Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding."

Transcription

1 Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of multicast: a collection of digital television stations broadcasting their programs as streams of IP packets to many receivers at various locations Unicast is a special case of multicast Integrated Services In multicast applications, groups can change membership dynamically (people enter a video conference and then get bored and switch to a soap opera or the croquet channel) Under these conditions, the approach of having the senders reserve bandwidth in advance does not work well, since it would require each sender to track all entries and exits of its audience For a system designed to transmit television with millions of subscribers, it would not work at all RSVP Resource reservation Protocol Allows multiple senders to transmit to multiple groups of receivers Permits individual receivers to switch channels freely Optimizes bandwidth use while at the same time eliminating congestion Expedited Forwarding Expedited packets experience a trafficfree network. Assured Forwarding A possible implementation of the data flow for assured forwarding. Internetworking How Networks Differ How Networks Can Be Connected Concatenated Virtual Circuits Connectionless Internetworking Tunneling Internetwork Routing Fragmentation

2 Connecting Networks A collection of interconnected networks. How Networks Differ Some of the many ways networks can differ. How Networks Can Be Connected In the physical layer, networks can be connected by repeaters or hubs, which just move the bits from one network to an identical network. These are mostly analog devices and do not understand anything about digital protocols (they just regenerate signals) In data link layer, bridges and switches can be used. They can accept frames, examine the MAC addresses, and forward the frames to a different network while doing minor protocol translation in the process How Networks Can Be Connected In network layer, routers can connect two networks. If two networks have dissimilar network layers, the router may be able to translate between the packet formats In transport layer, transport gateways can interface between two transport connections In the application layer, application gateways translate message semantics. As an example, gateways between Internet (RFC 822) and X.400 must parse the messages and change various header fields How Networks Can Be Connected (a) Two Ethernets connected by a switch. (b) Two Ethernets connected by routers. With a switch (or bridge), the entire frame is transported on the basis of its MAC address. With a router, the packet is extracted from the frame and the address in the packet is used for deciding where to send it. Switches do not have to understand the network layer protocol being used to switch packets. Routers do How Networks Can Be Connected Two styles of internetworking are possible a connection-oriented concatenation of virtualcircuit subnets: In the past, most (public) networks were connection oriented (and frame relay, SNA, , and ATM still are) a datagram internet style: with the rapid acceptance of the Internet, datagrams became fashionable

3 Concatenated Virtual Circuits A connection to a host in a distant network is set up in a way similar to the way connections are normally established The subnet sees that the destination is remote and builds a virtual circuit to the router nearest the destination network Then it constructs a virtual circuit from that router to an external gateway (multiprotocol router) This gateway records the existence of the virtual circuit in its tables and proceeds to build another virtual circuit to a router in the next subnet This process continues until the destination host has been reached Concatenated Virtual Circuits Once data packets begin flowing along the path, each gateway relays incoming packets, converting between packet formats and virtual-circuit numbers as needed. All data packets must traverse the same sequence of gateways. Packets in a flow are never reordered by the network. Best when all the networks have roughly the same properties Concatenated Virtual Circuits Internetworking using concatenated virtual circuits. Connectionless Internetworking Does not require all packets belonging to one connection to traverse the same sequence of gateways Datagrams from host to host take different routes through the internetwork A routing decision is made separately for each packet, possibly depending on the traffic at the moment the packet is sent can use multiple routes and thus achieve a higher bandwidth than the concatenated VC model There is no guarantee that the packets arrive at the destination in order (if they arrive at all) Connectionless Internetworking A connectionless internetwork Tunneling Tunneling a packet from Paris to London.

4 Tunneling (2) Internetwork Routing Tunneling a car from France to England. (a) An internetwork. (b) A graph of the internetwork. Internetwork Routing Two-level routing algorithm within each network an interior gateway protocol is used between the networks, an exterior gateway protocol is used Since each network is independent, they may all use different algorithms Because each network in an internetwork is independent of all the others, it is often referred to as an Autonomous System (AS) Differences between internetwork routing and intranetwork routing Boundary (international vs national) Charging (cost) Fragmentation Each network imposes some maximum size on its packets Network designers are not free to choose any maximum packet size they wish Maximum payloads range from 48 bytes (ATM cells) to 65,515 bytes (IP packets), although the payload size in higher layers is often larger The only solution is to allow gateways to break up packets into fragments, sending each fragment as a separate internet packet Fragmentation The Network Layer in the Internet The IP Protocol IP Addresses Internet Control Protocols OSPF & BGP Internet Multicasting Mobile IP IPv6 (a) Transparent fragmentation. (b) Nontransparent fragmentation.

5 Design Principles for Internet RFC 1958 Make sure it works Keep it simple Make clear choices Exploit modularity Expect heterogeneity Avoid static options and parameters Look for a good design; it need not be perfect Be strict when sending and tolerant when receiving Think about scalability Consider performance and cost Collection of Subnetworks The Internet is an interconnected collection of many networks (autonomous systems-as). Internet Protocol The glue that holds the whole Internet together is the network layer protocol, IP (Internet Protocol) Unlike most older network layer protocols, it was designed from the beginning with internetworking in mind Its job is to provide a best-efforts (i.e., not guaranteed) way to transport datagrams from source to destination, without regard to whether these machines are on the same network or whether there are other networks in between them How it works? The transport layer takes data streams and breaks them up into datagrams in theory, can be up to 64 Kbytes each in practice usually not more than 1500 bytes (fit in one Ethernet frame) Each datagram is transmitted through the Internet, possibly being fragmented into smaller units When all the pieces finally get to the destination machine, they are reassembled by the network layer into the original datagram This datagram is then handed to the transport layer, which inserts it into the receiving process' input stream IP Datagram The IP Protocol (v4) header Format of the IP datagram consists a header part a text part The header has a 20-byte fixed part and a variable length optional part

6 The IP Protocol IP Addresses IP address formats - classful addressing (no longer used) Some of the IP options IP Addresses Class A formats allow for up to 128 networks with 16 million hosts each Class B: 16,384 networks - 64K hosts Class C: 2 million networks hosts Class D support for multicast, in which a datagram is directed to multiple hosts Class E: addresses beginning with 1111 are reserved for future use Network Numbers Network numbers are managed by a nonprofit corporation called ICANN (Internet Corporation for Assigned Names and Numbers) to avoid conflicts Network addresses, (32-bit numbers, written in dotted decimal. Each of the 4 bytes is written in decimal, from 0 to 255. E.g., the 32-bit hexadecimal address C is written as The lowest IP address is and the highest is The values 0 and -1 (all 1s) have special meanings The value 0 means this network or this host The value of -1 is used as a broadcast address to mean all hosts on the indicated network 127.xx.yy.zz are reserved for loopback testing IP Addresses Special IP addresses Subnets In IP addressing, all the hosts in a network must have the same network number This can cause problems as networks grow Getting a second network address would be hard to do A small change was made to the addressing system to deal with it Allow a network to be split into several parts for internal use but still act like a single network to the outside world

7 Subnets A campus network consisting of LANs for various departments Subnets In the Internet literature, the parts of the network (in this case, Ethernets) are called subnets. This usage conflicts with ''subnet'' to mean the set of all routers and communication lines in a network Subnets When a packet comes into the main router, how does it know which subnet (Ethernet) to give it to? One way would be to have a table with 65,536 (class B) entries in the main router telling which router to use for each host on campus This idea would work, but it would require a very large table in the main router and a lot of manual maintenance as hosts were added, moved, or taken out of service Subnets Instead, a different scheme was invented Basically, instead of having a single class B address with 14 bits for the network number and 16 bits for the host number, some bits are taken away from the host number to create a subnet number For example, if the university has 35 departments, it could use a 6-bit subnet number and a 10-bit host number, allowing for up to 64 Ethernets, each with a maximum of 1022 hosts (0 and -1 are not available) This split could be changed later if it turns out to be the wrong one Subnet Mask To implement subnetting, the main router needs a subnet mask that indicates the split between network + subnet number and host Subnet masks are also written in dotted decimal notation, with the addition of a slash followed by the number of bits in the network + subnet part For the example, the subnet mask can be written as (252 = ) An alternative notation is /22 to indicate that the subnet mask is 22 bits long Subnet Mask A class B network subnetted into 64 subnets

8 Subnet Mask Outside the network, the subnetting is not visible In this example, the first subnet might use IP addresses starting at ; second subnet might start at ; third subnet might start at ; etc. To see why the subnets are counting by fours, note that the corresponding binary addresses are as follows: Subnet 1: Subnet 2: Subnet 3: Here the vertical bar ( ) shows the boundary between the subnet number and the host number. To its left is the 6-bit subnet number; to its right is the 10-bit host number Subnet Mask Using subnet, the routing tables are changed, adding entries of the form (this-network, subnet, 0) and (this-network, this-subnet, host) A router on subnet k knows how to get to all the other subnets and also how to get to all the hosts on subnet k It does not have to know the details about hosts on other subnets All that needs to be changed is to have each router do a Boolean AND with the network's subnet mask to get rid of the host number and look up the resulting address in its tables Subnet Mask For example, a packet addressed to and arriving at the main router is ANDed with the subnet mask /22 to give the address This address is looked up in the routing tables to find out which output line to use to get to the router for subnet 3 Subnetting thus reduces router table space by creating a three-level hierarchy consisting of network, subnet, and host (instead of only two: network and host) CIDR Classless InterDomain Routing IP is running out of addresses CIDR (RFC 1519): to allocate the remaining IP addresses in variable-sized blocks, without regard to the classes If a site needs, say, 2000 addresses, it is given a block of 2048 addresses on a 2048-byte boundary The routing tables all over the world are now updated with local assigned entries, each entry contains a base address and a subnet mask Local entries can be combined into a single aggregate entry NAT Network Address Translation IP is running out of addresses NAT (RFC 3022): assign each company a single IP address (or at most, a small number of them) for Internet traffic within the company, every computer gets a unique IP address, which is used for routing internal traffic when a packet exits the company and goes to the ISP, an address translation takes place when a packet leaves the company premises, it passes through a NAT box that converts the internal IP source address (e.g ) to the company's true IP address (e.g ) Internet Control Protocols In addition to IP, which is used for data transfer, the Internet has several control protocols used in the network layer: ICMP: Internet Control Message Protocol ARP(Address Resolution Protocol): mapping IP address into other (Ethernet) address RARP (Reverse Address Resolution Protocol): mapping other (Ethernet) address into IP address BOOTP (Bootstrap Protocol): static mapping table DHCP: Dynamic Host Configuration Protocol : dynamic address assignment using special server.

9 ICMP Operation of Internet is monitored by the routers When something unexpected occurs, the event is reported by the ICMP (Internet Control Message Protocol), which is also used to test the Internet About a dozen types of ICMP messages are defined Each ICMP message type is encapsulated in an IP packet ICMP The principal ICMP message types Routing in the Internet Gateway Routing Protocols: Interior Gateway Routing Protocol: OSPF (Open Shortest Path First) The Exterior Gateway Routing Protocol: BGP (Border Gateway Protocol) Internet Multicasting Typical internet connection is one-to-one Multicasting is supported: Usage: Updating replicated Distributed database Digital conferences How: Using class D address Permanent Temporary Mobile IP Problems: Moving new IP address? Complete IP address on router? IP address must belong to LAN which it is currently attached? Probing periodically? Registration? Security? IPv6 GOAL: Support billions of hosts, even with inefficient address space allocation. Reduce the size of the routing tables. Simplify the protocol, to allow routers to process packets faster. Provide better security (authentication and privacy) than current IP. Pay more attention to type of service, particularly for real-time data. Aid multicasting by allowing scopes to be specified. Make it possible for a host to roam without changing its address. Allow the protocol to evolve in the future. Permit the old and new protocols to coexist for years

10 IPv6 IPv6 has longer addresses than IPv4. They are 16 bytes Simplification of the header It contains only seven fields (versus 13 in IPv4) This allows routers to process packets faster and thus improve throughput and delay Better support for options and the way options are represented Speeds up packet processing time Security Authentication and privacy are key features

Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP

Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP Chapter 5 (Week 10) The Network Layer (CONTINUATION) ANDREW S. TANENBAUM COMPUTER NETWORKS FOURTH EDITION PP. 397-480 1 5.1. NETWORK LAYER DESIGN ISSUES 5.2. ROUTING ALGORITHMS 5.3. CONGESTION CONTROL

More information

Chapter 5. The Network Layer. Network Layer Design Isues. Store-and-Forward Packet Switching 10/7/2010. Implementation of Connectionless Service

Chapter 5. The Network Layer. Network Layer Design Isues. Store-and-Forward Packet Switching 10/7/2010. Implementation of Connectionless Service Network Layer Design Isues Chapter 5 The Network Layer Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation of Connection-Oriented

More information

Chapter 5. The Network Layer. CEN Chapter 5 1

Chapter 5. The Network Layer. CEN Chapter 5 1 Chapter 5 The Network Layer CEN 445 - Chapter 5 1 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation

More information

Chapter 5. The Network Layer FATİH ŞAHİN Network Layer Design Isues. Store-and-Forward Packet Switching

Chapter 5. The Network Layer FATİH ŞAHİN Network Layer Design Isues. Store-and-Forward Packet Switching Chapter 5 The Network Layer FATİH ŞAHİN 2007513806 Network Layer Design Isues Store-and-Forward Packet Switching Services Provided to the Transport Layer Implementation of Connectionless Service Implementation

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

UNIT-IV INTERNETWORKING

UNIT-IV INTERNETWORKING Computer Networks Unit - IV Internetworking UNIT-IV INTERNETWORKING INTERNETWORKING First of all, the installed base of different networks is large. Nearly all personal computers run TCP/IP. Many large

More information

Figure 11 Two-level addressing in classful addressing

Figure 11 Two-level addressing in classful addressing Two-Level Addressing The whole purpose of IPv4 addressing is to define a destination for an Internet packet (at the network layer). When classful addressing was designed, it was assumed that the whole

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 5: Network Layer (cont ) Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall, 2003. 2

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Table of Contents. Cisco TCP/IP

Table of Contents. Cisco TCP/IP Table of Contents TCP/IP Overview...1 TCP/IP Technology...1 TCP...1 IP...2 Routing in IP Environments...4 Interior Routing Protocols...5 RIP...5 IGRP...6 OSPF...6 Integrated IS IS...6 Exterior Routing

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000 IP Addresses The IP addresses are unique. An IPv4 address is a 32-bit address. An IPv6 address is a 128-bit address. The address space of IPv4 is 2 32 or 4,294,967,296. The address space of IPv6 is 2 128

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS

CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS CHAPTER 18 INTERNET PROTOCOLS ANSWERS TO QUESTIONS 18.1 (1) The communications network may only accept blocks of data up to a certain size. (2) Error control may be more efficient with a smaller PDU size.

More information

Introduction to Networks and the Internet

Introduction to Networks and the Internet Introduction to Networks and the Internet CMPE 80N Winter 2004 Lecture 18 Announcements Fourth quiz on Monday, March 1 st. Third HTML discussion session today by Kiran (before class). Summary posted on

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 R1. Let s review some of the terminology used in this textbook. Recall that

More information

Network Layer/IP Protocols

Network Layer/IP Protocols Network Layer/IP Protocols 1 Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2 IPv4 packet header 3 IPv4 Datagram Header Format version of the IP protocol (4 BIts) IP header

More information

To make a difference between logical address (IP address), which is used at the network layer, and physical address (MAC address),which is used at

To make a difference between logical address (IP address), which is used at the network layer, and physical address (MAC address),which is used at To make a difference between logical address (IP address), which is used at the network layer, and physical address (MAC address),which is used at the data link layer. To describe how the mapping of a

More information

Distributed Queue Dual Bus

Distributed Queue Dual Bus Distributed Queue Dual Bus IEEE 802.3 to 802.5 protocols are only suited for small LANs. They cannot be used for very large but non-wide area networks. IEEE 802.6 DQDB is designed for MANs It can cover

More information

COMP/ELEC 429/556 Introduction to Computer Networks

COMP/ELEC 429/556 Introduction to Computer Networks COMP/ELEC 429/556 Introduction to Computer Networks Let s Build a Scalable Global Network - IP Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang T. S. Eugene

More information

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009.

Chapter 4. Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, sl April 2009. Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

Module 9: TCP/IP Protocol Suite and IP Addressing

Module 9: TCP/IP Protocol Suite and IP Addressing Module 9: TCP/IP Protocol Suite and IP Addressing 9.1 Introduction to TCP/IP 9.1.2 Application layer The application layer handles high-level protocols, representation, encoding, and dialog control. The

More information

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins

HW3 and Quiz. P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) TCP), 20 mins HW3 and Quiz v HW3 (Chapter 3): R1, R2, R5, R6, R7, R8, R15, P14, P24, P26, P27, P28, P31, P37, P43, P46, P55, due at 3:00pm with both soft and hard copies, 11/11/2013 (Monday) v Quiz: 10/30/2013, Wednesday,

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP)

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols REMINDER Student Evaluations 4 Objectives Identify the major needs and stakeholders

More information

Administrivia CSC458 Lecture 4 Bridging LANs and IP. Last Time. This Time -- Switching (a.k.a. Bridging)

Administrivia CSC458 Lecture 4 Bridging LANs and IP. Last Time. This Time -- Switching (a.k.a. Bridging) Administrivia CSC458 Lecture 4 Bridging LANs and IP Homework: # 1 due today # 2 out today and due in two weeks Readings: Chapters 3 and 4 Project: # 2 due next week Tutorial today: Joe Lim on project 2

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Network Addressing TDC463 Fall 2017 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses at L2? If not, should

More information

Internet Routing Protocols Part II

Internet Routing Protocols Part II Indian Institute of Technology Kharagpur Internet Routing Protocols Part II Prof. Indranil Sen Gupta Dept. of Computer Science & Engg. I.I.T. Kharagpur, INDIA Lecture 8: Internet routing protocols Part

More information

Network layer Network Layer 4-1

Network layer Network Layer 4-1 Network layer 1 Network layer transport segment from sending to receiving host on sending side puts segments into datagrams on rcving side, delivers segments to transport layer network layer protocols

More information

Internetwork Protocols

Internetwork Protocols Internetwork Protocols Background to IP IP, and related protocols Internetworking Terms (1) Communications Network Facility that provides data transfer service An internet Collection of communications

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Internet Protocol (IP) Addressing TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

Module 7 Internet And Internet Protocol Suite

Module 7 Internet And Internet Protocol Suite Module 7 Internet And Internet Protocol Suite Lesson 22 IP addressing. ICMP LESSON OBJECTIVE General The lesson will continue the discussion on IPv4 along with the idea of ICMP. Specific The focus areas

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking A Top-Down Approach These slides are based on the slides made available by Kurose and Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

1 Connectionless Routing

1 Connectionless Routing UCSD DEPARTMENT OF COMPUTER SCIENCE CS123a Computer Networking, IP Addressing and Neighbor Routing In these we quickly give an overview of IP addressing and Neighbor Routing. Routing consists of: IP addressing

More information

Introduction Layer 3. IP-Header: and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains

Introduction Layer 3. IP-Header:  and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains Chapter 2.3 Layer 3 Network Layer 1 Content Introduction Layer 3 IP Protocol IP-Header: www.ietf.org and RFC-760 Addressing schemes Subnetting Routing Layer 3 Solution in Trains Communication Matrix (Information

More information

01/17/08 TDC /17/08 TDC363-03

01/17/08 TDC /17/08 TDC363-03 Introduction to LAN TDC 363 Week 3 Network Protocols Book: Chapter 4 & 11 1 Outline The TCP/IP model vs. the OSI Model IP Address Address Resolution Protocol (ARP) IPX/SPX and NetBIOS Protocols on Windows

More information

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles

Building the Routing Table. Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Building the Routing Table Introducing the Routing Table Directly Connected Networks Static Routing Dynamic Routing Routing Table Principles Introducing the Routing Table R1# show ip route Codes: C - connected,

More information

OSI Network Layer. Chapter 5

OSI Network Layer. Chapter 5 OSI Network Layer Network Fundamentals Chapter 5 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most common Network

More information

Chapter 8 ARP(Address Resolution Protocol) Kyung Hee University

Chapter 8 ARP(Address Resolution Protocol) Kyung Hee University Chapter 8 ARP(Address Resolution Protocol) 1 Logical address 8.1 Address Mapping The hosts and routers are recognized at the network level by their logical address Logical address is unique universal IP

More information

Presentation On Routing Protocol

Presentation On Routing Protocol Presentation On Routing Protocol By Muhammad Siddiqui ISNM2003 28th Jan 2004 Networks A computer network that spans a relatively large geographical area. Typically, a WAN consists of two or more local-area

More information

Networking: Network layer

Networking: Network layer control Networking: Network layer Comp Sci 3600 Security Outline control 1 2 control 3 4 5 Network layer control Outline control 1 2 control 3 4 5 Network layer purpose: control Role of the network layer

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

ECE4110 Internetwork Programming. Introduction and Overview

ECE4110 Internetwork Programming. Introduction and Overview ECE4110 Internetwork Programming Introduction and Overview 1 EXAMPLE GENERAL NETWORK ALGORITHM Listen to wire Are signals detected Detect a preamble Yes Read Destination Address No data carrying or noise?

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

Computer Networks CS 552

Computer Networks CS 552 Computer Networks CS 552 Badri Nath Rutgers University badri@cs.rutgers.edu 1. Link Layer, Multiple access 2. IP addressing, CIDR, NAT 3. IP/L3 routing, OSPF (link state), RIP(DV), Issues 4. L2 routing

More information

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting

Outline. Routing. Introduction to Wide Area Routing. Classification of Routing Algorithms. Introduction. Broadcasting and Multicasting Outline Routing Fundamentals of Computer Networks Guevara Noubir Introduction Broadcasting and Multicasting Shortest Path Unicast Routing Link Weights and Stability F2003, CSG150 Fundamentals of Computer

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

II. Principles of Computer Communications Network and Transport Layer

II. Principles of Computer Communications Network and Transport Layer II. Principles of Computer Communications Network and Transport Layer A. Internet Protocol (IP) IPv4 Header An IP datagram consists of a header part and a text part. The header has a 20-byte fixed part

More information

(Chapters 2 3 in Huitema) E7310/Internet basics/comnet 1

(Chapters 2 3 in Huitema) E7310/Internet basics/comnet 1 Introduction to routing in the Internet Ethernet, switching vs. routing Internet architecture IPv4 Addressing Routing principles Protocols: IPv4, ICMP, ARP (Chapters 2 3 in Huitema) E7310/Internet basics/comnet

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

Chapter 3 Internetworking

Chapter 3 Internetworking Chapter 3 Internetworking Basic Internetworking (IP) (cont d) Datagram forwarding in IP Every datagram contains the IP address of the destination host If directly connected to destination network, then

More information

Networking: Network Layer

Networking: Network Layer CS 4410 Operating Systems Networking: Network Layer Summer 2013 Cornell University 1 Today How packages are exchanged in a WAN? Network Layer IP Naming Subnetwork Forwarding Routing Algorithms 2 Protocol

More information

Layering and Addressing CS551. Bill Cheng. Layer Encapsulation. OSI Model: 7 Protocol Layers.

Layering and Addressing CS551.  Bill Cheng. Layer Encapsulation. OSI Model: 7 Protocol Layers. Protocols CS551 Layering and Addressing Bill Cheng Set of rules governing communication between network elements (applications, hosts, routers) Protocols define: Format and order of messages Actions taken

More information

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. IP Addressing. Jasleen Kaur. Fall 2016

COMP 631: NETWORKED & DISTRIBUTED SYSTEMS 9/6/16 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS. IP Addressing. Jasleen Kaur. Fall 2016 COMP 631: NETWORKED & DISTRIBUTED SYSTEMS IP Addressing Jasleen Kaur Fall 2016 1 How to Deal With Heterogeneity & Scale? Requirements from IP addressing: Should be globally unique Should facilitate easy

More information

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Addressing Schemes FLAT 1.Used by Intranetworks 2.Used by Layer 2 3.Used in MAC address 4.Is assigned statically based on next available number

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 4. Internetworking The Internet Protocol IP Address ARP and DHCP ICMP IPv6 Mobile IP Internet Routing BGP and OSPF IP Multicasting Multiprotocol

More information

12 WEEK EXAM NAME: ALPHA: SECTION:

12 WEEK EXAM NAME: ALPHA: SECTION: 12 WEEK EXAM NAME: ALPHA: SECTION: 1. This is individual work. 2. SHOW ALL WORK! 3. Write legibly to receive credit. 4. Turn in your equation sheet. SCORE: /100 SCALE >89.5%: 31337 79.5 89.5%: H@XX0R 69.5

More information

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs.

Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Internetworking Multiple networks are a fact of life: Growth. Individual departments in a university buy LANs for their own machines and eventually want to interconnect with other campus LANs. Fault isolation,

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Switching and Forwarding Reading: Chapter 3 1/30/14 1

Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Reading: Chapter 3 1/30/14 1 Switching and Forwarding Next Problem: Enable communication between hosts that are not directly connected Fundamental Problem of the Internet or any

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

Table of Contents. Mid-Term Report: Issues in Migration from IPv4 to IPv6 By Ayaz-ul-Hassan Khan ( )

Table of Contents. Mid-Term Report: Issues in Migration from IPv4 to IPv6 By Ayaz-ul-Hassan Khan ( ) Table of Contents Abstract... 2 1 - Introduction... 2 2 - Transition Mechanisms... 4 2.1 - IPv6 Tunneling... 4 2.1.1 - Tunnel Types... 5 2.2 - Dual-Stack Support... 7 2.2.1 - Address Configuration... 8

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

IPv6. (Internet Protocol version 6)

IPv6. (Internet Protocol version 6) IPv6 Réseaux 1 IPv6 (Internet Protocol version 6) 2 IPv6 IP version 6 is the new version of the Internet Protocol (IP) The standardization process started in the 90s The main elements of IPv4 are still

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24

1-1. Switching Networks (Fall 2010) EE 586 Communication and. October 25, Lecture 24 EE 586 Communication and Switching Networks (Fall 2010) Lecture 24 October 25, 2010 1-1 Announcements Midterm 1: Mean = 92.2 Stdev = 8 Still grading your programs (sorry about the delay) Network Layer

More information

Computer Networks. Andrew S. Tanenbaum

Computer Networks. Andrew S. Tanenbaum Computer Networks Third Edition Andrew S. Tanenbaum 1 ; l Vrije Universiteit Amsterdam, The Netherlands For book and bookstore information Prentice Hall PTR Upper Saddle River, New Jersey 07458 CONTENTS

More information

Lecture 13. Quality of Service II CM0256

Lecture 13. Quality of Service II CM0256 Lecture 13 Quality of Service II CM0256 Types of QoS Best Effort Services Integrated Services -- resource reservation network resources are assigned according to the application QoS request and subject

More information

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1 Networking Basics EC512 Spring 2015 2/15/2015 EC512 - Prof. Thomas Skinner 1 Protocols Protocols are required in order to allow information to be extracted from the stream of bits flowing from one point

More information

Network Layer. The Network Layer. Contents Connection-Oriented and Connectionless Service. Recall:

Network Layer. The Network Layer. Contents Connection-Oriented and Connectionless Service. Recall: Network Layer The Network Layer Recall: The network layer is responsible for the routing of packets The network layer is responsible for congestion control 1 2 Contents 4.1.1 Connection-Oriented and Connectionless

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis

Dongsoo S. Kim Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis Session 8. TCP/IP Dongsoo S. Kim (dskim@iupui.edu) Electrical and Computer Engineering Indiana U. Purdue U. Indianapolis IP Packet 0 4 8 16 19 31 Version IHL Type of Service Total Length Identification

More information

CSE/EE 461 The Network Layer. Application Presentation Session Transport Network Data Link Physical

CSE/EE 461 The Network Layer. Application Presentation Session Transport Network Data Link Physical CSE/EE 461 The Network Layer Application Presentation Session Transport Network Data Link Physical This Lecture Focus: What to do when one wire isn t big enough? Point to point link Broadcast link (Ethernet

More information

Auxiliary Protocols. Internet Layer. Address Resolution Protocol. Delivery of IP Packets

Auxiliary Protocols. Internet Layer. Address Resolution Protocol. Delivery of IP Packets Internet Layer Auxiliary Protocols aw division into three tasks: Data transfer over a global network oute decision at the sub-nodes Control of the network or transmission status outing Protocols outing

More information

Configuring MPLS and EoMPLS

Configuring MPLS and EoMPLS 37 CHAPTER This chapter describes how to configure multiprotocol label switching (MPLS) and Ethernet over MPLS (EoMPLS) on the Catalyst 3750 Metro switch. MPLS is a packet-switching technology that integrates

More information

Lecture 10: Addressing

Lecture 10: Addressing Lecture 10: Addressing CSE 123: Computer Networks Alex C. Snoeren HW 2 due WEDNESDAY Lecture 10 Overview ICMP The other network-layer protocol IP Addresses Class-based addressing Subnetting Classless addressing

More information

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview

Request for Comments: S. Gabe Nortel (Northern Telecom) Ltd. May Nortel s Virtual Network Switching (VNS) Overview Network Working Group Request for Comments: 2340 Category: Informational B. Jamoussi D. Jamieson D. Williston S. Gabe Nortel (Northern Telecom) Ltd. May 1998 Status of this Memo Nortel s Virtual Network

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

Networking Theory CSCI 201 Principles of Software Development

Networking Theory CSCI 201 Principles of Software Development Networking Theory CSCI 201 Principles of Software Development Jeffrey Miller, Ph.D. jeffrey.miller@usc.edu Networking Overview IP Addressing DNS Ports NAT Subnets DHCP Test Yourself Outline USC CSCI 201L

More information

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane Introduction to Computer Networking Guy Leduc Chapter 4 Network Layer: The Data Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016. From Computer

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Define TCP/IP and describe its advantages on Windows Describe how the TCP/IP protocol suite maps to a four-layer model

Define TCP/IP and describe its advantages on Windows Describe how the TCP/IP protocol suite maps to a four-layer model [Previous] [Next] Chapter 2 Implementing TCP/IP About This Chapter This chapter gives you an overview of Transmission Control Protocol/Internet Protocol (TCP/IP). The lessons provide a brief history of

More information

ipv6 mobile home-agent (global configuration)

ipv6 mobile home-agent (global configuration) ipv6 mobile home-agent (global configuration) ipv6 mobile home-agent (global configuration) To enter home agent configuration mode, use the ipv6 mobile home-agent command in global configuration mode.

More information