DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016

Size: px
Start display at page:

Download "DSDV: Proactive. Distance Vector (Basic idea) Distance Vector. Distance Vector Algorithm: Tables 12/13/2016"

Transcription

1 estination Sequenced istance Vector (SV) Routing [Perkins94] SV: Proactive SV is a proactive protocol means it maintains up-to-date routing information for all available nodes in the network. No extra time for route acquisitionwhenever a route to a new destination is required, it already exists at the source. S 6811 : Lecture 6 istance Vector (asic idea) istance Vector i k j 13 8 x ach node maintains two tables: istance Table: ost to each node via each outgoing link Routing Table: Minimum cost to each node and next hop node m 23 The message will be sent from i to j as the cost of the path to x is minimum through j istance Vector lgorithm: Tables istance Vector lgorithm: Tables xample l (v,w) d (v,w) d (v) l(v,w) v w d via to d w n istance Table n d (v,w) d (v,n) to via (next hop) cost of link (w,v) cost from v to d via w minimum cost from v to d d RoutingTable n cost d (v) Note: In the figure, d (v,w)< d (v,n) and, therefore, d (v) = d (v,n) Via istance table Routing table Via Via Via Nxt ost

2 Messages Nodes exchange messages that contain information on the cost of a route Reception of messages triggers recalculation of routing table If node v sends a messages to node x of the form, [m, m (v)], this means I can go to node m with minimum cost m (v) New link with cost l(m,v) comes up m via to l(m,v) istance Table p l(v,w) v w d m n to RoutingTable via (next hop) cost v [m, m (v)] x m m (v,p) l(m,v) m n m (v) New row This message is only of interest to neighbors of v New column xample 1 xample 1 Via 1 0 (, 0) 0 Via (, 0) 0 (, 0) xample 1 xample 1 Via (, 0) 0 Via (, 0) 0 (, 0) (, 0)

3 xample 1 xample 1 Via (, 0) (, 1) (, 1) Via Via (, 0) (, 1) (, 1) Via (, 0) (, 1) (, 1) Via Via Via Via xample 1 xample 1 (, 0) Via (, 1) (, 1) Via Via Via (, 0) (, 1) (, 1) Via Via Via Via xample 1 Failure (count to infinity) xample 1 - Failure timeout timeout

4 xample 1 - Failure xample 1 - Failure From : From : xample 1 - Failure xample 1 - Failure From : From : xample 1 - Failure xample 1 - Failure From : From :

5 oes it exactly fit in Mobile Wireless d hoc networks? No..because Mobility is not considered Slow convergence to path break ost metrics number of hops Routing table at MH4 before MH1 moves estination-sequenced istance- Vector (SV) ach node maintains a routing table which stores next hop towards each destination a cost metric for the path to each destination a destination sequence number that is created by the destination itself, i.e.: see the following Time info. missing Rule of SV explained Rule of SV explained (ont ) ssume that node X receives routing information from Y about a route to node Z Node X takes the following steps: X Y Z X Y Z Let S(X) and S(Y) denote the destination sequence number for node Z as stored at node X, and as sent by node Y with its routing table to node X, respectively If S(X) > S(Y), then X ignores the routing information received from Y If S(X) = S(Y), and cost of going through Y is smaller than the route known to X, then X sets Y as the next hop to Z If S(X) < S(Y), then X sets Y as the next hop to Z, and S(X) is updated to equal S(Y) fter move: routing table at MH 4 xample (SV): Node joins s routing table est Next ost Seq Suppose node joins

6 xample (SV): Node joins xample (SV): Node joins s routing table est Next ost Seq s routing table est Next ost Seq Suppose node joins Node transmits routing <, 154, 0 > to node Suppose node joins Node transmits routing <, 154, 0 > to node Node inserts <,, 1, 154> in the routing table xample (SV): Node joins xample (SV): Node joins s routing table est Next ost Seq s routing table est Next ost Seq Suppose node joins Node transmits routing <, 154, 0 > to node Node inserts <,, 1, 154> entry in the routing table Node propagates <, 1, 154> routing update to its neighbors and 0 54 Suppose node joins Node transmits routing <, 154, 0 > to node Node inserts <,, 1, 154> entry in the routing table Node propagates <, 1, 154> routing update to its neighbors and Node and inserts <,, 2, 154> entry in their routing tables xample (SV): Node joins xample (SV): Node joins s routing table est Next ost Seq s routing table est Next ost Seq also sends the following updates to <,1,102>, <,1,204> <,2,314>, <,0,56>, <,1,154> 1 56 also sends the following updates to <,1,102>, <,1,204> <,2,314>, <,0,56>, <,1,154> determines its own routing table

7 xample (SV): Link breaks xample (SV): Link breaks s routing table est Next ost Seq s routing table est Next ost Seq Suppose node moves out of range of does not receive periodic update from Node changes entries involving as next hop and puts Suppose node moves out of range of do not receive periodic update from Node changes entries involving as next hop and puts xample (SV): Link breaks xample (SV): Link breaks Suppose node moves out of range of do not receive periodic update from Node changes entries involving as next hop and puts Node increments sequence number for and s routing table est Next ost Seq Suppose node moves out of range of do not receive periodic update from Node changes entries involving as next hop and puts Node increments sequence number for and est Next ost Seq s routing table xample (SV): Link breaks xample (SV): Link breaks s routing table est Next ost Seq s routing table est Next ost Seq Suppose node moves out of range of do not receive periodic update from Node changes entries involving as next hop and puts Node increments sequence number for and Node propagates <,, 205> and <,, 315> to and Suppose node moves out of range of do not receive periodic update from Node changes entries involving as next hop and puts Node increments sequence number for and Node propagates <,, 205> and <,, 315> to and

8 xample (SV): Link breaks xample (SV): Link breaks Node propagates <,, 205> and <,, 315> to and s previous routing table est Next ost Seq Node propagates <,, 205> and <,, 315> to and s updated routing table est Next ost Seq SV example (MH1 moves) efore move: routing table at MH Next routing dvertisement by MH 4 SV example (MH1 moves) When MH 1 moves, MH 2 advertises infinite cost metric to MH 1 with sequence number

9 SV example (Routing table at MH4 updated) Next dvertisement by MH ut down overhead Reducing advertisement size Reducing number of advertisements Reducing advertisement size: Full ump and Incremental ump full dump carries complete routing tables. node broadcasts a full dump infrequently. n incremental dump carries minor changes in the routing table. This information contains changes since the last full dump. When the size of an incremental dump becomes too large, a full dump is preferred Reducing the number of updates node i may receive the same update message from another node j through several different paths. Suppose, one of the updates has a lowest distance to j It is better to avoid broadcasting every new update and instead broadcast only the lower metric updates. n xample 10 hops n1 5 hops n8 n9 10 sec 20 sec n2 Node n2 should wait longer to get an update from n

10 amping fluctuations How Good is SV? hanges are not immediately advertised. ach node should maintain some statistics about the average settling time of a message from another node. In the previous example, n2 receives couple of messages from n1 with the same sequence number. SV is an efficient protocol for route discovery. Whenever a route to a new destination is required, it already exists at the source. Hence, latency for route discovery is very low. SV also guarantees loop-free paths isadvantages nd However, SV needs to send a lot of control messages. These messages are important for maintaining the network topology at each node. Read up to section 4 This may generate high volume of traffic for high-density and highly mobile networks. Special care should be taken to reduce the number of control messages SV Guarantees Loop-Free Paths (Intuitive Proof) For an n-node ad hoc network, SV maintains n rooted trees, one for each destination. SV Guarantees Loop-Free Paths (Intuitive Proof) onsider the tree rooted at n1. Suppose n3 wants to change its link. n1 n2 n4 n3 n5 We have shown two such trees here. message from n5 reaches n

11 SV Guarantees Loop-Free Paths (Intuitive Proof) However, n3 removes the old link to n4 before connecting the new link to n5 n1 n2 n4 n3 n

Destination Sequenced Distance. [Perkins94] CSE 6811 : Lecture 6

Destination Sequenced Distance. [Perkins94] CSE 6811 : Lecture 6 estination Sequenced istance Vector (SV) Routing [Perkins94] SE 6811 : Lecture 6 SV: Proactive SV is a proactive protocol means it maintains up to date routing information for all available nodes in the

More information

Distance-Vector Routing: Distributed B-F (cont.)

Distance-Vector Routing: Distributed B-F (cont.) istance-vector Routing: istributed - (cont.) xample [ istributed ellman-ord lgorithm ] ssume each node i maintains an entry (R(i,x), L(i,x)), where R(i,x) is the next node along the current shortest path

More information

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols

Page 1 EEC173B/ECS152C. Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols 173/S152 Proactive Protocols MNT Unicast Routing Proactive Protocols OLSR SV ybrid Protocols Most of the schemes discussed so far are reactive Proactive schemes based on distance vector and link state

More information

TCP/IP Networking. Part 3: Forwarding and Routing

TCP/IP Networking. Part 3: Forwarding and Routing TP/IP Networking Part 3: Forwarding and Routing Routing of IP Packets There are two parts to routing IP packets:. How to pass a packet from an input interface to the output interface of a router ( IP forwarding

More information

The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing

The Problem: Finding Paths Spring 2011 Lecture #19. Forwarding. Shortest Path Routing The Problem: Finding Paths 1 6.02 Spring 20 Lecture # addressing, forwarding, routing liveness, advertisements, integration distance-vector routing routing loops, counting to infinity 6.02 Spring 20 Lecture,

More information

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. Internet Routing. Jasleen Kaur.

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. Internet Routing. Jasleen Kaur. OMP 3: NETWORKE & ISTRIUTE SSTEMS // OMP 3: NETWORKE & ISTRIUTE SSTEMS Internet Routing Jasleen Kaur Fall 0 Forwarding vs. Routing: Local vs. istributed oth datagram and virtual-circuit based networks

More information

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing

4/25/12. The Problem: Distributed Methods for Finding Paths in Networks Spring 2012 Lecture #20. Forwarding. Shortest Path Routing //1 The Problem: istributed Methods for Finding Paths in Networks L 1.0 Spring 01 Lecture #0 addressing, forwarding, routing liveness, advertisements, integration distance-vector routing link-state routing

More information

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE! 1. Link state flooding topology information finding the shortest paths (Dijkstra) ontents ÉOL POLYTHNIQU ÉÉRL LUSNN! 1. Link state flooding topology information finding the shortest paths (ijkstra)! 2. Hierarchical routing with areas! 3. OSP Link State Routing database modelling neighbor

More information

Routing in Ad-hoc Networks

Routing in Ad-hoc Networks 0/3/ COMP 635: WIRELESS & MOILE COMMUNICTIONS Routing in d-hoc Networks Jasleen Kaur Fall 0 Infrastructure-less Wireless Networks Standard Mobile IP needs an infrastructure Ø Home gent/foreign gent in

More information

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats

What is Routing? EE 122: Shortest Path Routing. Example. Internet Routing. Ion Stoica TAs: Junda Liu, DK Moon, David Zats What is Routing? Routing implements the core function of a network: : Shortest Path Routing Ion Stoica Ts: Junda Liu, K Moon, avid Zats http://inst.eecs.berkeley.edu/~ee/fa9 (Materials with thanks to Vern

More information

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday

Lecture 13: Routing in multihop wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Lecture 13: Routing in multihop wireless networks Mythili Vutukuru CS 653 Spring 2014 March 3, Monday Routing in multihop networks Figure out a path from source to destination. Basic techniques of routing

More information

CSE/EE 461 Distance Vector Routing

CSE/EE 461 Distance Vector Routing S/ 46 istance Vector Routing Last Time Introduction to the Network layer Internetworks atagram and virtual circuit services Internet Protocol (IP) packet format The Network layer Provides end-to-end data

More information

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives

Routers & Routing : Computer Networking. Binary Search on Ranges. Speeding up Prefix Match - Alternatives Routers & Routing -44: omputer Networking High-speed router architecture Intro to routing protocols ssigned reading [McK9] Fast Switched ackplane for a Gigabit Switched Router Know RIP/OSPF L-4 Intra-omain

More information

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing IP orwarding - omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSP (Open Shortest Path irst) The Story So ar IP addresses are structure to reflect Internet structure

More information

Page 1. EEC173B/ECS152C, Winter Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols

Page 1. EEC173B/ECS152C, Winter Link State Routing [Huitema95] Optimized Link State Routing (OLSR) MANET Unicast Routing. Proactive Protocols 173/S152, Winter 2006 Proactive Protocols MNT Unicast Routing Proactive Protocols OLSR SV Hybrid Protocols Most of the schemes discussed so far are reactive Proactive schemes based on distance vector and

More information

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to.

Network service model. Network service model. Network Layer (part 1) Virtual circuits. By the end of this lecture, you should be able to. Netork Layer (part ) y the end of this lecture, you should be able to. xplain the operation of distance vector routing algorithm xplain shortest path routing algorithm escribe the major points of RIP and

More information

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich

Discussion 8: Link State Routing. CSE 123: Computer Networks Marti Motoyama & Chris Kanich iscussion 8: Link State Routing S : omputer Networks Marti Motoyama & hris Kanich Schedule Project Questions: mail hris, post to moodle, or attend his OH Homework Questions? Link State iscussion S iscussion

More information

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR

AODV Route Requests (RREQ) are forwarded in a manner similar to DSR d oc On-emand istance Vector (OV) R includes source routes in packet headers Resulting large headers can sometimes degrade performance particularly when data contents of a packet are small OV attempts

More information

Third Generation Routers

Third Generation Routers IP orwarding 5-5- omputer Networking 5- Lecture : Routing Peter Steenkiste all www.cs.cmu.edu/~prs/5-- The Story So ar IP addresses are structured to reflect Internet structure IP packet headers carry

More information

EE 122: Intra-domain routing

EE 122: Intra-domain routing EE : Intra-domain routing Ion Stoica September 0, 00 (* this presentation is based on the on-line slides of J. Kurose & K. Rose) Internet Routing Internet organized as a two level hierarchy First level

More information

Bridges. Bridge Functions. Example of No-frills Bridge. No-frills Bridges. Example of Learning Bridge. Learning Bridges

Bridges. Bridge Functions. Example of No-frills Bridge. No-frills Bridges. Example of Learning Bridge. Learning Bridges ridge Functions To extend size of LNs either geographically or in terms number of users. Protocols that include collisions can be performed in a collision domain of limited size. In ring networks the number

More information

IP Forwarding Computer Networking. Graph Model. Routes from Node A. Lecture 11: Intra-Domain Routing

IP Forwarding Computer Networking. Graph Model. Routes from Node A. Lecture 11: Intra-Domain Routing IP Forwarding 5-44 omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) The Story So Far IP addresses are structured to reflect Internet

More information

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza:

Nomadic Communications. Copyright. Ad-Hoc and WMN. Wireless Mesh Networks. Quest operaèprotettadallalicenza: Nomadic ommunications Wireless Mesh Networks Renato Lo igno Loigno@disi.unitn.it - Tel: 2026 Home Page: http://isi.unitn.it/locigno/index.php/teaching-duties/nomadic-communications opyright Quest operaèprotettadallalicenza:

More information

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks.

4/11/2012. Outline. Routing Protocols for Ad Hoc Networks. Classification of Unicast Ad-Hoc Routing Protocols. Ad Hoc Networks. 18759 Wireless Networks (2012-pring) urvey Routing Protocols for d Hoc Networks Jiun-RenLin and Yi-hun hou lectrical and omputer ngineering arnegie Mellon University Outline d-hoc networks Unicast d-hoc

More information

Ad hoc On-demand Distance Vector Routing (AODV) [Perkins99] CSE 6811 : Lecture 7

Ad hoc On-demand Distance Vector Routing (AODV) [Perkins99] CSE 6811 : Lecture 7 d hoc On-demand istance Vector Routing (OV) [Perkins99] 6811 : Lecture 7 d Hoc On-emand istance Vector Routing (OV) R includes source routes in packet headers G ata. Header Large headers can sometimes

More information

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now.

Let s focus on clarifying questions. More Routing. Logic Refresher. Warning. Short Summary of Course. 10 Years from Now. Let s focus on clarifying questions I love the degree of interaction in this year s class More Routing all Scott Shenker http://inst.eecs.berkeley.edu/~ee/ Materials with thanks to Jennifer Rexford, Ion

More information

Unicast Routing in Mobile Ad Hoc Networks

Unicast Routing in Mobile Ad Hoc Networks Unicast Routing in obile d oc etworks Routing problem 1 2 Responsibility of a routing protocol etermining an optimal way to find optimal routes etermining a feasible path to a destination based on a certain

More information

COMP 3331/9331: Computer Networks and Applications

COMP 3331/9331: Computer Networks and Applications OMP /9: omputer Networks and pplications Week 9 Network Layer: Routing Reading Guide: hapter 4: Sections 4.5 Network Layer nnouncements v Labs Lab 4 ongestion ontrol Lab 5 Simple Router (start up for ssignment,

More information

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018

CS 43: Computer Networks. 23: Routing Algorithms November 14, 2018 S 3: omputer Networks 3: Routing lgorithms November, 08 Last class NT: Network ddress Translators: NT is mostly bad, but in some cases, it s a necessary evil. IPv6: Simpler, faster, better Tunneling: IPv6

More information

Study of Route Reconstruction Mechanism in DSDV Based Routing Protocols

Study of Route Reconstruction Mechanism in DSDV Based Routing Protocols Study of Route Reconstruction Mechanism in DSDV Based Routing Protocols Sharma Shelja, Kumar Suresh and Rathy R. K. Department of CSE, FET, MRIU, Faridabad, India Email: sharma.shelja@gmail.com, enthusk@yahoo.com,

More information

More on Network Routing and Internet Protocol

More on Network Routing and Internet Protocol omputer Networks //03 More on Network Routing and Internet Protocol Kai Shen Network Routing Link state routing: ijkstra s algorithm efficient approach to calculate least cost routes all routers need complete

More information

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols

Ad Hoc Routing. Ad-hoc Routing. Problems Using DV or LS. DSR Concepts. DSR Components. Proposed Protocols d oc Routing d-hoc Routing rvind Krishnamurthy all 2003 Create multi-hop connectivity among set of wireless, possibly moving, nodes Mobile, wireless hosts act as forwarding nodes as well as end systems

More information

LECTURE 9. Ad hoc Networks and Routing

LECTURE 9. Ad hoc Networks and Routing 1 LECTURE 9 Ad hoc Networks and Routing Ad hoc Networks 2 Ad Hoc Networks consist of peer to peer communicating nodes (possibly mobile) no infrastructure. Topology of the network changes dynamically links

More information

CS5984 Mobile Computing

CS5984 Mobile Computing CS5984 Mobile Computing Dr. Ayman Abdel-Hamid Computer Science Department Virginia Tech Part II 1 Outline Routing Protocols for Ad hoc Networks DSDV: Highly Dynamic Destination-Sequenced Distance- Vector

More information

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica EE MITERM EXM: 00-0- Scott Shenker, Ion Stoica Last name Student I First name Login: ee- Please circle the last two letters of your login. a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e

More information

Routing In Ad Hoc Networks

Routing In Ad Hoc Networks Routing n d oc Networks ontents 1. ntroduction to ad-hoc networks 2. Proactive routing protocols OLR 3. Reactive routing protocols R, OV 4. Non-uniform routing protocols ZRP, R 5. Other approaches eographical

More information

Routing Protocols in MANETs

Routing Protocols in MANETs Chapter 4 Routing Protocols in MANETs 4.1 Introduction The main aim of any Ad Hoc network routing protocol is to meet the challenges of the dynamically changing topology and establish a correct and an

More information

Draft Notes 1 : Scaling in Ad hoc Routing Protocols

Draft Notes 1 : Scaling in Ad hoc Routing Protocols Draft Notes 1 : Scaling in Ad hoc Routing Protocols Timothy X Brown University of Colorado April 2, 2008 2 Introduction What is the best network wireless network routing protocol? This question is a function

More information

Intra-domain Routing

Intra-domain Routing Intra-domain Routing Outline Introduction to Routing Distance Vector Algorithm CS 640 1 Goal Build router forwarding tables in an internetwork using intra-domain routing protocols High level approach Distributed

More information

Distance vector and RIP

Distance vector and RIP DD2490 p4 2008 Distance vector and RIP Olof Hagsand KTHNOC/NADA Literature RIP lab RFC 245: RIPv2. Sections 1 2 contains some introduction that can be useful to understand the context in which RIP is specified..1.4

More information

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic?

Routing. 9: Intro to Routing Algorithms. Routing. Roadmap. Routing Algorithm classification: Static or Dynamic? Routing 9: Intro to Routing lgorithms Last Modified: // :: PM : Netork Layer a- IP Routing each router is supposed to send each IP datagram one step closer to its Ho do they do that? Static Routing Hierarchical

More information

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues

Review: Routing in Packet Networks Shortest Path Algorithms: Dijkstra s & Bellman-Ford. Routing: Issues Review: Routing in Packet Networks Shortest Path lgorithms: ijkstra s & ellman-ford Routing: Issues How are routing tables determined? Who determines table entries? What info used in determining table

More information

WAN Technology and Routing

WAN Technology and Routing PS 60 - Network Programming WN Technology and Routing Michele Weigle epartment of omputer Science lemson University mweigle@cs.clemson.edu March, 00 http://www.cs.clemson.edu/~mweigle/courses/cpsc60 WN

More information

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14

Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing in Ad Hoc Wireless Networks PROF. MICHAEL TSAI / DR. KATE LIN 2014/05/14 Routing Algorithms Link- State algorithm Each node maintains a view of the whole network topology Find the shortest path

More information

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016

CS 457 Networking and the Internet. Shortest-Path Problem. Dijkstra s Shortest-Path Algorithm 9/29/16. Fall 2016 9/9/6 S 7 Networking and the Internet Fall 06 Shortest-Path Problem Given: network topology with link costs c(x,y): link cost from node x to node y Infinity if x and y are not direct neighbors ompute:

More information

The Basics of Wireless Communication Octav Chipara

The Basics of Wireless Communication Octav Chipara The asics of Wireless ommunication Octav hipara genda hannel model: the protocol model High-level media access TM, SM hidden/exposed terminal problems WLN Fundamentals of routing proactive on-demand 2

More information

Network Layer: Routing

Network Layer: Routing Network Layer: Routing The Problem A B R 1 R 2 R 4 R 3 Goal: for each destination, compute next hop 1 Lecture 9 2 Basic Assumptions Trivial solution: Flooding Dynamic environment: links and routers unreliable:

More information

Fairness Example: high priority for nearby stations Optimality Efficiency overhead

Fairness Example: high priority for nearby stations Optimality Efficiency overhead Routing Requirements: Correctness Simplicity Robustness Under localized failures and overloads Stability React too slow or too fast Fairness Example: high priority for nearby stations Optimality Efficiency

More information

Mobile and Sensor Systems. Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo

Mobile and Sensor Systems. Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo Mobile and Sensor Systems Lecture 3: Infrastructure, Ad-hoc and Delay Tolerant Mobile Networks Dr Cecilia Mascolo In this lecture In this lecture we will describe the difference in infrastructure and ad

More information

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card

A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. Broch et al Presented by Brian Card A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols Broch et al Presented by Brian Card 1 Outline Introduction NS enhancements Protocols: DSDV TORA DRS AODV Evaluation Conclusions

More information

Routing in a network

Routing in a network Routing in a network Focus is small to medium size networks, not yet the Internet Overview Then Distance vector algorithm (RIP) Link state algorithm (OSPF) Talk about routing more generally E.g., cost

More information

Wireless Mesh Networks

Wireless Mesh Networks Wireless Mesh Networks COS 463: Wireless Networks Lecture 6 Kyle Jamieson [Parts adapted from I. F. Akyildiz, B. Karp] Wireless Mesh Networks Describes wireless networks in which each node can communicate

More information

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5

Dynamic Source Routing (DSR) [Johnson96] CSE 6811 : Lecture 5 ynamic Source Routing (SR) [Johnson96] S 6811 : Lecture 5 d Hoc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation Loop freedom

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging)

CSE/EE 461 Lecture 7 Bridging LANs. Last Two Times. This Time -- Switching (a.k.a. Bridging) S/ 461 Lecture 7 ridging LNs Last Two Times Medium ccess ontrol (M) protocols Part of the Link Layer t the heart of Local rea Networks (LNs) ow do multiple parties share a wire or the air? Random access

More information

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5.

Content. 1. Introduction. 2. The Ad-hoc On-Demand Distance Vector Algorithm. 3. Simulation and Results. 4. Future Work. 5. Rahem Abri Content 1. Introduction 2. The Ad-hoc On-Demand Distance Vector Algorithm Path Discovery Reverse Path Setup Forward Path Setup Route Table Management Path Management Local Connectivity Management

More information

Address Translation. Map IP addresses into physical addresses destination host next hop router

Address Translation. Map IP addresses into physical addresses destination host next hop router Address Translation Map IP addresses into physical addresses destination host next hop router Techniques encode physical address in host part of IP address table-based ARP table of IP to physical address

More information

Dynamic Source Routing (DSR) [Johnson96]

Dynamic Source Routing (DSR) [Johnson96] ynamic Source Routing (SR) [ohnson96] S 6811 : ecture 5 d oc Wireless Routing ifferent from routing in the wired world esirable properties of a wireless routing protocol istributed operation oop freedom

More information

2/16/2008. Outline Computer Networking Lecture 11 Routing. Sending Link States by Flooding. Link State Protocol Concept

2/16/2008. Outline Computer Networking Lecture 11 Routing. Sending Link States by Flooding. Link State Protocol Concept //8 Outline - omputer Networking Lecture Routing Link tate OP Peter teenkiste epartments of omputer cience and Electrical and omputer Engineering IP Multicast ervice asics - Networking, pring 8 http://www.cs.cmu.edu/~dga/-/8

More information

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)

Computer Networking. Intra-Domain Routing. RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) Computer Networking Intra-Domain Routing RIP (Routing Information Protocol) & OSPF (Open Shortest Path First) IP Forwarding The Story So Far IP addresses are structured to reflect Internet structure IP

More information

Distance Vector Routing

Distance Vector Routing ÉOL POLYTHNIQU FÉÉRL LUSNN istance Vector Routing Jean Yves Le oudec 20 ontents. Routing in General 2. istance vector: theory 3. istance vector: practice (RIP) 4. Software efined Networking (SN) Textbook

More information

Lecture 4. The Network Layer (cont d)

Lecture 4. The Network Layer (cont d) Lecture 4 The Network Layer (cont d) Agenda Routing Tables Unicast and Multicast Routing Protocols Routing Algorithms Link State and Distance Vector Routing Information and Open Shortest Path First Protocols

More information

Distance Vector Routing Protocols

Distance Vector Routing Protocols Distance Vector Routing Protocols Routing Protocols and Concepts Chapter 4 Version 4.0 1 Objectives Identify the characteristics of distance vector routing protocols. Describe the network discovery process

More information

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model

Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model Behaviour of Routing Protocols of Mobile Adhoc Netwok with Increasing Number of Groups using Group Mobility Model Deepak Agrawal, Brajesh Patel Department of CSE Shri Ram Institute of Technology Jabalpur,

More information

Routing, Routing Algorithms & Protocols

Routing, Routing Algorithms & Protocols Routing, Routing Algorithms & Protocols Computer Networks Lecture 6 http://goo.gl/pze5o8 Circuit-Switched and Packet-Switched WANs 2 Circuit-Switched Networks Older (evolved from telephone networks), a

More information

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks

Unicast Routing in Mobile Ad Hoc Networks. Dr. Ashikur Rahman CSE 6811: Wireless Ad hoc Networks Unicast Routing in Mobile Ad Hoc Networks 1 Routing problem 2 Responsibility of a routing protocol Determining an optimal way to find optimal routes Determining a feasible path to a destination based on

More information

C13b: Routing Problem and Algorithms

C13b: Routing Problem and Algorithms CISC 7332X T6 C13b: Routing Problem and Algorithms Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/20/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

Unit 2. Signaling and Single Area OSPF

Unit 2. Signaling and Single Area OSPF nit ignaling and ingle rea PF elecommunications ignaling ignaling g sed to provide all of the set up, tare down and call processing information such as: ff hook notification alling party number alled party

More information

Computation of Multiple Node Disjoint Paths

Computation of Multiple Node Disjoint Paths Chapter 5 Computation of Multiple Node Disjoint Paths 5.1 Introduction In recent years, on demand routing protocols have attained more attention in mobile Ad Hoc networks as compared to other routing schemes

More information

Performance Comparison of Ad Hoc Routing Protocols over IEEE DCF and TDMA MAC Layer Protocols

Performance Comparison of Ad Hoc Routing Protocols over IEEE DCF and TDMA MAC Layer Protocols Performance Comparison of Ad Hoc Routing Protocols over IEEE 82.11 DCF and TDMA MAC Layer Protocols Govind. P. Gupta Computer Science Department R.K.G.I.T, Ghaziabad (India) er_gpgupta@yahoo.com A. K.

More information

Performance Analysis of Broadcast Based Mobile Adhoc Routing Protocols AODV and DSDV

Performance Analysis of Broadcast Based Mobile Adhoc Routing Protocols AODV and DSDV INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND MOBILE APPLICATIONS IJCSMA Performance Analysis of Broadcast Based Mobile Adhoc Routing Protocols AODV and DSDV Er. Sandeep Singh Khehra 1, Er. Abhinash Singla

More information

Mobile and Ubiquitous Computing Routing Protocols. Niki Trigoni

Mobile and Ubiquitous Computing Routing Protocols. Niki Trigoni Mobile and Ubiquitous Computing Routing Protocols Niki Trigoni www.dcs.bbk.ac.uk/~niki niki@dcs.bbk.ac.uk Overview Intro to routing in ad-hoc networks Routing methods Link-State Distance-Vector Distance-vector

More information

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load

Overview. Problem: Find lowest cost path between two nodes Factors static: topology dynamic: load Dynamic Routing Overview Forwarding vs Routing forwarding: to select an output port based on destination address and routing table routing: process by which routing table is built Network as a Graph C

More information

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS

PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS PERFORMANCE ANALYSIS OF AODV ROUTING PROTOCOL IN MANETS AMANDEEP University College of Engineering, Punjabi University Patiala, Punjab, India amandeep8848@gmail.com GURMEET KAUR University College of Engineering,

More information

Vehicle Networks. Networking Layer: Routing. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Networking Layer: Routing. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Networking Layer: Routing Univ.-Prof. r. Thomas Strang, ipl.-inform. Matthias Röckl Outline Introduction Lecture Vehicle Networks, Thomas Strang and Matthias Röckl, WS 008/009 Classical

More information

3. Evaluation of Selected Tree and Mesh based Routing Protocols

3. Evaluation of Selected Tree and Mesh based Routing Protocols 33 3. Evaluation of Selected Tree and Mesh based Routing Protocols 3.1 Introduction Construction of best possible multicast trees and maintaining the group connections in sequence is challenging even in

More information

0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP

0!1. Overlaying mechanism is called tunneling. Overlay Network Nodes. ATM links can be the physical layer for IP epartment of lectrical ngineering and omputer Sciences University of alifornia erkeley '!$$( network defined over another set of networks The overlay addresses its own nodes Links on one layer are network

More information

Basic Idea. Routing. Example. Routing by the Network

Basic Idea. Routing. Example. Routing by the Network Basic Idea Routing Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

ECS-087: Mobile Computing

ECS-087: Mobile Computing ECS-087: Mobile Computing Mobile Adhoc Networks and Routing in MANETS (most of the slides borrowed from Prof. Sridhar Iyer) Diwakar Yagyasen 1 Index Mobile Ad Hoc Networks (MANET) MAC in MANET MANET routing

More information

Routing by the Network

Routing by the Network Routing Basic Idea Routing table at each router/gateway When IP packet comes, destination address checked with routing table to find next hop address Questions: Route by host or by network? Routing table:

More information

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel?

Lecture 6: Bridging & Switching. Last time. Today. CSE 123: Computer Networks Chris Kanich. How do multiple hosts share a single channel? Lecture 6: ridging & Switching SE 3: omputer Networks hris Kanich Project countdown: 5 days Last time How do multiple hosts share a single channel? Medium ccess ontrol (M) protocols hannel partitioning

More information

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding

Now Arriving at Layer 3. Packet Forwarding. Router Design. Network Layers and Routers. Switching and Forwarding. Forwarding Now rriving at Layer Packet orwarding although layer switches and layer routers are similar in many ways and TM/Virtual are used at layer these days 9/7/6 S/ 48 - UIU, all 6 9/7/6 S/ 48 - UIU, all 6 Layers

More information

Performance Analysis of Aodv Protocol under Black Hole Attack

Performance Analysis of Aodv Protocol under Black Hole Attack International Journal of Scientific & Engineering Research Volume 2, Issue 8,August-2011 1 Performance Analysis of Aodv Protocol under Black Hole Attack Monika Roopak, Dr. Bvr Reddy ABSTRACT- Mobile Ad-hoc

More information

Tietokoneverkot T

Tietokoneverkot T Tietokoneverkot T-110.350 Ad-hoc networking 9.2.2005 Antti Ylä-Jääski 9.2.2005 / AYJ Slide 1 Goals and topics Ad-hoc networking terminology & outline Ad-hoc networking hot topics - routing Discuss how

More information

ECE 158A: Lecture 5. Fall 2015

ECE 158A: Lecture 5. Fall 2015 8: Lecture Fall 0 Routing ()! Location-ased ddressing Recall from Lecture that routers maintain routing tables to forward packets based on their IP addresses To allow scalability, IP addresses are assigned

More information

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing

06/02/ Local & Metropolitan Area Networks. Overview. Routing algorithm ACOE322. Lecture 6 Routing Local & Metropolitan rea Networks OE3 Lecture 6 Routing r. L. hristofi Overview The main function of the network layer is routing packets from the source to the destination machine. The only exception

More information

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni

CEN445 Network Protocols and Algorithms. Chapter 2. Routing Algorithms. Dr. Ridha Ouni 3/4/04 EN44 Network Protocols and lgorithms hapter Routing lgorithms Dr. Ridha Ouni Department of omputer Engineering ollege of omputer and Information Sciences King Saud University References Some slides

More information

Why dynamic route? (1)

Why dynamic route? (1) Routing Why dynamic route? (1) Static route is ok only when Network is small There is a single connection point to other network No redundant route 2 Why dynamic route? (2) Dynamic Routing Routers update

More information

Power aware Multi-path Routing Protocol for MANETS

Power aware Multi-path Routing Protocol for MANETS Power aware Multi-path Routing Protocol for MANETS Shruthi P Murali 1,Joby John 2 1 (ECE Dept, SNGCE, India) 2 (ECE Dept, SNGCE, India) Abstract: Mobile Adhoc Network consists of a large number of mobile

More information

Initialization: Loop until all nodes in N

Initialization: Loop until all nodes in N Routing Routing lgorithm classification Routing protocol Goal: determine good path (sequence of routers) thru netork from source to dest. Graph abstraction for routing s: graph nodes are routers graph

More information

Lecture 12: Link-state Routing. Lecture 12 Overview. Router Tasks. CSE 123: Computer Networks Chris Kanich. Routing overview

Lecture 12: Link-state Routing. Lecture 12 Overview. Router Tasks. CSE 123: Computer Networks Chris Kanich. Routing overview Lecture : Link-state Routing CSE 3: Computer Networks Chris Kanich Lecture Overview Routing overview Intra vs. Inter-domain routing Link-state routing protocols CSE 3 Lecture : Link-state Routing Router

More information

Introduction to Intra-Domain Routing

Introduction to Intra-Domain Routing Introduction to Intra-Domain Routing Stefano Vissicchio UCL Computer Science COMP3 Agenda We delve into network layer s main functionality. Setting Context Routing players. Intra-domain routing problem

More information

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET

A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET ISSN: 2278 1323 All Rights Reserved 2016 IJARCET 296 A COMPARISON OF REACTIVE ROUTING PROTOCOLS DSR, AODV AND TORA IN MANET Dr. R. Shanmugavadivu 1, B. Chitra 2 1 Assistant Professor, Department of Computer

More information

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791

CS 457 Networking and the Internet. What is Routing. Forwarding versus Routing 9/27/16. Fall 2016 Indrajit Ray. A famous quotation from RFC 791 CS 457 Networking and the Internet Fall 2016 Indrajit Ray What is Routing A famous quotation from RFC 791 A name indicates what we seek An address indicates where it is A route indicates how we get there

More information

Distributed Algorithms in Networks EECS 122: Lecture 17

Distributed Algorithms in Networks EECS 122: Lecture 17 istributed lgorithms in Networks EES : Lecture 7 epartment of Electrical Engineering and omputer Sciences University of alifornia erkeley Network Protocols often have unintended effects TP Eample TP connections

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks OMP/ELE 49/6 Introduction to omputer Networks Intra-domain routing Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene Ng eugeneng at cs.rice.edu

More information

Routing Outline. EECS 122, Lecture 15

Routing Outline. EECS 122, Lecture 15 Fall & Walrand Lecture 5 Outline EECS, Lecture 5 Kevin Fall kfall@cs.berkeley.edu Jean Walrand wlr@eecs.berkeley.edu Definition/Key Questions Distance Vector Link State Comparison Variations EECS - Fall

More information

On-Demand Routing in Wireless Ad-Hoc Networks with Wide Levels of Network Density

On-Demand Routing in Wireless Ad-Hoc Networks with Wide Levels of Network Density On-Demand Routing in Wireless Ad-Hoc Networks with Wide Levels of Network Density Presented by Wei-Cheng Xiao Advisor: David B. Johnson 2015/03/30 Wireless Network Infrastructure Mode Internet access point

More information

Computer Networks. Routing Algorithms

Computer Networks. Routing Algorithms Computer Networks Routing Algorithms Topics Routing Algorithms Shortest Path (Dijkstra Algorithm) Distance Vector Routing Count to infinity problem Solutions for count to infinity problem Link State Routing

More information

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing

ICS 351: Today's plan. netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing ICS 351: Today's plan netmask exercises network and subnetwork design dynamic routing RIP distance-vector routing Netmask exercises how many bits in this netmask: 255.128.0.0 using this netmask and the

More information