Using peer to peer. Marco Danelutto Dept. Computer Science University of Pisa

Size: px
Start display at page:

Download "Using peer to peer. Marco Danelutto Dept. Computer Science University of Pisa"

Transcription

1 Using peer to peer Marco Danelutto Dept. Computer Science University of Pisa Master Degree (Laurea Magistrale) in Computer Science and Networking Academic Year

2 Rationale Two common paradigms in distributed computing client server peer to peer Within the SPM course we used client server like RTS to implement different flavours of farm and data parallel patterns we assumed to have some p2p technique to implement resource discovery when recruiting workers in farm and data parallel patterns We want to focus a little bit better those paradigms 2

3 Client server architecture Well know and widely used a client asks a server for some service(params) the server is identified by a well known address a servers runs a well known protocol the server answers client requests serially or concurrently (multithreaded servers) managing to keep some consistent state or in a stateless way possibly interacting with other servers to provide results of service(params) to the client 3

4 Classical server architecture while(true) { accept a client request; fork concurrent activity to serve the request; } requestservice(client, params) { process request with params; compute service result; send back result to the client; } 4

5 Server sample WEB server well known address (IP:80) well known protocol : HTTP multithreaded implementation serversocket.accept() passed to thread in a thread pool the thread retrieves the document, compute the answer and sends back page (or answer) to the requesting client DNS server NFS server 5

6 Client/Server in SPM: Farm (1) Worker server E/C client W compute(task) E/C E/C W W compute(task) W compute(task) result compute(task) result 6

7 Client/Server in SPM: Farm (2) Worker client E/C server W result E/C W W E/C result result W task result task 7

8 Client/Server salient features Asymmetric communication schema client starts interaction, server runs infinite loop, reacting to requests reflected in TCP asymmetric connection schema Asymmetric rôle server has the information / computational power, it is always on client may ask server for service, may be off most of time Centralized architecture one (logical) server (the bottleneck) usually many clients 8

9 Client/Server & SPM concepts Server is usually the bottleneck Server Farm used to solve the problem A front-end node accepts service requests And schedules requests to one of the n (replicated) servers each capable to answer the service request directly delivering answer to clients C1 Server1 Front-end Cn ServerK Server Farm 9

10 Two tier server farms First tier: several farms spread in different places DNS rounds robin through the different farms when resolving farm address Second tier: single server farm request coming to a server farm is dispatched to an available server unless service answer is in cache in the front end this is more or less an SPM farm (but for caching) 10

11 Notable sample server farm: google 11

12 Notable sample server farm: google (2) 12

13 Notable sample server farm: google (3) Server farm works with a map reduce paradigm actually this boosted structured parallel/distributed programming although: 1) it is not recognized as a skeleton by google guys & 2) it is not structured the composable way we assumed here 13

14 Peer to peer Huge phenomenum usually associate to file sharing and, unfortunately, to illegal content sharing music, movies, books 14

15 Peer to peer No specific rôle all hosts are peers Services provided through cooperation of the peers using an infrastructure allowing peer to communicate peer to peer communication no server used to mediate peer interaction (in principle) 15

16 Peer to peer features Efficiency (w.r.t. resources) Exploit unused bandwidth, storage, processing power Scalability No communication and computation bottleneck Resources added in steps Reliability Distributed replicas No single point of failure Administration Node self-organization Fault tolerance, replication, and load balancing Anonymity Privacy much better than in a centralized system Dynamism highly dynamic environment ad-hoc communication and collaboration 16

17 Typical P2P applications File sharing e.g. napster, bittorrent, gnutella,... service provided : get a copy of a file P2P VOIP phone e.g. Skype service provided : interconnecting (voice and video, cyphered) computers to computers, computers to phones 17

18 P2P application taxonomy P2P apps Parallel Content and file management Collaboration Compute intensive Compone ntized Content exchange File system Filtering, mining Instant message Shared apps Games 18

19 Peer to peer scenario(s) A number of peers discover each other and talk peer to peer to implement a sharing protocol A number of peers discover each other, possibly using one or more shared servers, then talk peer to peer to implement a sharing protocol 19

20 The initial story... Peer to peer file sharing server vs. peer to peer Server: one server contacted to get a copy of the file performance bottleneck at the peer PeerToPeer: a number of peers hosts copies of file (or chunks of the original copy) and can be queried to get (the missing) chunks distributed performance bottleneck ( no bottleneck) PeerToPeer file sharing seemed to be much more efficient than server based file sharing 20

21 Some performance models Upper limit in the two cases Server max{ N peerfile dim Server B, File dim P eer B, } Peer to peer max{ File dim Server B, File dim P eer B, N peer File dim Server B + N p eer i=1 P eer Bi } 21

22 Some performance models Upper limit in the two cases Server Server is the bottleneck max{ N peerfile dim Server B Peer is the bottleneck, File dim P eer B, } Peer to peer max{ File dim Server B, File dim P eer B, N peer File dim Server B + N p eer i=1 P eer Bi } 21

23 Performance result (theoretical) P eer B = b, File dim b =1hour, Server B = 10b (Upload peer badwidth Download peer bandwidth) 22

24 Different approaches Problem to be solved how to find location of peers with FileX First step in the file sharing process Then: second step contact peers to obtain (portions of) the file 23

25 Approach one: centralized directory Server (or server farm!!!) host index of shared files file X is on hosts H1,..., Hn <H1,IP1>,...,..., <Hh,IPh> original Napster approach Peer: asks server contact peer hosts (choose the better one...) 24

26 Centralized approach: pros and cons Pros Low peer requirements (just server name(s)) Limited bandwidth required fast host discovery Good success rate of p2p queries Cons Single point of failure No scalability 25

27 Napster Application-level, client-server protocol over point-to-point TCP Four steps Connect to Napster server Upload file list Upload query Select best peer among those answered by the server 26

28 Approach two: query flooding Completely distributed approach (used by original Gnutella) Based on overlay network concept nodes are peers, arcs between connected peers Peer looking for File X queries the peers connected in the overlay network peer with the file: answer + propagate recursively the request peer without the file: simply propagate recursively the request Variant: request with TTL: not propagated after TTL hops 27

29 Query flooding pros and cons Pros completely distributed fault tolerant no bottelnecks Cons high bandwidth used large time required to locate items no guarantee of success (see next slide) load unbalance 28

30 Problem: how to build the overlay network Peer A entering the system tries to establish a contact with at least another peer B using a server to get the address of some peers, multicasting over UPD, contacting all the IP addresses in its cache,... Once connected to B sends to B a ping message with TTL = n B propagates the message to all neighbours in overlay network, unless TTL = 0 and answers with a message to A recursively... A tries to connect to some of the answering nodes, to connect to the overlay network 29

31 Third approach: hierarchical network Mixed approach (used by Kaaza & current version of Gnutella) Peers and super peers Super peers servers with index of all the connected peers in addition: connected with other super peers Peers just connect to one super peer Peer send request to super peer if locally solved done otherwise super peer flood other super peers 30

32 Sample P2P framework JXTA (Sun) Open platform for p2p cooperation Platform independent Languages: Java, C Operating systems: Unix/Linux/BSD, Windows Networks: TCP/IP on different network layer

33 JXTA (2) Objectives Find peers and resources Share files with anyone across the network Create a particular group of peers across different networks Communicate securely with peers across public networks Protocols Peer discovery protocol Peer resolver protocol Peer information protocol Rendezvous protocol Pipe binding protocol Endpoint routing protocol 32

34 JXTA overview JXTA community applications JXTA Shell JXTA community services Sun JXTA Services Peer commands Peer Groups Peer Pipes Peer Monitoring Security JXTA CORE Peer network 33

35 P2P & SPM P2P is unstructured in some sense naturally opposed to structured approaches? Actually some structured programming issues fit the model e.g. resource discovery other issues could be solved using alternative approaches e.g. master/worker implementation schema 34

36 Discovery Source code compiler structured distributed code requires a number of resources These resources may be discovered with P2P inspired approaches Muskel discovery message flooding emulated through UDP multicast nothing prevents setting up a real query flooding procedure Same techniques may be used when recruited resources fail to recruit new resources, possibly not appearing at appl start 35

37 P2P Discovery User host runs skeleton program figures out the resources needed send a message to known hosts those available to host a worker answer and propagate request those non available simply propagate the request request TTL decreased on propagation eventually, a list of hosts available to participate is known 36

38 P2P Discovery w.r.t. implementation model Macro data flow a number of un-distinct nodes is needed each used to run a macro data flow interpreter instance Implementation template a number of nodes is needed to be specialized by means of a process template most likely some of the nodes require special features Consequences MDF slightly more suitable due to un-distinct nodes used In both cases possibly more nodes needed to substitute failed ones 37

39 Peculiar support to structured models Peer discovery dynamic process can be used in static phases (such as initial configuration) perfectly suitable to dynamic re structuring of a computation to substitute faulty nodes, to improve parallelism degree, Peers leaving systems conveniently modelled as a fault more sever FT policies required 38

40 Implementation patterns with P2P Experience (in Pisa) JXTA implementation of a skeleton framework (task farm) by Mauro Morici april 2004 Actually a master/worker schema implementing MDF Peers discovered through JXTA mechanisms specialized to run workers on demand each time a task comes to be executed if idle worker exist assign task otherwise lookup new peer 39

41 JXTA/Muskel : Emitter structure 40

42 JXTA/Muskel : interactions 41

43 JXTA/Muskel : results 42

44 JXTA/Muskel : results 43

45 Sample code 44

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems

Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Distributed and Agent Systems Agent and Object Technology Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Distributed and Agent Systems Peer-to-Peer Systems & JXTA Prof. Agostino Poggi What is Peer-to-Peer

More information

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES

DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES DISTRIBUTED COMPUTER SYSTEMS ARCHITECTURES Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline System Architectural Design Issues Centralized Architectures Application

More information

Telecommunication Services Engineering Lab. Roch H. Glitho

Telecommunication Services Engineering Lab. Roch H. Glitho 1 Support Infrastructure Support infrastructure for application layer Why? Re-usability across application layer protocols Modularity (i.e. separation between application layer protocol specification /

More information

Chapter 2: Application layer

Chapter 2: Application layer Chapter 2: Application layer 2. Principles of network applications app architectures app requirements 2.2 Web and HTTP 2.4 Electronic Mail SMTP, POP3, IMAP 2.5 DNS 2.6 P2P applications 2.7 Socket programming

More information

Unit 8 Peer-to-Peer Networking

Unit 8 Peer-to-Peer Networking Unit 8 Peer-to-Peer Networking P2P Systems Use the vast resources of machines at the edge of the Internet to build a network that allows resource sharing without any central authority. Client/Server System

More information

CMSC 332 Computer Networks P2P and Sockets

CMSC 332 Computer Networks P2P and Sockets CMSC 332 Computer Networks P2P and Sockets Professor Szajda Announcements Programming Assignment 1 is due Thursday Where are we? What sorts of problems are we having? 2 Recap SMTP is the language that

More information

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang

CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 21: Overlay Networks Chap 9.4 Xiaowei Yang xwy@cs.duke.edu Overview Problem Evolving solutions IP multicast Proxy caching Content distribution networks

More information

Peer-to-Peer Networks

Peer-to-Peer Networks Peer-to-Peer Networks 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Quiz #1 is next week

More information

6. Peer-to-peer (P2P) networks I.

6. Peer-to-peer (P2P) networks I. 6. Peer-to-peer (P2P) networks I. PA159: Net-Centric Computing I. Eva Hladká Faculty of Informatics Masaryk University Autumn 2010 Eva Hladká (FI MU) 6. P2P networks I. Autumn 2010 1 / 46 Lecture Overview

More information

CS 3516: Advanced Computer Networks

CS 3516: Advanced Computer Networks Welcome to CS 3516: Advanced Computer Networks Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: Fuller 320 Fall 2017 A-term 1 Some slides are originally from the course materials of the textbook

More information

Naming and Service Discovery in Peer-to-Peer Networks

Naming and Service Discovery in Peer-to-Peer Networks Naming and Service Discovery in Peer-to-Peer Networks ECE1770 Expert Topic Eli Fidler Vinod Muthusamy February 13, 2003 Outline Traditional Distributed Naming Systems Distributed Naming Paradigms P2P Naming

More information

Overlays and P2P Networks

Overlays and P2P Networks Overlays and P2P Networks @ CRES, Monreale, Italy, 16 March-15 April 2009 Giovanni Neglia INRIA Sophia Antipolis, France www-sop.inria.fr/members/giovanni.neglia/p2p09.htm Thanks to: S. Alouf, E. Biersack,

More information

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016

Distributed Systems. 17. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2016 Distributed Systems 17. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2016 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Peer-to-Peer (P2P) Systems

Peer-to-Peer (P2P) Systems Peer-to-Peer (P2P) Systems What Does Peer-to-Peer Mean? A generic name for systems in which peers communicate directly and not through a server Characteristics: decentralized self-organizing distributed

More information

JXTA TM Technology for XML Messaging

JXTA TM Technology for XML Messaging JXTA TM Technology for XML Messaging OASIS Symposium New Orleans, LA 27-April-2004 Richard Manning Senior Software Architect Advanced Technology & Edge Computing Center Sun Microsystems Inc. www.jxta.org

More information

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today

Peer-to-Peer Systems. Network Science: Introduction. P2P History: P2P History: 1999 today Network Science: Peer-to-Peer Systems Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Introduction Peer-to-peer (PP) systems have become

More information

Introduction to Peer-to-Peer Systems

Introduction to Peer-to-Peer Systems Introduction Introduction to Peer-to-Peer Systems Peer-to-peer (PP) systems have become extremely popular and contribute to vast amounts of Internet traffic PP basic definition: A PP system is a distributed

More information

Exploiting peer group concept for adaptive and highly available services

Exploiting peer group concept for adaptive and highly available services Computing in High Energy and Nuclear Physics, 24-28 March 2003 La Jolla California 1 Exploiting peer group concept for adaptive and highly available services Muhammad Asif Jan Centre for European Nuclear

More information

Peer-to-Peer Systems. Chapter General Characteristics

Peer-to-Peer Systems. Chapter General Characteristics Chapter 2 Peer-to-Peer Systems Abstract In this chapter, a basic overview is given of P2P systems, architectures, and search strategies in P2P systems. More specific concepts that are outlined include

More information

Advanced Computer Networks

Advanced Computer Networks Advanced Computer Networks P2P Systems Jianping Pan Summer 2007 5/30/07 csc485b/586b/seng480b 1 C/S vs P2P Client-server server is well-known server may become a bottleneck Peer-to-peer everyone is a (potential)

More information

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q

Overlay networks. To do. Overlay networks. P2P evolution DHTs in general, Chord and Kademlia. Turtles all the way down. q q q Overlay networks To do q q q Overlay networks P2P evolution DHTs in general, Chord and Kademlia Turtles all the way down Overlay networks virtual networks Different applications with a wide range of needs

More information

M. Danelutto. University of Pisa. IFIP 10.3 Nov 1, 2003

M. Danelutto. University of Pisa. IFIP 10.3 Nov 1, 2003 M. Danelutto University of Pisa IFIP 10.3 Nov 1, 2003 GRID: current status A RISC grid core Current experiments Conclusions M. Danelutto IFIP WG10.3 -- Nov.1st 2003 2 GRID: current status A RISC grid core

More information

Introduction to Peer-to-Peer Networks

Introduction to Peer-to-Peer Networks Introduction to Peer-to-Peer Networks The Story of Peer-to-Peer The Nature of Peer-to-Peer: Generals & Paradigms Unstructured Peer-to-Peer Systems Sample Applications 1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt

More information

Distributed Systems. 16. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 16. Distributed Lookup. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 16. Distributed Lookup Paul Krzyzanowski Rutgers University Fall 2017 1 Distributed Lookup Look up (key, value) Cooperating set of nodes Ideally: No central coordinator Some nodes can

More information

Lecture 8: Application Layer P2P Applications and DHTs

Lecture 8: Application Layer P2P Applications and DHTs Lecture 8: Application Layer P2P Applications and DHTs COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016,

More information

Making Gnutella-like P2P Systems Scalable

Making Gnutella-like P2P Systems Scalable Making Gnutella-like P2P Systems Scalable Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker Presented by: Herman Li Mar 2, 2005 Outline What are peer-to-peer (P2P) systems? Early P2P systems

More information

Network Layering, Naming, and Name Resolution CS 118. Computer Network Fundamentals Peter Reiher. Lecture 9 Page 1 CS 118.

Network Layering, Naming, and Name Resolution CS 118. Computer Network Fundamentals Peter Reiher. Lecture 9 Page 1 CS 118. Network Layering, Naming, and Name Resolution Computer Network Fundamentals Peter Reiher Page 1 Outline Naming within layers Name space issues Resolving names Page 2 What do names mean? Names are just

More information

Telematics Chapter 9: Peer-to-Peer Networks

Telematics Chapter 9: Peer-to-Peer Networks Telematics Chapter 9: Peer-to-Peer Networks Beispielbild User watching video clip Server with video clips Application Layer Presentation Layer Application Layer Presentation Layer Session Layer Session

More information

Peer-to-Peer Systems. Internet Computing Workshop Tom Chothia

Peer-to-Peer Systems. Internet Computing Workshop Tom Chothia Peer-to-Peer Systems Internet Computing Workshop Tom Chothia Plagiarism Reminder Plagiarism is a very serious offense. Never submit work by other people without clearly stating who wrote it. If you did

More information

Peer-to-Peer Internet Applications: A Review

Peer-to-Peer Internet Applications: A Review Peer-to-Peer Internet Applications: A Review Davide Quaglia 01/14/10 Introduction Key points Lookup task Outline Centralized (Napster) Query flooding (Gnutella) Distributed Hash Table (Chord) Simulation

More information

Peer-to-Peer Applications Reading: 9.4

Peer-to-Peer Applications Reading: 9.4 Peer-to-Peer Applications Reading: 9.4 Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources,

More information

Adaptive Cluster Computing using JavaSpaces

Adaptive Cluster Computing using JavaSpaces Adaptive Cluster Computing using JavaSpaces Jyoti Batheja and Manish Parashar The Applied Software Systems Lab. ECE Department, Rutgers University Outline Background Introduction Related Work Summary of

More information

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016

Internet Technology. 06. Exam 1 Review Paul Krzyzanowski. Rutgers University. Spring 2016 Internet Technology 06. Exam 1 Review Paul Krzyzanowski Rutgers University Spring 2016 March 2, 2016 2016 Paul Krzyzanowski 1 Question 1 Defend or contradict this statement: for maximum efficiency, at

More information

Internet Technology 3/2/2016

Internet Technology 3/2/2016 Question 1 Defend or contradict this statement: for maximum efficiency, at the expense of reliability, an application should bypass TCP or UDP and use IP directly for communication. Internet Technology

More information

P2P Applications. Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza

P2P Applications. Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza P2P Applications Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza Versione originale delle slides fornita da Dora Spenza e Marco Barbera P2P Paradigm Late 80

More information

Send me up to 5 good questions in your opinion, I ll use top ones Via direct message at slack. Can be a group effort. Try to add some explanation.

Send me up to 5 good questions in your opinion, I ll use top ones Via direct message at slack. Can be a group effort. Try to add some explanation. Notes Midterm reminder Second midterm next week (04/03), regular class time 20 points, more questions than midterm 1 non-comprehensive exam: no need to study modules before midterm 1 Online testing like

More information

Lecture 21 P2P. Napster. Centralized Index. Napster. Gnutella. Peer-to-Peer Model March 16, Overview:

Lecture 21 P2P. Napster. Centralized Index. Napster. Gnutella. Peer-to-Peer Model March 16, Overview: PP Lecture 1 Peer-to-Peer Model March 16, 005 Overview: centralized database: Napster query flooding: Gnutella intelligent query flooding: KaZaA swarming: BitTorrent unstructured overlay routing: Freenet

More information

CSE 486/586 Distributed Systems Peer-to-Peer Architectures

CSE 486/586 Distributed Systems Peer-to-Peer Architectures CSE 486/586 Distributed Systems eer-to-eer Architectures Steve Ko Computer Sciences and Engineering University at Buffalo CSE 486/586 Last Time Gossiping Multicast Failure detection Today s Question How

More information

SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks

SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks SIPCache: A Distributed SIP Location Service for Mobile Ad-Hoc Networks Simone Leggio Hugo Miranda Kimmo Raatikainen Luís Rodrigues University of Helsinki University of Lisbon August 16, 2006 Abstract

More information

Presented By: Niharjyoti Sarangi

Presented By: Niharjyoti Sarangi Presented By: Niharjyoti Sarangi 1. 2. 3. 4. 5. 6. 7. 8. INTRODUCTION WHAT & WHY KEY FEATURES JXTA ARCHITECTURE JXTA LAYERS JXTA JARGONS JXTA PROTOCOLS JXTA SHELLS JXTA ADVANTAGES 2 AN OPEN P2P PROTOCOL

More information

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example

Overlay networks. Today. l Overlays networks l P2P evolution l Pastry as a routing overlay example Overlay networks Today l Overlays networks l P2P evolution l Pastry as a routing overlay eample Network virtualization and overlays " Different applications with a range of demands/needs network virtualization

More information

Assignment 5. Georgia Koloniari

Assignment 5. Georgia Koloniari Assignment 5 Georgia Koloniari 2. "Peer-to-Peer Computing" 1. What is the definition of a p2p system given by the authors in sec 1? Compare it with at least one of the definitions surveyed in the last

More information

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE

March 10, Distributed Hash-based Lookup. for Peer-to-Peer Systems. Sandeep Shelke Shrirang Shirodkar MTech I CSE for for March 10, 2006 Agenda for Peer-to-Peer Sytems Initial approaches to Their Limitations CAN - Applications of CAN Design Details Benefits for Distributed and a decentralized architecture No centralized

More information

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications

CS 640 Introduction to Computer Networks. Today s lecture. What is P2P? Lecture30. Peer to peer applications Introduction to Computer Networks Lecture30 Today s lecture Peer to peer applications Napster Gnutella KaZaA Chord What is P2P? Significant autonomy from central servers Exploits resources at the edges

More information

A Survey of Peer-to-Peer Content Distribution Technologies

A Survey of Peer-to-Peer Content Distribution Technologies A Survey of Peer-to-Peer Content Distribution Technologies Stephanos Androutsellis-Theotokis and Diomidis Spinellis ACM Computing Surveys, December 2004 Presenter: Seung-hwan Baek Ja-eun Choi Outline Overview

More information

Distributed Systems Principles and Paradigms. Chapter 12: Distributed Web-Based Systems

Distributed Systems Principles and Paradigms. Chapter 12: Distributed Web-Based Systems Distributed Systems Principles and Paradigms Maarten van Steen VU Amsterdam, Dept. Computer Science steen@cs.vu.nl Chapter 12: Distributed -Based Systems Version: December 10, 2012 Distributed -Based Systems

More information

Opportunistic Application Flows in Sensor-based Pervasive Environments

Opportunistic Application Flows in Sensor-based Pervasive Environments Opportunistic Application Flows in Sensor-based Pervasive Environments Nanyan Jiang, Cristina Schmidt, Vincent Matossian, and Manish Parashar ICPS 2004 1 Outline Introduction to pervasive sensor-based

More information

416 Distributed Systems. Mar 3, Peer-to-Peer Part 2

416 Distributed Systems. Mar 3, Peer-to-Peer Part 2 416 Distributed Systems Mar 3, Peer-to-Peer Part 2 Scaling Problem Millions of clients server and network meltdown 2 P2P System Leverage the resources of client machines (peers) Traditional: Computation,

More information

Peer to Peer Computing

Peer to Peer Computing Peer to Peer Computing These slides are based on the slides made available by the authors of Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley,

More information

Distributed systems' architecture. Typical application model. Example ( classic app.) A.Lioy - Politecnico di Torino (2009) A-1

Distributed systems' architecture. Typical application model. Example ( classic app.) A.Lioy - Politecnico di Torino (2009) A-1 Distributed systems' architecture Antonio Lioy < lioy@polito.it it > english version created and modified by Marco D. Aime < m.aime@polito.it > Politecnico di Torino Dip. Automatica e Informatica Typical

More information

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering

Stratos Idreos. A thesis submitted in fulfillment of the requirements for the degree of. Electronic and Computer Engineering P2P-DIET: A QUERY AND NOTIFICATION SERVICE BASED ON MOBILE AGENTS FOR RAPID IMPLEMENTATION OF P2P APPLICATIONS by Stratos Idreos A thesis submitted in fulfillment of the requirements for the degree of

More information

Distributed systems' architecture

Distributed systems' architecture Distributed systems' architecture Antonio Lioy < lioy@polito.it > english version created and modified by Marco D. Aime < m.aime@polito.it > Politecnico di Torino Dip. Automatica e Informatica Typical

More information

Peer to Peer Networks

Peer to Peer Networks Sungkyunkwan University Peer to Peer Networks Prepared by T. Le-Duc and H. Choo Copyright 2000-2017 Networking Laboratory Presentation Outline 2.1 Introduction 2.2 Client-Server Paradigm 2.3 Peer-To-Peer

More information

P2P. 1 Introduction. 2 Napster. Alex S. 2.1 Client/Server. 2.2 Problems

P2P. 1 Introduction. 2 Napster. Alex S. 2.1 Client/Server. 2.2 Problems P2P Alex S. 1 Introduction The systems we will examine are known as Peer-To-Peer, or P2P systems, meaning that in the network, the primary mode of communication is between equally capable peers. Basically

More information

Content Search. Unstructured P2P. Jukka K. Nurminen

Content Search. Unstructured P2P. Jukka K. Nurminen Content Search Unstructured P2P Jukka K. Nurminen *Partly adapted from original slides provided by Rüdiger Schollmeier and Jörg Eberspächer (Technische Universität München) 1 V1-Filename.ppt / yyyy-mm-dd

More information

Designing Peer-to-Peer Systems for Business-to-Business Environments

Designing Peer-to-Peer Systems for Business-to-Business Environments Designing Peer-to-Peer Systems for Business-to-Business Environments Davide Carboni, Massimo Deriu, Cristian Lai and Antonio Pintus CRS4 (Center for Advanced Studies, Research and Development in Sardinia)

More information

Internet Services & Protocols

Internet Services & Protocols Department of Computer Science Institute for System Architecture, Chair for Computer Networks Internet Services & Protocols Content Distribution Dr.-Ing. Stephan Groß Room: INF 3099 E-Mail: stephan.gross@tu-dresden.de

More information

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing

Department of Computer Science Institute for System Architecture, Chair for Computer Networks. File Sharing Department of Computer Science Institute for System Architecture, Chair for Computer Networks File Sharing What is file sharing? File sharing is the practice of making files available for other users to

More information

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University

CS555: Distributed Systems [Fall 2017] Dept. Of Computer Science, Colorado State University CS 555: DISTRIBUTED SYSTEMS [P2P SYSTEMS] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Byzantine failures vs malicious nodes

More information

The time is right for P2P and Project JXTA

The time is right for P2P and Project JXTA Introduction 1-1 The time is right for P2P and Project JXTA Peer to Peer (P2P) is not new. However, the time is now right for the broad P2P applications deployment. The Project JXTA technology lets developers

More information

P2P Applications. Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza Canale A-L Prof.ssa Chiara Petrioli

P2P Applications. Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza Canale A-L Prof.ssa Chiara Petrioli P2P Applications Reti di Elaboratori Corso di Laurea in Informatica Università degli Studi di Roma La Sapienza Canale A-L Prof.ssa Chiara Petrioli Server-based Network Peer-to-peer networks A type of network

More information

Chapter 18 Distributed Systems and Web Services

Chapter 18 Distributed Systems and Web Services Chapter 18 Distributed Systems and Web Services Outline 18.1 Introduction 18.2 Distributed File Systems 18.2.1 Distributed File System Concepts 18.2.2 Network File System (NFS) 18.2.3 Andrew File System

More information

Architectures for distributed systems (Chapter 2)

Architectures for distributed systems (Chapter 2) Today Architectures for distributed systems (Chapter 2) Architectural styles Client-server architectures Decentralized and peer-to-peer architectures Lecture 2, page!1 Module 1: Architectural Styles Important

More information

CS6601 DISTRIBUTED SYSTEM / 2 MARK

CS6601 DISTRIBUTED SYSTEM / 2 MARK UNIT III PEER TO PEER SERVICE AND FILE SYSTEM 1. Define Peer-Peer System. Part A - Questions Peer-to-peer system is a paradigm for the construction of distributed system and application in which data and

More information

Internet Protocol Stack! Principles of Network Applications! Some Network Apps" (and Their Protocols)! Application-Layer Protocols! Our goals:!

Internet Protocol Stack! Principles of Network Applications! Some Network Apps (and Their Protocols)! Application-Layer Protocols! Our goals:! Internet Protocol Stack! Principles of Network Applications! application: supporting network applications!! HTTP,, FTP, etc.! transport: endhost-endhost data transfer!! TCP, UDP! network: routing of datagrams

More information

Lecture 2: January 24

Lecture 2: January 24 CMPSCI 677 Operating Systems Spring 2017 Lecture 2: January 24 Lecturer: Prashant Shenoy Scribe: Phuthipong Bovornkeeratiroj 2.1 Lecture 2 Distributed systems fall into one of the architectures teaching

More information

Today. Architectural Styles

Today. Architectural Styles Today Architectures for distributed systems (Chapter 2) Centralized, decentralized, hybrid Middleware Self-managing systems Lecture 2, page 1 Architectural Styles Important styles of architecture for distributed

More information

CS 470 Spring Distributed Web and File Systems. Mike Lam, Professor. Content taken from the following:

CS 470 Spring Distributed Web and File Systems. Mike Lam, Professor. Content taken from the following: CS 470 Spring 2017 Mike Lam, Professor Distributed Web and File Systems Content taken from the following: "Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters

More information

JXTA: A Self-Adaptive Framework for Building P2P Systems

JXTA: A Self-Adaptive Framework for Building P2P Systems JXTA: A Self-Adaptive Framework for Building P2P Systems Bemnet Tesfaye Merha and Benoit Landrieu {merha, landrieu}@stud.ntnu.no Technical Essay in TTM3 Design of Self-Adaptive Systems Norwegian University

More information

Project JXTA Technology Overview.

Project JXTA Technology Overview. Project JXTA Technology Overview www.jxta.org The Time Is Right for P2P and Project JXTA Peer-to-Peer (P2P) is not new. However, the time is now right for the broad P2P applications deployment. The Project

More information

Architectures for Distributed Systems

Architectures for Distributed Systems Distributed Systems and Middleware 2013 2: Architectures Architectures for Distributed Systems Components A distributed system consists of components Each component has well-defined interface, can be replaced

More information

CS 470 Spring Distributed Web and File Systems. Mike Lam, Professor. Content taken from the following:

CS 470 Spring Distributed Web and File Systems. Mike Lam, Professor. Content taken from the following: CS 470 Spring 2018 Mike Lam, Professor Distributed Web and File Systems Content taken from the following: "Distributed Systems: Principles and Paradigms" by Andrew S. Tanenbaum and Maarten Van Steen (Chapters

More information

Today. Architectural Styles

Today. Architectural Styles Today Architectures for distributed systems (Chapter 2) Centralized, decentralized, hybrid Middleware Self-managing systems Lecture 2, page 1 Architectural Styles Important styles of architecture for distributed

More information

Outline. Distributed Computing Systems. The Rise of Distributed Systems. Depiction of a Distributed System 4/15/2014

Outline. Distributed Computing Systems. The Rise of Distributed Systems. Depiction of a Distributed System 4/15/2014 Outline Distributed Computing Systems Overview of Distributed Systems Overview Goals Software Client Server Andrew Tanenbaum and Marten van Steen, Distributed Systems Principles and Paradigms, Prentice

More information

CC451 Computer Networks

CC451 Computer Networks CC451 Computer Networks Lecture 4 Application Layer (cont d) Application Layer 1 Chapter 2: Application layer 2.1 Principles of network applications 2.2 Web and HTTP 2.3 FTP 2.4 Electronic Mail SMTP, POP3,

More information

Spotify Behind the Scenes

Spotify Behind the Scenes A Eulogy to P2P (?) Spotify gkreitz@spotify.com KTH, May 7 2014 What is Spotify? Lightweight on-demand streaming Large catalogue, over 20 million tracks 1 Available in 28 countries. Over 24 million active

More information

System types. Distributed systems

System types. Distributed systems System types 1 Personal systems that are designed to run on a personal computer or workstation Distributed systems where the system software runs on a loosely integrated group of cooperating processors

More information

Slides for Chapter 10: Peer-to-Peer Systems

Slides for Chapter 10: Peer-to-Peer Systems Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Overview of Chapter Introduction Napster

More information

Introduction on Peer to Peer systems

Introduction on Peer to Peer systems Introduction on Peer to Peer systems Georges Da Costa dacosta@irit.fr dacosta@irit.fr 1/55 Goal of this Lecture What can P2P do, not only as a buzzword What it can't do Shows some examples & algorithms

More information

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5.

CS /15/16. Paul Krzyzanowski 1. Question 1. Distributed Systems 2016 Exam 2 Review. Question 3. Question 2. Question 5. Question 1 What makes a message unstable? How does an unstable message become stable? Distributed Systems 2016 Exam 2 Review Paul Krzyzanowski Rutgers University Fall 2016 In virtual sychrony, a message

More information

Slides for Chapter 10: Peer-to-Peer Systems. From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design

Slides for Chapter 10: Peer-to-Peer Systems. From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Slides for Chapter 10: Peer-to-Peer Systems From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Edited and supplemented by Jonne Itkonen,!

More information

Peer to Peer Systems and Probabilistic Protocols

Peer to Peer Systems and Probabilistic Protocols Distributed Systems 600.437 Peer to Peer Systems & Probabilistic Protocols Department of Computer Science The Johns Hopkins University 1 Peer to Peer Systems and Probabilistic Protocols Lecture 11 Good

More information

Scaling Problem Computer Networking. Lecture 23: Peer-Peer Systems. Fall P2P System. Why p2p?

Scaling Problem Computer Networking. Lecture 23: Peer-Peer Systems. Fall P2P System. Why p2p? Scaling Problem 15-441 Computer Networking Millions of clients server and network meltdown Lecture 23: Peer-Peer Systems Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 2 P2P System Why p2p?

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Department of Computer Science Project report CS 2510 Computer Operating Systems December 2015 Mini Google Mohammad asanzadeh Mofrad hasanzadeh@cs.pitt.edu Abstract This report

More information

Peer-to-Peer (P2P) Communication

Peer-to-Peer (P2P) Communication eer-to-eer (2) Communication 1 References Lv, Cao, Cohen, Li and Shenker, Search and Replication in Unstructured eer-to-eer Networks, In 16 th ACM Intl Conf on Supercomputing (ICS), 2002. S. Kang and M.

More information

Project JXTA Technology Overview

Project JXTA Technology Overview Project JXTA Technology Overview Dr Simon See Technical Director Asia Pacific Science & Technology Center Sun Microsystems Inc. www.jxta.org The Time Is Right for P2P and Project JXTA Peer-to-Peer (P2P)

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 03 (version February 11, 2008) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20.

More information

RSC Part I: Introduction

RSC Part I: Introduction RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking: A Top Down Approach

More information

Peer-to-peer systems and overlay networks

Peer-to-peer systems and overlay networks Complex Adaptive Systems C.d.L. Informatica Università di Bologna Peer-to-peer systems and overlay networks Fabio Picconi Dipartimento di Scienze dell Informazione 1 Outline Introduction to P2P systems

More information

Announcements. me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris

Announcements.  me your survey: See the Announcements page. Today. Reading. Take a break around 10:15am. Ack: Some figures are from Coulouris Announcements Email me your survey: See the Announcements page Today Conceptual overview of distributed systems System models Reading Today: Chapter 2 of Coulouris Next topic: client-side processing (HTML,

More information

Advanced Peer to Peer Discovery and Interaction Framework

Advanced Peer to Peer Discovery and Interaction Framework Advanced Peer to Peer Discovery and Interaction Framework Peeyush Tugnawat J.D. Edwards and Company One, Technology Way, Denver, CO 80237 peeyush_tugnawat@jdedwards.com Mohamed E. Fayad Computer Engineering

More information

P2P Computing. Nobuo Kawaguchi. Graduate School of Engineering Nagoya University. In this lecture series. Wireless Location Technologies

P2P Computing. Nobuo Kawaguchi. Graduate School of Engineering Nagoya University. In this lecture series. Wireless Location Technologies P2P Computing Nobuo Kawaguchi Graduate School of Engineering Nagoya University 1 In this lecture series Wireless Location Technologies Location Information Processing P2P Computing(Today) Plug and Play

More information

Content Search. Unstructured P2P

Content Search. Unstructured P2P Content Search Unstructured P2P Prof. Jukka K. Nurminen Data Communications Software (DCS) Lab, Department of Computer Science and Engineering, Aalto University *Partly adapted from original slides provided

More information

ISP-Aided Neighbor Selection for P2P Systems

ISP-Aided Neighbor Selection for P2P Systems ISP-Aided Neighbor Selection for P2P Systems Anja Feldmann Vinay Aggarwal, Obi Akonjang, Christian Scheideler (TUM) Deutsche Telekom Laboratories TU-Berlin 1 P2P traffic

More information

Application Layer Introduction; HTTP; FTP

Application Layer Introduction; HTTP; FTP Application Layer Introduction; HTTP; FTP Tom Kelliher, CS 325 Feb. 4, 2011 1 Administrivia Announcements Assignment Read 2.4 2.6. From Last Time Packet-switched network characteristics; protocol layers

More information

UNIT III. cache/replicas maintenance Main memory No No No 1 RAM File system n No Yes No 1 UNIX file system Distributed file

UNIT III. cache/replicas maintenance Main memory No No No 1 RAM File system n No Yes No 1 UNIX file system Distributed file UNIT III 1. Enumerate the properties of storage system? Sharing Persistent Distributed Consistency Example cache/replicas maintenance Main memory No No No 1 RAM File system n No Yes No 1 UNIX file system

More information

CCNA Exploration Network Fundamentals. Chapter 03 Application Functionality and Protocols

CCNA Exploration Network Fundamentals. Chapter 03 Application Functionality and Protocols CCNA Exploration Network Fundamentals Chapter 03 Application Functionality and Protocols Updated: 27/04/2008 1 3.1 Applications: The Interface Between Human and Networks Applications provide the means

More information

ICT 6544 Distributed Systems Lecture 2: ARCHITECTURES

ICT 6544 Distributed Systems Lecture 2: ARCHITECTURES ICT 6544 Distributed Systems Lecture 2: ARCHITECTURES Hossen Asiful Mustafa 1 Introduction Distributed systems are often complex pieces of software of which the components are by definition dispersed across

More information

Chapter 2 ARCHITECTURES

Chapter 2 ARCHITECTURES DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 2 ARCHITECTURES Architectural Styles (1) DS should be composed of Components and Connectors.» How

More information

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction

DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN. Chapter 1. Introduction DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 1 Introduction Modified by: Dr. Ramzi Saifan Definition of a Distributed System (1) A distributed

More information