You send a TCP

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Lab Assignment 3 for ECE374

Lab Assignment 3 for ECE374 Lab Assignment 3 for ECE374 Posted: 02/25/18 Due: 03/08/18 In this lab, we ll take a quick look at the UDP and TCP transport protocol. Whenever possible you should hand in a Wireshark screenshot that you

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

ICS 351: Networking Protocols

ICS 351: Networking Protocols ICS 351: Networking Protocols IP packet forwarding application layer: DNS, HTTP transport layer: TCP and UDP network layer: IP, ICMP, ARP data-link layer: Ethernet, WiFi 1 Networking concepts each protocol

More information

First Exam for ECE671 Spring /22/18

First Exam for ECE671 Spring /22/18 ECE67: First Exam First Exam for ECE67 Spring 208 02/22/8 Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 75 minutes to complete the exam. Be a

More information

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015

Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 Assignment 7: TCP and Congestion Control Due the week of October 29/30, 2015 I d like to complete our exploration of TCP by taking a close look at the topic of congestion control in TCP. To prepare for

More information

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination

TCP Strategies. Keepalive Timer. implementations do not have it as it is occasionally regarded as controversial. between source and destination Keepalive Timer! Yet another timer in TCP is the keepalive! This one is not required, and some implementations do not have it as it is occasionally regarded as controversial! When a TCP connection is idle

More information

Internet Control Message Protocol

Internet Control Message Protocol Internet Control Message Protocol The Internet Control Message Protocol is used by routers and hosts to exchange control information, and to inquire about the state and configuration of routers and hosts.

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Review Questions for Midterm Exam-2 Fall 2016

Review Questions for Midterm Exam-2 Fall 2016 Review Questions for Midterm Exam-2 Fall 2016 1. (Reference Page 340 of textbook) Which of the following statement is true? a. All hosts on the same subnet are configured with the same subnet mask. b.

More information

EECS 3214: Computer Network Protocols and Applications. Final Examination. Department of Computer Science and Engineering

EECS 3214: Computer Network Protocols and Applications. Final Examination. Department of Computer Science and Engineering Department of Computer Science and Engineering EECS 3214: Computer Network Protocols and Applications Final Examination Instructor: N. Vlajic Date: April 9, 2016 Instructions: Examination time: 180 min.

More information

ECE 333: Introduction to Communication Networks Fall 2001

ECE 333: Introduction to Communication Networks Fall 2001 ECE 333: Introduction to Communication Networks Fall 2001 Lecture 28: Transport Layer III Congestion control (TCP) 1 In the last lecture we introduced the topics of flow control and congestion control.

More information

Wireshark Lab: v6.0

Wireshark Lab: v6.0 Wireshark Lab: 802.11 v6.0 Supplement to Computer Networking: A Top-Down Approach, 6 th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand. Chinese

More information

Reliable Transport I: Concepts and TCP Protocol

Reliable Transport I: Concepts and TCP Protocol Reliable Transport I: Concepts and TCP Protocol Stefano Vissicchio UCL Computer Science COMP0023 Today Transport Concepts Layering context Transport goals Transport mechanisms and design choices TCP Protocol

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Transport Protocols & TCP TCP

Transport Protocols & TCP TCP Transport Protocols & TCP CSE 3213 Fall 2007 13 November 2007 1 TCP Services Flow control Connection establishment and termination Congestion control 2 1 TCP Services Transmission Control Protocol (RFC

More information

===================================================================== Exercises =====================================================================

===================================================================== Exercises ===================================================================== ===================================================================== Exercises ===================================================================== 1 Chapter 1 1) Design and describe an application-level

More information

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking

Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path. Review of TCP/IP Internetworking 1 Review of TCP/IP working Single Network: applications, client and server hosts, switches, access links, trunk links, frames, path Frame Path Chapter 3 Client Host Trunk Link Server Host Panko, Corporate

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

ECE4110 Internetwork Programming. Introduction and Overview

ECE4110 Internetwork Programming. Introduction and Overview ECE4110 Internetwork Programming Introduction and Overview 1 EXAMPLE GENERAL NETWORK ALGORITHM Listen to wire Are signals detected Detect a preamble Yes Read Destination Address No data carrying or noise?

More information

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine Computer Science Department 1 / 33 1 COS 140: Foundations

More information

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1

Internet Protocol. Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Outline Introduction to Internet Protocol Header and address formats ICMP Tools CS 640 1 Internet Protocol Runs on all hosts in the Internet and enables packets to be routed between systems

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering Student Name: Section #: King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering COE 344 Computer Networks (T072) Final Exam Date

More information

Expected Time: 90 min PART-A Max Marks: 42

Expected Time: 90 min PART-A Max Marks: 42 Birla Institute of Technology & Science, Pilani First Semester 2010-2011 Computer Networks (BITS C481) Comprehensive Examination Thursday, December 02, 2010 (AN) Duration: 3 Hrs Weightage: 40% [80M] Instructions-:

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers

Layer 4: UDP, TCP, and others. based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Layer 4: UDP, TCP, and others based on Chapter 9 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Concepts application set transport set High-level, "Application Set" protocols deal only with how handled

More information

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 33 COS 140:

More information

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581 ocket door point-to-point: one sender, one receiver reliable, in-order byte steam: no message boundaries pipelined: TCP congestion and flow control set window

More information

Introduction to Computer Networks. CS 166: Introduction to Computer Systems Security

Introduction to Computer Networks. CS 166: Introduction to Computer Systems Security Introduction to Computer Networks CS 166: Introduction to Computer Systems Security Network Communication Communication in modern networks is characterized by the following fundamental principles Packet

More information

Network Layer. The Network Layer. Contents Connection-Oriented and Connectionless Service. Recall:

Network Layer. The Network Layer. Contents Connection-Oriented and Connectionless Service. Recall: Network Layer The Network Layer Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control 1 2 Contents 4.1.1 Connection-Oriented and Connectionless

More information

Network Layer. Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control

Network Layer. Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control The Network Layer 1 Network Layer Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control 2 Contents Connection-Oriented (virtual circuit)

More information

The Internetworking Problem. Internetworking. A Translation-based Solution

The Internetworking Problem. Internetworking. A Translation-based Solution Cloud Cloud Cloud 1 The Internetworking Problem Internetworking Two nodes communicating across a network of networks How to transport packets through this heterogeneous mass? A B The Internetworking Problem

More information

Wireshark Lab: Getting Started v6.0

Wireshark Lab: Getting Started v6.0 Wireshark Lab: Getting Started v6.0 Supplement to Computer Networking: A Top-Down Approach, 6 th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand.

More information

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015 Paper solution Subject: Computer Networks (TE Computer- 2012 pattern) Marks : 30 Date: 5/2/2015 Q1 a) What is difference between persistent and non persistent HTTP? Also Explain HTTP message format. [6]

More information

Wireshark Lab: DHCP. DHCP Experiment

Wireshark Lab: DHCP. DHCP Experiment Wireshark Lab: DHCP Version: 2.0 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Topdown Approach, 4 th edition. In this lab, we ll take a quick look at DHCP. Recall that DHCP is

More information

Lecture 4: Congestion Control

Lecture 4: Congestion Control Lecture 4: Congestion Control Overview Internet is a network of networks Narrow waist of IP: unreliable, best-effort datagram delivery Packet forwarding: input port to output port Routing protocols: computing

More information

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011

Department of Computer Science and Engineering. Final Examination. Instructor: N. Vlajic Date: April 15, 2011 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Final Examination Instructor: N. Vlajic Date: April 15, 2011 Instructions: Examination time: 180 min.

More information

Internet Protocol and Transmission Control Protocol

Internet Protocol and Transmission Control Protocol Internet Protocol and Transmission Control Protocol CMSC 414 November 13, 2017 Internet Protcol Recall: 4-bit version 4-bit hdr len 8-bit type of service 16-bit total length (bytes) 8-bit TTL 16-bit identification

More information

This is a sample Lab report from ECE 461 from previous years. L A B 6

This is a sample Lab report from ECE 461 from previous years. L A B 6 This is a sample Lab report from ECE 461 from previous years. L A B 6 Part 1 1. o the source and destination M A C/IP addresses change when a packet traverses a bridge? Provide an explanation and include

More information

Chapter 3 Review Questions

Chapter 3 Review Questions Chapter 3 Review Questions. 2. 3. Source port number 6 and destination port number 37. 4. TCP s congestion control can throttle an application s sending rate at times of congestion. Designers of applications

More information

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach

Chapter 4 Network Layer: The Data Plane. Part A. Computer Networking: A Top Down Approach Chapter 4 Network Layer: The Data Plane Part A All material copyright 996-06 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th Edition, Global Edition Jim Kurose,

More information

PROBLEMSAND EXERCISES

PROBLEMSAND EXERCISES Departamento de Tecnología Electrónica Computer Networking Unit 3: Transport layer PROBLEMSAND EXERCISES Transport Layer 95 Pr1: port numbers Suppose that the client A initiates a TCP connection to a Web

More information

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) Today s Lecture ICMP (Internet Control Message Protocol) Internet Protocols CSC / C 573 I. ICMP Overview II. ICMP rror Reporting III. ICMP Query / Response Messages IV. ICMP Message Processing Fall, 2005

More information

Wireshark Lab: HTTP v6.1

Wireshark Lab: HTTP v6.1 Wireshark Lab: HTTP v6.1 Supplement to Computer Networking: A Top-Down Approach, 6 th ed., J.F. Kurose and K.W. Ross Tell me and I forget. Show me and I remember. Involve me and I understand. Chinese proverb

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

ICMP (Internet Control Message Protocol)

ICMP (Internet Control Message Protocol) ABSTRACT : ICMP stands for internet control message protocol it is a vital protocol of network layer among the seven layers of OSI(open system interconnection). Here we deal with the several situations

More information