Exercise 12: Commit Protocols and Replication

Size: px
Start display at page:

Download "Exercise 12: Commit Protocols and Replication"

Transcription

1 Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: May 22, 2017 Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Eliza Last update: August 16, 2017 Wszola, Ingo Müller, Kaan Kara, Renato Marroquín, Zsolt István Exercise 12: Commit Protocols and Replication The exercises marked with * will be discussed in the exercise session. You can solve the other exercises as practice, ask questions about them in the session, and hand them in for feedback. All exercises may be relevant for the exam. Ask Lefteris (lefteris.sidirourgos@inf.ethz.ch) for feedback on this week s exercise sheet or give it to the TA of your session (preferably stapled and with your address). 1 2PC 1. Assuming a completely asynchronous system, is it always possible to achieve consensus? Why? 2. List all timeout possibilities of the 2PC protocol. Differentiate between the coordinator and the participants. Describe the consequences of each scenario. Coordinator Participant Participant timeout phase consequences

2 3. Assume the following scenario: We have one coordinator C and three participants P 1, P 2, P 3 running 2PC protocol. We define the event (A, B, MSG) as A sends the message MSG to B. A and B can be any of the participants or the coordinator, i.e., A, B {C, P 1, P 2, P 3 }. Allowed messages are request to vote, voting yes, voting no, request to abort, and request to commit, i.e., MSG {REQ, Y ES, NO, ABORT, COM} respectively. We also define the event (A, F AIL) to be the failure of node A at that point. Consider now the following order of events: (a) (C, P 1, REQ) (b) (C, P 2, REQ) (c) (C, P 3, REQ) (d) (P 1, C, Y ES) (e) (P 2, C, Y ES) (f) (P 3, C, Y ES) (g) (C, P 1, COM) (h) (C, P 2, COM) (i) (C, P 3, COM) For each of the fail-scenarios described in the table below, replace one of the events from (a) to (i) with a different event in order for the fail-scenario to take place. If there are multiple possibilities, replace the earliest one. Assume that all the actions following the given modification will also change according to the 2PC protocol. Scenario event timestep(a-i) 2PC aborts, but no node has failed a participant experiences a timeout waiting for a message the coordinator experiences a timeout waiting for a message 2PC blocks a Cooperative Termination Protocol is run and the protocol finishes 4. Give an example of a scenario where the 2PC protocol does not terminate.

3 5. Given your answer to the question 1.4, define an alternation of the 2PC protocol that would terminate in the same scenario. Disregard all other constraints. 2 3PC 1. A coordinator C and two participants P 1, P 2 run the three-phase-commit (3PC) protocol. The coordinator also acts as participant. We model the execution of the protocol as a series of events. An event can be one of the following: A message event of the form (A, B, MSG) means that node A sends the message MSG to node B, where A, B {C, P 1, P 2 } and the message MSG {request, yes, no, pre-commit, ack, abort, commit}, meaning request to vote, voting yes, voting no, pre-commit, acknowledge last message, request to abort, and request to commit respectively. A group communication event of the form (A, ask around abort) or (A, ask around commit) means that node A initiates a round of group communication where all reachable nodes exchange all relevant information and then decide to abort or to commit accordingly. We assume that no failures occur during group communication. A failure event of the form (A, fail) means that node A fails. The following sequence of events shows an execution of the 3PC protocol where no failures occur: time step event 1 (C, P 1, request) 2 (C, P 2, request) 3 (P 1, C, yes) 4 (P 2, C, yes) 5 (C, P 1, pre-commit) 6 (C, P 2, pre-commit) 7 (P 1, C, ack) 8 (P 2, C, ack) 9 (C, P 1, commit) 10 (C, P 2, commit) We now modify this sequence of events starting from some time step. Complete each new sequence with one possible next event such that it models a valid execution of the 3PC protocol.

4 Sequence (i): 4 (P 2, C, no) 5 Sequence (iv): 6 (C, fail) 7 Sequence (ii): 2 (C, fail) 3 (P 1, C, yes) Sequence (v): 4 (P 2, fail) 5 4 Sequence (vi): Sequence (iii): 5 (C, fail) 6 6 (P 2, fail) 7 (C, P 2, pre-commit) 8 (P 1, C, ack) 9 2. In the commit protocols discussed in the lecture, participants vote whether to commit, then they decide by consensus. Give an example scenario in 3PC, which can t happen in 2PC, and in which a participant is forced to decide against its own vote. 3. Define a scenario in which 3PC violates at least one of the AC rules.

5 4. Compare the number of messages sent for 2PC and 3PC protocols when all the participants have committed the update. 5. Compare the runtimes of 2PC and 3PC protocols with a timeout occurring during the second timeout window of at least one participant (no decision in 2PC, no pre-commit in 3PC). 3 Liveness, safety, fault tolerance A protocol is live if each non-faulty process will eventually terminate. A protocol is safe if all processes that terminate arrive to the same decision (whether to commit or abort). The network is reliable if all messages arrive on time (the only possible failures are process failures). The network is unreliable if some messages may be lost. Fill the following table with true or false. 2PC is live 2PC is safe 3PC is live 3PC is safe there exists a protocol that is live and safe reliable network unreliable network 4 Replication 1. List three reasons why to use replication.

6 2. List three disadvantages shared by all replication types. 3. List the four main types of replication strategies. 4. Describe a scenario in which you would use a synchronous primary copy-strategy instead of an asynchronous update-everywhere strategy and state why. 5. Describe a scenario in which a synchronous strategy causes the database to loose consistency.

Assignment 12: Commit Protocols and Replication

Assignment 12: Commit Protocols and Replication Data Modelling and Databases Exercise dates: May 24 / May 25, 2018 Ce Zhang, Gustavo Alonso Last update: June 04, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 12: Commit Protocols and Replication

More information

Exercise 12: Commit Protocols and Replication

Exercise 12: Commit Protocols and Replication Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: May 22, 2017 Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Eliza

More information

Assignment 12: Commit Protocols and Replication Solution

Assignment 12: Commit Protocols and Replication Solution Data Modelling and Databases Exercise dates: May 24 / May 25, 2018 Ce Zhang, Gustavo Alonso Last update: June 04, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 12: Commit Protocols and Replication

More information

Exercise 11: Transactions

Exercise 11: Transactions Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Eliza Last update:

More information

Exercise 9: Normal Forms

Exercise 9: Normal Forms Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Eliza Last update:

More information

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March 20/March 27, 2017.

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March 20/March 27, 2017. Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Last update:

More information

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March 27/March 31, Exercise 5: SQL II.

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March 27/March 31, Exercise 5: SQL II. Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: March Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Last update:

More information

Distributed Transactions

Distributed Transactions Distributed Transactions Preliminaries Last topic: transactions in a single machine This topic: transactions across machines Distribution typically addresses two needs: Split the work across multiple nodes

More information

EECS 591 DISTRIBUTED SYSTEMS. Manos Kapritsos Winter 2018

EECS 591 DISTRIBUTED SYSTEMS. Manos Kapritsos Winter 2018 EECS 591 DISTRIBUTED SYSTEMS Manos Kapritsos Winter 2018 ATOMIC COMMIT Preserve data consistency for distributed transactions in the presence of failures Setup one coordinator a set of participants Each

More information

The objective. Atomic Commit. The setup. Model. Preserve data consistency for distributed transactions in the presence of failures

The objective. Atomic Commit. The setup. Model. Preserve data consistency for distributed transactions in the presence of failures The objective Atomic Commit Preserve data consistency for distributed transactions in the presence of failures Model The setup For each distributed transaction T: one coordinator a set of participants

More information

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: August 19, Exam. Questions

ETH Zurich Spring Semester Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: August 19, Exam. Questions Data Modelling and Databases (DMDB) ETH Zurich Spring Semester 2017 Systems Group Lecturer(s): Gustavo Alonso, Ce Zhang Date: August 19, 2017 Assistant(s): Claude Barthels, Eleftherios Sidirourgos, Last

More information

COMMENTS. AC-1: AC-1 does not require all processes to reach a decision It does not even require all correct processes to reach a decision

COMMENTS. AC-1: AC-1 does not require all processes to reach a decision It does not even require all correct processes to reach a decision ATOMIC COMMIT Preserve data consistency for distributed transactions in the presence of failures Setup one coordinator a set of participants Each process has access to a Distributed Transaction Log (DT

More information

The challenges of non-stable predicates. The challenges of non-stable predicates. The challenges of non-stable predicates

The challenges of non-stable predicates. The challenges of non-stable predicates. The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

More information

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit Fault Tolerance o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication o Distributed Commit -1 Distributed Commit o A more general problem of atomic

More information

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita

Proseminar Distributed Systems Summer Semester Paxos algorithm. Stefan Resmerita Proseminar Distributed Systems Summer Semester 2016 Paxos algorithm stefan.resmerita@cs.uni-salzburg.at The Paxos algorithm Family of protocols for reaching consensus among distributed agents Agents may

More information

Consensus in Distributed Systems. Jeff Chase Duke University

Consensus in Distributed Systems. Jeff Chase Duke University Consensus in Distributed Systems Jeff Chase Duke University Consensus P 1 P 1 v 1 d 1 Unreliable multicast P 2 P 3 Consensus algorithm P 2 P 3 v 2 Step 1 Propose. v 3 d 2 Step 2 Decide. d 3 Generalizes

More information

EECS 591 DISTRIBUTED SYSTEMS

EECS 591 DISTRIBUTED SYSTEMS EECS 591 DISTRIBUTED SYSTEMS Manos Kapritsos Fall 2018 Slides by: Lorenzo Alvisi 3-PHASE COMMIT Coordinator I. sends VOTE-REQ to all participants 3. if (all votes are Yes) then send Precommit to all else

More information

Advanced Systems Lab (Intro and Administration) G. Alonso Systems Group

Advanced Systems Lab (Intro and Administration) G. Alonso Systems Group Advanced Systems Lab (Intro and Administration) G. Alonso Systems Group http://www.systems.ethz.ch Overview of the Course Focus on project Individual project during semester (3 milestones) This is a project

More information

Transactions. CS 475, Spring 2018 Concurrent & Distributed Systems

Transactions. CS 475, Spring 2018 Concurrent & Distributed Systems Transactions CS 475, Spring 2018 Concurrent & Distributed Systems Review: Transactions boolean transfermoney(person from, Person to, float amount){ if(from.balance >= amount) { from.balance = from.balance

More information

Data Modeling and Databases Ch 14: Data Replication. Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich

Data Modeling and Databases Ch 14: Data Replication. Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich Data Modeling and Databases Ch 14: Data Replication Gustavo Alonso, Ce Zhang Systems Group Department of Computer Science ETH Zürich Database Replication What is database replication The advantages of

More information

Distributed Systems Consensus

Distributed Systems Consensus Distributed Systems Consensus Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Consensus 1393/6/31 1 / 56 What is the Problem?

More information

Assignment 3: Relational Algebra Solution

Assignment 3: Relational Algebra Solution Data Modelling and Databases Exercise dates: March 15/March 16, 2018 Ce Zhang, Gustavo Alonso Last update: April 13, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 3: Relational Algebra Solution

More information

6.033 Spring 2016 Lecture #18. Distributed transactions Multi-site atomicity Two-phase commit

6.033 Spring 2016 Lecture #18. Distributed transactions Multi-site atomicity Two-phase commit 6.033 Spring 2016 Lecture #18 Distributed transactions Multi-site atomicity Two-phase Katrina LaCurts lacurts@mit 6.033 2016 goal: build reliable systems from unreliable components the abstraction that

More information

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 138: Practical Byzantine Consensus. CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 138: Practical Byzantine Consensus CS 138 XX 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Scenario Asynchronous system Signed messages s are state machines It has to be practical CS 138

More information

CSE 444: Database Internals. Section 9: 2-Phase Commit and Replication

CSE 444: Database Internals. Section 9: 2-Phase Commit and Replication CSE 444: Database Internals Section 9: 2-Phase Commit and Replication 1 Today 2-Phase Commit Replication 2 Two-Phase Commit Protocol (2PC) One coordinator and many subordinates Phase 1: Prepare Phase 2:

More information

6.033 Spring Lecture #18. Distributed transactions Multi-site atomicity Two-phase commit spring 2018 Katrina LaCurts

6.033 Spring Lecture #18. Distributed transactions Multi-site atomicity Two-phase commit spring 2018 Katrina LaCurts 6.033 Spring 2018 Lecture #18 Distributed transactions Multi-site atomicity Two-phase 1 goal: build reliable systems from unreliable components the abstraction that makes that easier is transactions, which

More information

Fault Tolerance. Basic Concepts

Fault Tolerance. Basic Concepts COP 6611 Advanced Operating System Fault Tolerance Chi Zhang czhang@cs.fiu.edu Dependability Includes Availability Run time / total time Basic Concepts Reliability The length of uninterrupted run time

More information

Distributed System. Gang Wu. Spring,2018

Distributed System. Gang Wu. Spring,2018 Distributed System Gang Wu Spring,2018 Lecture4:Failure& Fault-tolerant Failure is the defining difference between distributed and local programming, so you have to design distributed systems with the

More information

Introduction to Distributed Systems Seif Haridi

Introduction to Distributed Systems Seif Haridi Introduction to Distributed Systems Seif Haridi haridi@kth.se What is a distributed system? A set of nodes, connected by a network, which appear to its users as a single coherent system p1 p2. pn send

More information

Fault Tolerance. it continues to perform its function in the event of a failure example: a system with redundant components

Fault Tolerance. it continues to perform its function in the event of a failure example: a system with redundant components Fault Tolerance To avoid disruption due to failure and to improve availability, systems are designed to be fault-tolerant Two broad categories of fault-tolerant systems are: systems that mask failure it

More information

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure

More information

Distributed Algorithms Benoît Garbinato

Distributed Algorithms Benoît Garbinato Distributed Algorithms Benoît Garbinato 1 Distributed systems networks distributed As long as there were no machines, programming was no problem networks distributed at all; when we had a few weak computers,

More information

Distributed Systems Fault Tolerance

Distributed Systems Fault Tolerance Distributed Systems Fault Tolerance [] Fault Tolerance. Basic concepts - terminology. Process resilience groups and failure masking 3. Reliable communication reliable client-server communication reliable

More information

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf

Distributed systems. Lecture 6: distributed transactions, elections, consensus and replication. Malte Schwarzkopf Distributed systems Lecture 6: distributed transactions, elections, consensus and replication Malte Schwarzkopf Last time Saw how we can build ordered multicast Messages between processes in a group Need

More information

Causal Consistency and Two-Phase Commit

Causal Consistency and Two-Phase Commit Causal Consistency and Two-Phase Commit CS 240: Computing Systems and Concurrency Lecture 16 Marco Canini Credits: Michael Freedman and Kyle Jamieson developed much of the original material. Consistency

More information

Consensus, impossibility results and Paxos. Ken Birman

Consensus, impossibility results and Paxos. Ken Birman Consensus, impossibility results and Paxos Ken Birman Consensus a classic problem Consensus abstraction underlies many distributed systems and protocols N processes They start execution with inputs {0,1}

More information

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures or predictable: exhibit a well defined failure behavior

More information

Assignment 2: Relational Model

Assignment 2: Relational Model Data Modelling and Databases Exercise dates: March 8/March 9, 208 Ce Zhang, Gustavo Alonso Last update: March 6, 208 Spring Semester 208 Head TA: Ingo Müller Assignment 2: Relational Model This assignment

More information

Recovering from a Crash. Three-Phase Commit

Recovering from a Crash. Three-Phase Commit Recovering from a Crash If INIT : abort locally and inform coordinator If Ready, contact another process Q and examine Q s state Lecture 18, page 23 Three-Phase Commit Two phase commit: problem if coordinator

More information

Consensus a classic problem. Consensus, impossibility results and Paxos. Distributed Consensus. Asynchronous networks.

Consensus a classic problem. Consensus, impossibility results and Paxos. Distributed Consensus. Asynchronous networks. Consensus, impossibility results and Paxos Ken Birman Consensus a classic problem Consensus abstraction underlies many distributed systems and protocols N processes They start execution with inputs {0,1}

More information

Basic vs. Reliable Multicast

Basic vs. Reliable Multicast Basic vs. Reliable Multicast Basic multicast does not consider process crashes. Reliable multicast does. So far, we considered the basic versions of ordered multicasts. What about the reliable versions?

More information

7 Fault Tolerant Distributed Transactions Commit protocols

7 Fault Tolerant Distributed Transactions Commit protocols 7 Fault Tolerant Distributed Transactions Commit protocols 7.1 Subtransactions and distribution 7.2 Fault tolerance and commit processing 7.3 Requirements 7.4 One phase commit 7.5 Two phase commit x based

More information

Today: Fault Tolerance. Reliable One-One Communication

Today: Fault Tolerance. Reliable One-One Communication Today: Fault Tolerance Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing Message logging Lecture 17, page 1 Reliable One-One Communication Issues

More information

Assignment 6: SQL III

Assignment 6: SQL III Data Modelling and Databases Exercise dates: April 12/April 13, 2018 Ce Zhang, Gustavo Alonso Last update: April 16, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 6: SQL III This assignment

More information

Module 8 Fault Tolerance CS655! 8-1!

Module 8 Fault Tolerance CS655! 8-1! Module 8 Fault Tolerance CS655! 8-1! Module 8 - Fault Tolerance CS655! 8-2! Dependability Reliability! A measure of success with which a system conforms to some authoritative specification of its behavior.!

More information

Distributed Systems. Fault Tolerance. Paul Krzyzanowski

Distributed Systems. Fault Tolerance. Paul Krzyzanowski Distributed Systems Fault Tolerance Paul Krzyzanowski Except as otherwise noted, the content of this presentation is licensed under the Creative Commons Attribution 2.5 License. Faults Deviation from expected

More information

CS 347 Parallel and Distributed Data Processing

CS 347 Parallel and Distributed Data Processing CS 347 Parallel and Distributed Data Processing Spring 2016 Notes 6: Reliability Reliable Distributed DB Management Reliability Failure models Scenarios CS 347 Notes 6 2 Reliability Correctness Serializability

More information

Distributed Systems COMP 212. Lecture 19 Othon Michail

Distributed Systems COMP 212. Lecture 19 Othon Michail Distributed Systems COMP 212 Lecture 19 Othon Michail Fault Tolerance 2/31 What is a Distributed System? 3/31 Distributed vs Single-machine Systems A key difference: partial failures One component fails

More information

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De

Viewstamped Replication to Practical Byzantine Fault Tolerance. Pradipta De Viewstamped Replication to Practical Byzantine Fault Tolerance Pradipta De pradipta.de@sunykorea.ac.kr ViewStamped Replication: Basics What does VR solve? VR supports replicated service Abstraction is

More information

Agreement and Consensus. SWE 622, Spring 2017 Distributed Software Engineering

Agreement and Consensus. SWE 622, Spring 2017 Distributed Software Engineering Agreement and Consensus SWE 622, Spring 2017 Distributed Software Engineering Today General agreement problems Fault tolerance limitations of 2PC 3PC Paxos + ZooKeeper 2 Midterm Recap 200 GMU SWE 622 Midterm

More information

Consensus and related problems

Consensus and related problems Consensus and related problems Today l Consensus l Google s Chubby l Paxos for Chubby Consensus and failures How to make process agree on a value after one or more have proposed what the value should be?

More information

CS 541 Database Systems. Three Phase Commit

CS 541 Database Systems. Three Phase Commit CS 541 Database Systems Three Phase Commit 1 Introduction No ACP can eliminate blocking if total failures or total site failures are possible. 2PC may cause blocking even if there is a nontotal site failure

More information

Distributed Commit in Asynchronous Systems

Distributed Commit in Asynchronous Systems Distributed Commit in Asynchronous Systems Minsoo Ryu Department of Computer Science and Engineering 2 Distributed Commit Problem - Either everybody commits a transaction, or nobody - This means consensus!

More information

Today: Fault Tolerance

Today: Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Web Services - Concepts, Architecture and Applications Part 3: Asynchronous middleware

Web Services - Concepts, Architecture and Applications Part 3: Asynchronous middleware Web Services - Concepts, Architecture and Applications Part 3: Asynchronous middleware Gustavo Alonso and Cesare Pautasso Computer Science Department ETH Zürich alonso@inf.ethz.ch http://www.inf.ethz.ch/~alonso

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester Section Subject Code Subject Name Degree & Branch : I & II : M.E : CP7204 : Advanced Operating Systems : M.E C.S.E. 1. Define Process? UNIT-1

More information

Fault Tolerance. Chapter 7

Fault Tolerance. Chapter 7 Fault Tolerance Chapter 7 Basic Concepts Dependability Includes Availability Reliability Safety Maintainability Failure Models Type of failure Crash failure Omission failure Receive omission Send omission

More information

Exam. Question: Total Points: Score:

Exam. Question: Total Points: Score: FS 2016 Data Modelling and Databases Date: August 17, 2016 ETH Zurich Systems Group Prof. Gustavo Alonso Exam Name: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 11 11 10 12 9 10 11 10 15 10 8 117 Score:

More information

Assignment 7: Integrity Constraints

Assignment 7: Integrity Constraints Data Modelling and Databases Exercise dates: April 19, 2018 Ce Zhang, Gustavo Alonso Last update: April 19, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 7: Integrity Constraints This assignment

More information

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q Coordination 1 To do q q q Mutual exclusion Election algorithms Next time: Global state Coordination and agreement in US Congress 1798-2015 Process coordination How can processes coordinate their action?

More information

Name: 1. CS372H: Spring 2009 Final Exam

Name: 1. CS372H: Spring 2009 Final Exam Name: 1 Instructions CS372H: Spring 2009 Final Exam This exam is closed book and notes with one exception: you may bring and refer to a 1-sided 8.5x11- inch piece of paper printed with a 10-point or larger

More information

Today: Fault Tolerance. Failure Masking by Redundancy

Today: Fault Tolerance. Failure Masking by Redundancy Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery Checkpointing

More information

Assignment 6: SQL III Solution

Assignment 6: SQL III Solution Data Modelling and Databases Exercise dates: April 12/April 13, 2018 Ce Zhang, Gustavo Alonso Last update: April 16, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 6: SQL III Solution This assignment

More information

CSE 5306 Distributed Systems

CSE 5306 Distributed Systems CSE 5306 Distributed Systems Fault Tolerance Jia Rao http://ranger.uta.edu/~jrao/ 1 Failure in Distributed Systems Partial failure Happens when one component of a distributed system fails Often leaves

More information

CSE 5306 Distributed Systems. Fault Tolerance

CSE 5306 Distributed Systems. Fault Tolerance CSE 5306 Distributed Systems Fault Tolerance 1 Failure in Distributed Systems Partial failure happens when one component of a distributed system fails often leaves other components unaffected A failure

More information

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance

Distributed Systems Principles and Paradigms. Chapter 08: Fault Tolerance Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl Chapter 08: Fault Tolerance Version: December 2, 2010 2 / 65 Contents Chapter

More information

Semi-Passive Replication in the Presence of Byzantine Faults

Semi-Passive Replication in the Presence of Byzantine Faults Semi-Passive Replication in the Presence of Byzantine Faults HariGovind V. Ramasamy Adnan Agbaria William H. Sanders University of Illinois at Urbana-Champaign 1308 W. Main Street, Urbana IL 61801, USA

More information

Duke University CompSci 356 Midterm Spring 2016

Duke University CompSci 356 Midterm Spring 2016 Duke University CompSci 356 Midterm Spring 2016 Name (Print):, (Family name) (Given name) Student ID Number: Date of Exam: Feb 25, 2016 Time Period: 11:45am-1pm Number of Exam Pages: 15 (including this

More information

Fault Tolerance. Distributed Systems. September 2002

Fault Tolerance. Distributed Systems. September 2002 Fault Tolerance Distributed Systems September 2002 Basics A component provides services to clients. To provide services, the component may require the services from other components a component may depend

More information

Distributed Data with ACID Transactions

Distributed Data with ACID Transactions Distributed Data with ACID Transactions 3-tier application with data distributed across multiple DBMSs Not replicating the data (yet) DBMS1... DBMS2 Application Server Clients Why Do This? Legacy systems

More information

Asynchronous Reconfiguration for Paxos State Machines

Asynchronous Reconfiguration for Paxos State Machines Asynchronous Reconfiguration for Paxos State Machines Leander Jehl and Hein Meling Department of Electrical Engineering and Computer Science University of Stavanger, Norway Abstract. This paper addresses

More information

Module 8 - Fault Tolerance

Module 8 - Fault Tolerance Module 8 - Fault Tolerance Dependability Reliability A measure of success with which a system conforms to some authoritative specification of its behavior. Probability that the system has not experienced

More information

Exam. Question: Total Points: Score:

Exam. Question: Total Points: Score: FS 2016 Data Modelling and Databases Date: June 9, 2016 ETH Zurich Systems Group Prof. Gustavo Alonso Exam Name: Question: 1 2 3 4 5 6 7 8 9 10 11 Total Points: 15 20 15 10 10 15 10 15 10 10 20 150 Score:

More information

Distributed Systems in practice HS 2007

Distributed Systems in practice HS 2007 Distributed Systems in practice HS 2007 Gustavo Alonso Institute for Pervasive Computing Computer Science Department Swiss Federal Institute of Technology (ETHZ) alonso@inf.ethz.ch http://www.iks.inf.ethz.ch/

More information

Today: Fault Tolerance. Fault Tolerance

Today: Fault Tolerance. Fault Tolerance Today: Fault Tolerance Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Paxos Failure recovery Checkpointing

More information

Consistency. CS 475, Spring 2018 Concurrent & Distributed Systems

Consistency. CS 475, Spring 2018 Concurrent & Distributed Systems Consistency CS 475, Spring 2018 Concurrent & Distributed Systems Review: 2PC, Timeouts when Coordinator crashes What if the bank doesn t hear back from coordinator? If bank voted no, it s OK to abort If

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 21: Network Protocols (and 2 Phase Commit)

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 21: Network Protocols (and 2 Phase Commit) CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2003 Lecture 21: Network Protocols (and 2 Phase Commit) 21.0 Main Point Protocol: agreement between two parties as to

More information

CSE 486/586: Distributed Systems

CSE 486/586: Distributed Systems CSE 486/586: Distributed Systems Concurrency Control (part 3) Ethan Blanton Department of Computer Science and Engineering University at Buffalo Lost Update Some transaction T1 runs interleaved with some

More information

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University

CprE Fault Tolerance. Dr. Yong Guan. Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Fault Tolerance Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Basic Concepts Process Resilience Reliable

More information

FAULT TOLERANT LEADER ELECTION IN DISTRIBUTED SYSTEMS

FAULT TOLERANT LEADER ELECTION IN DISTRIBUTED SYSTEMS FAULT TOLERANT LEADER ELECTION IN DISTRIBUTED SYSTEMS Marius Rafailescu The Faculty of Automatic Control and Computers, POLITEHNICA University, Bucharest ABSTRACT There are many distributed systems which

More information

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 19. Fault Tolerance Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 19. Fault Tolerance Paul Krzyzanowski Rutgers University Fall 2013 November 27, 2013 2013 Paul Krzyzanowski 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware

More information

Distributed Systems 24. Fault Tolerance

Distributed Systems 24. Fault Tolerance Distributed Systems 24. Fault Tolerance Paul Krzyzanowski pxk@cs.rutgers.edu 1 Faults Deviation from expected behavior Due to a variety of factors: Hardware failure Software bugs Operator errors Network

More information

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015

Distributed Coordination with ZooKeeper - Theory and Practice. Simon Tao EMC Labs of China Oct. 24th, 2015 Distributed Coordination with ZooKeeper - Theory and Practice Simon Tao EMC Labs of China {simon.tao@emc.com} Oct. 24th, 2015 Agenda 1. ZooKeeper Overview 2. Coordination in Spring XD 3. ZooKeeper Under

More information

Inexpensive Coordination in Hardware

Inexpensive Coordination in Hardware Consensus in a Box Inexpensive Coordination in Hardware Zsolt István, David Sidler, Gustavo Alonso, Marko Vukolic * Systems Group, Department of Computer Science, ETH Zurich * Consensus IBM in Research,

More information

Data Modelling and Databases Exercise dates: March 22/March 23, 2018 Ce Zhang, Gustavo Alonso Last update: March 26, 2018.

Data Modelling and Databases Exercise dates: March 22/March 23, 2018 Ce Zhang, Gustavo Alonso Last update: March 26, 2018. Data Modelling and Databases Exercise dates: March 22/March 23, 2018 Ce Zhang, Gustavo Alonso Last update: March 26, 2018 Spring Semester 2018 Head TA: Ingo Müller Assignment 4: SQL This assignment will

More information

Assignment 2: Relational Model Solution

Assignment 2: Relational Model Solution Data Modelling and Databases Exercise dates: March 8/March 9, 208 Ce Zhang, Gustavo Alonso Last update: March 6, 208 Spring Semester 208 Head TA: Ingo Müller Assignment 2: Relational Model Solution This

More information

Lazy Agent Replication and Asynchronous Consensus for the Fault-Tolerant Mobile Agent System

Lazy Agent Replication and Asynchronous Consensus for the Fault-Tolerant Mobile Agent System Lazy Agent Replication and Asynchronous Consensus for the Fault-Tolerant Mobile Agent System Taesoon Park 1,IlsooByun 1, and Heon Y. Yeom 2 1 Department of Computer Engineering, Sejong University, Seoul

More information

Chapter 8 Fault Tolerance

Chapter 8 Fault Tolerance DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 8 Fault Tolerance Fault Tolerance Basic Concepts Being fault tolerant is strongly related to what

More information

C 1. Recap. CSE 486/586 Distributed Systems Failure Detectors. Today s Question. Two Different System Models. Why, What, and How.

C 1. Recap. CSE 486/586 Distributed Systems Failure Detectors. Today s Question. Two Different System Models. Why, What, and How. Recap Best Practices Distributed Systems Failure Detectors Steve Ko Computer Sciences and Engineering University at Buffalo 2 Today s Question Two Different System Models How do we handle failures? Cannot

More information

Introduction to Database Replication

Introduction to Database Replication Introduction to Database Replication What is database replication The advantages of database replication A taxonomy of replication strategies: Synchronous Asynchronous Update everywhere Primary copy Discussion

More information

Providing Multi-tenant Services with FPGAs: Case Study on a Key-Value Store

Providing Multi-tenant Services with FPGAs: Case Study on a Key-Value Store Zsolt István *, Gustavo Alonso, Ankit Singla Systems Group, Computer Science Dept., ETH Zürich * Now at IMDEA Software Institute, Madrid Providing Multi-tenant Services with FPGAs: Case Study on a Key-Value

More information

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2018] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [ELECTION ALGORITHMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Does a process

More information

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin

ZHT: Const Eventual Consistency Support For ZHT. Group Member: Shukun Xie Ran Xin ZHT: Const Eventual Consistency Support For ZHT Group Member: Shukun Xie Ran Xin Outline Problem Description Project Overview Solution Maintains Replica List for Each Server Operation without Primary Server

More information

Transactions Between Distributed Ledgers

Transactions Between Distributed Ledgers Transactions Between Distributed Ledgers Ivan Klianev Transactum Pty Ltd High Performance Transaction Systems Asilomar, California, 8-11 October 2017 The Time for Distributed Transactions Has Come Thanks

More information

Student Name: University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science

Student Name: University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science CS 162 Spring 2011 I. Stoica FINAL EXAM Friday, May 13, 2011 INSTRUCTIONS READ THEM

More information

Fault Tolerance. Distributed Systems IT332

Fault Tolerance. Distributed Systems IT332 Fault Tolerance Distributed Systems IT332 2 Outline Introduction to fault tolerance Reliable Client Server Communication Distributed commit Failure recovery 3 Failures, Due to What? A system is said to

More information

CS 425 / ECE 428 Distributed Systems Fall 2017

CS 425 / ECE 428 Distributed Systems Fall 2017 CS 425 / ECE 428 Distributed Systems Fall 2017 Indranil Gupta (Indy) Nov 7, 2017 Lecture 21: Replication Control All slides IG Server-side Focus Concurrency Control = how to coordinate multiple concurrent

More information

Topics in Reliable Distributed Systems

Topics in Reliable Distributed Systems Topics in Reliable Distributed Systems 049017 1 T R A N S A C T I O N S Y S T E M S What is A Database? Organized collection of data typically persistent organization models: relational, object-based,

More information

ZooKeeper & Curator. CS 475, Spring 2018 Concurrent & Distributed Systems

ZooKeeper & Curator. CS 475, Spring 2018 Concurrent & Distributed Systems ZooKeeper & Curator CS 475, Spring 2018 Concurrent & Distributed Systems Review: Agreement In distributed systems, we have multiple nodes that need to all agree that some object has some state Examples:

More information

Basic Protocols and Error Control Mechanisms

Basic Protocols and Error Control Mechanisms Basic Protocols and Error Control Mechanisms Nicola Dragoni Embedded Systems Engineering DTU Compute ACK/NACK Protocol Polling Protocol PAR Protocol Exchange of State Information Two-Way Handshake Protocol

More information