Network Layer/IP Protocols

Size: px
Start display at page:

Download "Network Layer/IP Protocols"

Transcription

1 Network Layer/IP Protocols 1

2 Outline IP Datagram (IPv4) NAT Connection less and connection oriented service 2

3 IPv4 packet header 3

4 IPv4 Datagram Header Format version of the IP protocol (4 BIts) IP header length (4 Bits) Low Delay, High Throughput, Reliability (8 Bits) length of header + payload (16 Bits) Unique packet id (16 Bits) do not fragment (FLAG) more fragments (FLAG) Specified in terms of no of 8 bytes (13 Bits) 4

5 IPv4 Datagram Header Format Helps to limit the no. of hops or time spent in the network (8 Bits) Protocol name (TCP, UDP etc.) to whom pass the payload (8 Bits) 16 bit checksum, covers header only Source IP address Optional information, such as source route Destination IP address Due to OPTIONS, the datagram header can be of variable length. So, one can not determine apriori where the data will start. Thus, unpredictable time to process the IP datagram. Hence, OPTIONS dropped in IPv6 5

6 IP Fragmentation In a case where a router receives a protocol data unit (PDU) larger than the next hop's MTU(Maximum Transmission Unit). MTU: Maximum amount of data that a Link-Layer frame can carry. Each IP datagram is supposed to be encapsulated within the link-layer frame for transportation from one router to other. MTU sets the limit on length of an IP datagram. Also, along the given path: Different routers/links Different link layer protocols Different MTU (A PROBLEM) SOLUTION: It has either of two options if the transport is IPv4: 1. Drop the PDU and send an Internet Control Message Protocol(ICMP) message which indicates the condition Packet too Big. 2. Fragment the IP packet and send it over the link with a smaller MTU. The Identification field, and Fragment offset field along with Don't Fragment & More Fragment flags in the IP protocol header are used for fragmentation and reassembly of IP datagram. 6

7 IP Fragmentation 1st fragment 1480 bytes in the data field of the IP datagram. identification = 777 offset = 0 (meaning the data should be inserted beginning at byte 0) flag = 1 (meaning there is more) 2nd fragment 1480 byte information field identification = 777 offset = 185 (meaning the data should be inserted beginning at byte 8*185=1,480) flag = 1 (meaning there is more) 3rd fragment 1020 byte (= ) information field identification = 777 offset = 370 (meaning the data should be inserted beginning at byte 8*370=2,960) flag = 0 (meaning this is the last fragment) REASSEMBLY IS DONE AT THE END SYSTEM, NOT ROUTERS. 7

8 IP Addressing 8

9 An IP address is a 32-bit address The IP addresses are unique. The address space of IPv4 is 232 or 4,294,967,296.

10 Dotted-decimal notation

11 Hexadecimal Notation D EA Or it can be written as 0x75951DEA

12 Exercise Change the following IP address from binary notation to dotted-decimal notation Solution

13 Example 2 Change the following IP address from dotted-decimal notation to binary notation Solution

14 Example 3 Find the error, if any, in the following IP address: Solution There are no leading zeroes in dotted-decimal notation (045).

15 Example 3 (continued) Find the error, if any, in the following IP address: Solution In dotted-decimal notation, each number is less than or equal to 255; 301 is outside this range.

16 CLASSFUL ADDRESSING

17 Finding the class in binary notation

18 Example 6 Find the class of the address: Solution The first bit is 0. This is a class A address.

19 Example 6 (Continued) Find the class of the address: Solution The first 2 bits are 1; the third bit is 0. This is a class C address.

20 Finding the class in decimal notation

21 Example 7 Find the class of the address: Solution The first byte is 227 (between 224 and 239); the class is D.

22 Example 7 (Continued) Find the class of the address: Solution The first byte is 193 (between 192 and 223); the class is C.

23 Example 8 In Example 4 we showed that class A has 231 (2,147,483,648) addresses. How can we prove this same fact using dotted-decimal notation? Solution The addresses in class A range from to We notice that we are dealing with base 256 numbers here.

24 Netid and hostid

25

26 Blocks in class A

27 Millions of class A addresses are wasted.

28 Blocks in class B

29 Many class B addresses are wasted.

30 Blocks in class C

31 The number of addresses in a class C block is smaller than the needs of most organizations.

32 Class D addresses are used for multicasting; there is only one block in this class.

33 Class E addresses are reserved for special purposes; most of the block is wasted.

34 Private IP address / / /16

35 Special IP addresses Loopback IP address ( to ) Link-local address /16 Default route ( /8)

36 Network Address The network address is the first address. The network address defines the network to the rest of the Internet. Given the network address, we can find the class of the address, the block, and the range of the addresses in the block

37 Example 9 Given the network address , find the class, and the range of the addresses. Solution The class is A because the first byte is between 0 and 127. The addresses range from to

38 Example 10 Given the network address , find the class, and the range of the addresses. Solution The class is B netid of Addresses range from to

39 Example 11 Given the network address , find the class, and the range of the addresses. Solution The class is C netid of The addresses range from to

40 Mask A mask is a 32-bit binary number that gives the first address in the block (the network address) when bitwise ANDed with an address in the block.

41 Example 12 Given the address and the default class A mask, find the beginning address (network address). Solution The default mask is , which means that only the first byte is preserved and the other 3 bytes are set to 0s. The network address is

42 Example 13 Given the address and the default class B mask, find the beginning address (network address). Solution The default mask is , which means that the first 2 bytes are preserved and the other 2 bytes are set to 0s. The network address is

43 Example 14 Given the address and the class C default mask, find the beginning address (network address). Solution The default mask is , which means that the first 3 bytes are preserved and the last byte is set to 0. The network address is

44 Sub-netting To reduce wastage of IP addresses in a block, sub-netting is used. Using host bits as network bit of a class-full IP address. 44

45 Q1. Find the network address / / / /27 Sub-netting

46 Question You are given a class B IP address There is a need of 7 different networks. Find out the first and last IP address of each and subnet mask for each network. 46

47 Given IP address is of Class B, Default mask is /16 or As required number of subnets are 7, to represent this we require 3 bits (2 3 =8) So number of bits required to borrow from host bits are 3. Total bits for network are now : 16(default for class B)+3 (borrowed from host bits)=19 47

48 (number of net bits in each octet) (subnet mask) (1 st address), (1 st host) (last host) (last address), 48

49 When we find next address to broadcast that will be: Next subnet s 1 st address is Last address of this subnet is

50 Subnet 1 st Address Last Address 1 st host Last host Number of host 1st nd rd th th th th

51 Example 1 What is the subnetwork address if the destination address is and the subnet mask is ?

52 Solution The subnetwork address is

53 Example 2 What is the sub-network address if the destination address is and the mask is ? Solution AND Sub-network address

54 Comparison of a default mask and a subnet mask

55 The number of subnets must be a power of 2.

56 Example 3 A company is granted the site address (class C). The company needs six subnets. Design the subnets. Solution The number of 1s in the default mask is 24 (class C).

57 Solution (Continued) The company needs six subnets. This number 6 is not a power of 2. The next number that is a power of 2 is 8 (23). We need 3 more 1s in the subnet mask. The total number of 1s in the subnet mask is 27 (24 + 3). The total number of 0s is 5 (32-27). The subnet mask is

58 Solution (Continued) or The number of subnets is 8. The number of addresses in each subnet is 25 (5 is the number of 0s) or 32.

59 Example 3

60 Example 4 A company is granted the site address (class B). The company needs 1000 subnets. Design the subnets. Solution The number of 1s in the default mask is 16 (class B).

61 Solution (Continued) The company needs 1000 subnets. This number is not a power of 2. The next number that is a power of 2 is 1024 (210). We need 10 more 1s in the subnet mask. The total number of 1s in the subnet mask is 26 ( ). The total number of 0s is 6 (32-26).

62 Solution (Continued) The mask is or The number of subnets is The number of addresses in each subnet is 26 (6 is the number of 0s) or 64.

63 Example 4

64 Variable-length subnetting 64

65 Exercise 1 For a class C address find out subnet mask for each of the block. 1. Block A: 62 hosts 2. Block B: 30 hosts

66 Ans 1 1. For the 62 hosts, required bits are 6 (2 6 ) 2. So 6 bits are required for host 3. Remaining bits (32-6=26) are representing network bits For this block mask /26 Block 1 st IP add 1 st Host IP add Last IP add A Last host IP add B

67 Variable-length subnetting For a class C address find out subnet mask for each of the block.

68 Example 11 A small organization is given a block with the beginning address and the prefix length /29 (in slash notation). What is the range of the block? Solution The beginning address is To find the last address we keep the first 29 bits and change the last 3 bits to 1s. Beginning: Ending : There are only 8 addresses in this block.

69 Example 12 We can find the range of addresses in Example 11 by another method. We can argue that the length of the suffix is or 3. So there are 2 3 = 8 addresses in this block. If the first address is , the last address is ( = 31).

70 A block in classes A, B, and C can easily be represented in slash notation as A.B.C.D/ n where n is either 8 (class A), 16 (class B), or 24 (class C).

71 Example 13 What is the network address if one of the addresses is /27? Solution The prefix length is 27, which means that we must keep the first 27 bits as it is and change the remaining bits (5) to 0s. The 5 bits affect only the last byte. The last byte is Changing the last 5 bits to 0s, we get or 64. The network address is /27.

72 Example 14 An organization is granted the block /26. The organization needs to have four subnets. What are the subnet addresses and the range of addresses for each subnet? Solution The suffix length is 6. This means the total number of addresses in the block is 64 (2 6 ). If we create four subnets, each subnet will have 16 addresses.

73 Solution (Continued) Let us first find the subnet prefix (subnet mask). We need four subnets, which means we need to add two more 1s to the site prefix. The subnet prefix is then /28. Subnet 1: /28 to /28. Subnet 2 : /28 to /28. Subnet 3: /28 to /28. Subnet 4: /28 to /28. See Figure 5.15 on next slide

74 Example 14

75 Example 15 An ISP is granted a block of addresses starting with /16. The ISP needs to distribute these addresses to three groups of customers as follows: 1. The first group has 64 customers; each needs 256 addresses. 2. The second group has 128 customers; each needs 128 addresses. 3. The third group has 128 customers; each needs 64 addresses. Design the sub-blocks and give the slash notation for each sub-block. Find out how many addresses are still available after these allocations.

76 Solution Group 1 For this group, each customer needs 256 addresses. This means the suffix length is 8 (2 8 = 256). The prefix length is then 32-8 = 24. Customer1: /24 Customer2: / / /24 Customer64: / /24 Total = = 16,384

77 Solution (Continued) Group 2 For this group, each customer needs 128 addresses. This means the suffix length is 7 (2 7 = 128). The prefix length is then 32-7 = 25. The addresses are: Customer1: /25 Customer2: / / /25 Customer128: / /25 Total = = 16,384

78 Solution (Continued) Group 3 For this group, each customer needs 64 addresses. This means the suffix length is 6 (2 6 = 64). The prefix length is then 32-6 = 26. The addresses are: Cust1: /26 Cust2: / / /26 Cust128: / /26 Total = = 8,192

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000

IP Addresses McGraw-Hill The McGraw-Hill Companies, Inc., 2000 IP Addresses The IP addresses are unique. An IPv4 address is a 32-bit address. An IPv6 address is a 128-bit address. The address space of IPv4 is 2 32 or 4,294,967,296. The address space of IPv6 is 2 128

More information

McGraw-Hill The McGraw-Hill Companies, Inc., 2000

McGraw-Hill The McGraw-Hill Companies, Inc., 2000 !! McGraw-Hill The McGraw-Hill Companies, Inc., 2000 "#$% & '$# )1 ) ) )6 ) )* )- ). )0 )1! )11 )1 )1 )16 )1 3'' 4", ( ( $ ( $ $$+, $$, /+ & 23,4 )/+ &4 $ 53" Network Layer Position of network layer Figure

More information

LECTURE -4 IP ADDRESSES. IP Addresses: Classful Addressing

LECTURE -4 IP ADDRESSES. IP Addresses: Classful Addressing LECTURE -4 IP ADDRESSES IP Addresses: Classful Addressing 1 CONTENTS INTRODUCTION CLASSFUL ADDRESSING Different Network Classes Subnetting Classless Addressing 2 INTRODUCTION 3 WHAT IS AN IP ADDRESS A

More information

Tutorial 9. SOLUTION Since the number of supported interfaces is different for each subnet, this is a Variable- Length Subnet Masking (VLSM) problem.

Tutorial 9. SOLUTION Since the number of supported interfaces is different for each subnet, this is a Variable- Length Subnet Masking (VLSM) problem. Tutorial 9 1 Router Architecture Consider a router with a switch fabric, 2 input ports (A and B) and 2 output ports (C and D). Suppose the switch fabric operates at 1.5 times the line speed. a. If, for

More information

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite

CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid. Internet Protocol Suite CC231 Introduction to Networks Dr. Ayman A. Abdel-Hamid College of Computing and Information Technology Arab bacademy for Science &T Technology and Maritime Transport Internet Protocol Suite IP Suite Dr.

More information

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer PREPARED BY AHMED ABDEL-RAOUF Network Layer PREPARED BY AHMED ABDEL-RAOUF Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport

More information

The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or

The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or CBCN4103 The identifier used in the IP layer of the TCP/IP protocol suite to identify each device connected to the Internet is called the Internet address or IP address. An IP address is a 32-bit address

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

b. Suppose the two packets are to be forwarded to two different output ports. Is it

b. Suppose the two packets are to be forwarded to two different output ports. Is it Problem-1:[15] Suppose two packets arrive to two different input ports of a router at exactly the same time. Also suppose there are no other packets anywhere in the router. a. Suppose the two packets are

More information

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2016 Total of 120 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

NETWORK LAYER: IP Addressing

NETWORK LAYER: IP Addressing NETWORK LAYER: IP Addressing McGraw-Hill The McGraw-Hill Companies, Inc., 2004 2000 Position of network layer McGraw-Hill The McGraw-Hill Companies, Inc., 2004 Network layer duties McGraw-Hill The McGraw-Hill

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1

CIS-331 Final Exam Fall 2015 Total of 120 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

Network Basic v0.1. Network Basic v0.1. Chapter 3 Internet Protocol. Chapter 3. Internet Protocol

Network Basic v0.1. Network Basic v0.1. Chapter 3 Internet Protocol. Chapter 3. Internet Protocol Network Basic v0.1 Chapter 3. Internet Protocol 1 Network Basic v0.1 Chapter 3 Internet Protocol 1. The Role of Network Layer 2. IP Protocol Feature 3. IP Packet Routing 5. DHCP 6. NAT 2 1 네트워크 ICONs 3

More information

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer

EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer EP2120 Internetworking/Internetteknik IK2218 Internets Protokoll och Principer Homework Assignment 1 (Solutions due 20:00, Mon., 10 Sept. 2018) (Review due 20:00, Wed., 12 Sept. 2018) 1. IPv4 Addressing

More information

Network Layer: outline

Network Layer: outline Network Layer: outline 1 introduction 2 virtual circuit and datagram networks 3 what s inside a router 4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 5 routing algorithms link state

More information

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez

Computer Networks Lecture -5- IPv4 Addresses. Dr. Abbas Abdulazeez Computer Networks Lecture -5- IPv4 Addresses Dr. Abbas Abdulazeez McGraw-Hill The McGraw-Hill Companies, Inc., 2000 OBJECTIVES: To introduce the concept of an address space in general and the address space

More information

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst

EITF25 Internet Techniques and Applications L7: Internet. Stefan Höst EITF25 Internet Techniques and Applications L7: Internet Stefan Höst What is Internet? Internet consists of a number of networks that exchange data according to traffic agreements. All networks in Internet

More information

Network Layer: Logical Addressing

Network Layer: Logical Addressing CHAPTER 19 Network Layer: Logical Addressing Solutions to Review Questions and Exercises Review Questions 1. An IPv4 address is 32 bits long. An IPv6 address is 128 bits long. 2. IPv4 addresses are usually

More information

Lecture 8 Network Layer: Logical addressing

Lecture 8 Network Layer: Logical addressing Data Communications ACOE412 Lecture 8 Network Layer: Logical addressing Spring 2009 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses

More information

Communication Systems DHCP

Communication Systems DHCP Communication Systems DHCP Computer Science Copyright Warning This lecture is already stolen If you copy it please ask the author Prof. Dr. Gerhard Schneider like I did 2 Internet Protocol the Universal

More information

IP Addressing and Subnetting

IP Addressing and Subnetting IP Addressing and Subnetting Internet Layer The purpose of the Internet layer is to send packets from a network node and have them arrive at the destination node independent of the path taken. Internet

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

Chapter 06 IP Address

Chapter 06 IP Address Chapter 06 IP Address IP Address Internet address Identifier used at IP layer 32 bit binary address The address space of IPv4 is 2 32 or 4,294,967,296 Consists of netid and hosted IP Address Structure

More information

Internet Addresses (You should read Chapter 4 in Forouzan)

Internet Addresses (You should read Chapter 4 in Forouzan) Internet Addresses (You should read Chapter 4 in Forouzan) IP Address is 32 Bits Long Conceptually the address is the pair (NETID, HOSTID) Addresses are assigned by the internet company for assignment

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (12 th Week) The Internet Protocol 12.Outline Principles of Internetworking Internet Protocol Operation Internet Protocol

More information

Network Layer: Control/data plane, addressing, routers

Network Layer: Control/data plane, addressing, routers Network Layer: Control/data plane, addressing, routers CS 352, Lecture 10 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors)

More information

This talk will cover the basics of IP addressing and subnetting. Topics covered will include:

This talk will cover the basics of IP addressing and subnetting. Topics covered will include: This talk will cover the basics of IP addressing and subnetting. Topics covered will include: What is an IP Address? What are Classes? What is a Network Address? What are Subnet Masks and Subnet Addresses?

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

5.7 K E Y TE R M S 5.8 SUM M A R Y

5.7 K E Y TE R M S 5.8 SUM M A R Y C H A P T E R 5 I P V 4 A D D RE SSE S 153 5.7 K E Y TE R M S address aggregation address space binary notation block of addresses class A address class B address class C address class D address class

More information

End-to-End Communication

End-to-End Communication End-to-End Communication Goal: Interconnect multiple LANs. Why? Diverse LANs speak different languages need to make them talk to each other Management flexibility global vs. local Internet Problems: How

More information

Introduction Layer 3. IP-Header: and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains

Introduction Layer 3. IP-Header:  and RFC-760 Addressing schemes Subnetting Routing. Layer 3 Solution in Trains Chapter 2.3 Layer 3 Network Layer 1 Content Introduction Layer 3 IP Protocol IP-Header: www.ietf.org and RFC-760 Addressing schemes Subnetting Routing Layer 3 Solution in Trains Communication Matrix (Information

More information

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6

Communication at the network layer is host-to-host Length of address. Total number of addresses used by the protocol. IPv4 & IPv6 Communication at the network layer is host-to-host Length of address Space adresses (2 length ) Total number of addresses used by the protocol IPv4 & IPv6 IPv4 ADDRESSES Defines the connection of a device

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

Subnetting and Classless Addressing

Subnetting and Classless Addressing Subnetting and Classless Addressing CONTENTS SUBNETTING CLASSLESS ADDRSSING 1 5.1 SUBNETTING IP addresses are designed with two levels of hierarchy. 2 Figure 5-1 A network with two levels of hierarchy

More information

Department of Computer Science and Engineering. CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016

Department of Computer Science and Engineering. CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016 Department of Computer Science and Engineering CSE 3214: Computer Network Protocols and Applications Instructor: N. Vlajic Date: Feb 23, 2016 Midterm Examination Instructions: Examination time: 75 min.

More information

ECE 461 Internetworking Fall Quiz 1

ECE 461 Internetworking Fall Quiz 1 ECE 461 Internetworking Fall 2010 Quiz 1 Instructions (read carefully): The time for this quiz is 50 minutes. This is a closed book and closed notes in-class exam. Non-programmable calculators are permitted

More information

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296.

Objectives. Note: An IP address is a 32-bit address. The IP addresses are unique. The address space of IPv4 is 2 32 or 4,294,967,296. Chapter 4 Objectives Upon completion you will be able to: Understand IPv4 addresses and classes Identify the class of an IP address Find the network address given an IP address Understand masks and how

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-s-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and K.W.

More information

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications.

The Internet. 9.1 Introduction. The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. The Internet 9.1 Introduction The Internet is a global network that supports a variety of interpersonal and interactive multimedia applications. Associated with each access network - ISP network, intranet,

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: Internet Protocol Literature: Forouzan: ch (4-6), 7-9 and ch 31 2004 Image Coding Group, Linköpings Universitet Lecture 2: IP Goals: Understand the benefits Understand the architecture IPv4

More information

ECE 158A: Lecture 7. Fall 2015

ECE 158A: Lecture 7. Fall 2015 ECE 158A: Lecture 7 Fall 2015 Outline We have discussed IP shortest path routing Now we have a closer look at the IP addressing mechanism We are still at the networking layer, we will examine: IP Headers

More information

IP Address Assignment

IP Address Assignment IP Address Assignment An IP address does not identify a specific computer. Instead, each IP address identifies a connection between a computer and a network. A computer with multiple network connections

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

CS118 Discussion, Week 6. Taqi

CS118 Discussion, Week 6. Taqi CS118 Discussion, Week 6 Taqi 1 Outline Network Layer IP NAT DHCP Project 2 spec 2 Network layer: overview Basic functions for network layer Routing Forwarding Connection v.s. connection-less delivery

More information

Internet Protocol (IP)

Internet Protocol (IP) CPSC 360 - Network Programming Internet Protocol (IP) Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu March 14, 2005 http://www.cs.clemson.edu/~mweigle/courses/cpsc360

More information

IP - The Internet Protocol

IP - The Internet Protocol IP - The Internet Protocol 1 Orientation IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network Layer ARP Network Access Link Layer Media 2 IP:

More information

OSI Network Layer. Chapter 5

OSI Network Layer. Chapter 5 OSI Network Layer Network Fundamentals Chapter 5 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most common Network

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1

CIS-331 Final Exam Spring 2015 Total of 115 Points. Version 1 Version 1 1. (25 Points) Given that a frame is formatted as follows: And given that a datagram is formatted as follows: And given that a TCP segment is formatted as follows: Assuming no options are present

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on

Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on IP Version 4 (IPv4) Header (Continued) Identification (16 bits): One of the parameters of any network is the maximum transmission unit (MTU) parameter. This parameter specifies the maximum size of the

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1

CIS-331 Final Exam Spring 2018 Total of 120 Points. Version 1 Version 1 Instructions 1. Write your name and version number on the top of the yellow paper and the routing tables sheet. 2. Answer Question 2 on the routing tables sheet. 3. Answer Questions 1, 3, 4,

More information

Internet Fundamentals

Internet Fundamentals Internet Fundamentals Lecture-10 IPv4 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a device (for example, a computer or a router)

More information

Subnetting/Supernetting and Classless Addressing

Subnetting/Supernetting and Classless Addressing Subnetting/Supernetting and Classless Addressing CONTENTS SUBNETTING SUPERNETTING CLASSLESS ADDRSSING 5.1 SUBNETTING IP addresses are designed with two levels of hierarchy. Figure 5-1 A network with two

More information

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008

Networks. an overview. dr. C. P. J. Koymans. Informatics Institute University of Amsterdam. February 4, 2008 Networks an overview dr. C. P. J. Koymans Informatics Institute University of Amsterdam February 4, 2008 dr. C. P. J. Koymans (UvA) Networks February 4, 2008 1 / 53 1 Network modeling Layered networks

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

Chapter 18. Introduction to Network Layer

Chapter 18. Introduction to Network Layer Chapter 18. Introduction to Network Layer 18.1 Network Layer Services 18.2 Packet Switching 18.3 Network Layer Performance 18.4 IPv4 Addresses 18.5 Forwarding of IP Packets Computer Networks 18-1 Communication

More information

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table Introduction Datagram Forwarding Gail Hopkins Service paradigm IP datagrams Routing Encapsulation Fragmentation Reassembly Internet Service Paradigm IP Datagrams supports both connectionless and connection-oriented

More information

IP Addresses. IP Addresses

IP Addresses. IP Addresses IP Addresses Introductory material. IP Addressing Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses ting CIDR IP Version 6 addresses An entire module

More information

Lab 8 (IP Addressing)

Lab 8 (IP Addressing) Islamic University of Gaza Faculty of engineering Computer Department. Computer Network Lab ECOM 4121 Prepared by : Eng. Eman Al- Kurdi Lab 8 (IP Addressing) Introduction: Each device on a network must

More information

Figure 11 Two-level addressing in classful addressing

Figure 11 Two-level addressing in classful addressing Two-Level Addressing The whole purpose of IPv4 addressing is to define a destination for an Internet packet (at the network layer). When classful addressing was designed, it was assumed that the whole

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways)

Exercise Sheet 4. Exercise 1 (Routers, Layer-3-Switches, Gateways) Exercise Sheet 4 Exercise 1 (Routers, Layer-3-Switches, Gateways) 1. What is the purpose of Routers in computer networks? (Also explain the difference to Layer-3-Switches.) 2. What is the purpose of Layer-3-Switches

More information

Chapter 5. Subnetting/Supernetting and Classless Addressing

Chapter 5. Subnetting/Supernetting and Classless Addressing Chapter 5 Subnetting/Supernetting and Classless Addressing Outline Subnetting Supernernetting Classless addressing 5.1 SUBNETTING Subnetting IP addresses are designed with two level of hierarchy Two levels

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16

CIS 551 / TCOM 401 Computer and Network Security. Spring 2006 Lecture 16 CIS 551 / TCOM 401 Computer and Network Security Spring 2006 Lecture 16 Announcements Midterm II March 21st (One week from today) In class Same format as last time Will cover all material since Midterm

More information

Introduction to Internet. Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis

Introduction to Internet. Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis Introduction to Internet Ass. Prof. J.Y. Tigli University of Nice Sophia Antipolis What about inter-networks communications? Between LANs? Ethernet?? Ethernet Example Similarities and Differences between

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

Chapter 18 and 22. IPv4 Address. Data Communications and Networking

Chapter 18 and 22. IPv4 Address. Data Communications and Networking University of Human Development College of Science and Technology Department of Information Technology Chapter 18 and 22 Data Communications and Networking IPv4 Address 1 Lecture Outline IPv4 Addressing

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1

Networking Basics. EC512 Spring /15/2015 EC512 - Prof. Thomas Skinner 1 Networking Basics EC512 Spring 2015 2/15/2015 EC512 - Prof. Thomas Skinner 1 Protocols Protocols are required in order to allow information to be extracted from the stream of bits flowing from one point

More information

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1

CIS-331 Exam 2 Spring 2016 Total of 110 Points Version 1 Version 1 1. (20 Points) Given the class A network address 121.0.0.0 will be divided into multiple subnets. a. (5 Points) How many bits will be necessary to address 8,100 subnets? b. (5 Points) What is

More information

The Internet. The Internet is an interconnected collection of netw orks.

The Internet. The Internet is an interconnected collection of netw orks. The Internet The Internet is an interconnected collection of netw orks. Internetw orking-1 Internetworking! Communications Network: A facility that provides a data transfer service among stations attached

More information

7th Slide Set Computer Networks

7th Slide Set Computer Networks Prof. Dr. Christian Baun 7th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 7th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address that

More information

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1

CIS-331 Exam 2 Fall 2014 Total of 105 Points. Version 1 Version 1 1. (20 Points) Given the class A network address 119.0.0.0 will be divided into a maximum of 15,900 subnets. a. (5 Points) How many bits will be necessary to address the 15,900 subnets? b. (5

More information

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora

IP Addressing. Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addressing Introductory material. An entire module devoted to IP addresses. Pedro Brandão (PhD) University of Évora IP Addresses Structure of an IP address Subnetting CIDR IP Version 6 addresses IP

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Sungkyunkwan University Chapter 4 Network Layer Prepared by H. Choo 2018-Fall Computer Networks Copyright 2000-2014 2000-2018 Networking Laboratory 1/52 Presentation Outline 4.1 Introduction 4.2 Network-Layer

More information

ECE 461 Internetworking Fall Quiz 1

ECE 461 Internetworking Fall Quiz 1 ECE 461 Internetworking Fall 2013 Quiz 1 Instructions (read carefully): The time for this quiz is 50 minutes. This is a closed book and closed notes in-class exam. Non-programmable (Type 2) calculators

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

IPv6 : Internet Protocol Version 6

IPv6 : Internet Protocol Version 6 IPv6 : Internet Protocol Version 6 History Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s) History IPv6 : Internet Protocol Version 6 Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates:

MODULE: NETWORKS MODULE CODE: CAN1102C. Duration: 2 Hours 15 Mins. Instructions to Candidates: BSc.(Hons) Computer Science with Network Security BEng (Hons) Telecommunications Cohort: BCNS/17B/FT Examinations for 2017-2018 / Semester 2 Resit Examinations for BCNS/15A/FT, BTEL/15B/FT & BTEL/16B/FT

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1

CIS-331 Fall 2014 Exam 1 Name: Total of 109 Points Version 1 Version 1 1. (24 Points) Show the routing tables for routers A, B, C, and D. Make sure you account for traffic to the Internet. Router A Router B Router C Router D Network Next Hop Next Hop Next Hop Next

More information

TCP/IP and the OSI Model

TCP/IP and the OSI Model TCP/IP BASICS TCP/IP and the OSI Model TCP/IP BASICS The network protocol of the Internet Composed of six main protocols IP Internet Protocol UDP User Datagram Protocol TCP Transmission Control Protocol

More information

Position of IP and other network-layer protocols in TCP/IP protocol suite

Position of IP and other network-layer protocols in TCP/IP protocol suite Position of IP and other network-layer protocols in TCP/IP protocol suite IPv4 is an unreliable datagram protocol a best-effort delivery service. The term best-effort means that IPv4 packets can be corrupted,

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30

Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 Review for Chapter 4 R1,R2,R3,R7,R10,R11,R16,R17,R19,R22,R24, R26,R30 P1,P2,P4,P7,P10,P11,P12,P14,P15,P16,P17,P22,P24,P29,P30 R1. Let s review some of the terminology used in this textbook. Recall that

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK 219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer

More information