SATELLITE NETWORK REGULAR CONNECTIONS

Size: px
Start display at page:

Download "SATELLITE NETWORK REGULAR CONNECTIONS"

Transcription

1 Supporting unidirectional links in the Internet Emmanuel Duros I.N.R.I.A. Sophia Antipolis Walid Dabbous I.N.R.I.A. Sophia Antipolis 1 Introduction Many distributed applications may benet from a high bandwidth connection to the Internet. However, this requires high bandwidth links between remote sites. A low-cost solution to deliver such high bandwidth links over wide geographical areas is to use broadcast satellite networks as proposed in [ASBD]. However, this solution is based on low cost receivers with zero bandwidth return. The connection over the satellite link is therefore unidirectional. Current routing protocols in the Internet do not support unidirectional links. The goal of this paper is to describe changes in these protocols to support such links. 2 The satellite-based architecture A satellite network provides high bandwidth services independent of the user's location over a large geographical area. A satellite network comprises two types of stations: feeds, which can both send and receive packets, and receivers, which can only receive packets. A receiver is composed of a satellite dish oriented toward a geostationary satellite, connected via an interface either to a user station (in this case the access method is referred to as basic access) or to a router (in this case the access method is referred to as subnetwork access). The user station has another interface, and the router has one or more extra interfaces, connected to the Internet. Note that the cost of the hardware is made up of the cost of the satellite dish and of the reception card. Information is sent from feeds to satellites and then broadcast to all the receivers that belong to the satellite coverage.

2 Installing feeds in strategic positions over the Internet will create shorter paths and packets will be routed via the satellite network that oers a higher bandwidth. 2.1 Basic access Basic access corresponds to the case when each receiver has a satellite dish. The user station is also connected to the Internet via a telephone/modem (e.g. PPP connection). The station therefore has two IP addresses, one belonging to the satellite subnet (SAT.x) and the other to the regular connection subnet (INT.y). See Figure 1. SATELLITE NETWORK UPLINK R1: FEED H1: USER S STATION SAT.x R1 REGULAR CONNECTIONS H1 INT.y (PPP CONNECTION) S1 SERVER Figure 1: Basic access All requests to a remote server are sent via the phone line and responses from the server should be routed by a feed on the satellite network. 2.2 Subnetwork access Subnetwork access corresponds to the case when a subnet router has a satellite dish. See Figure 2. This router is then interconnected to the Internet via regular connections and to local or a campus subnetwork. Thus, in this case, only one satellite dish is required in order to serve a whole subnetwork. The management is also located in only one place, namely in the router. 3 Proposed solutions We next describe solutions to handle unidirectional links for both the basic access and the subnetwork access. First, note that satellite networks are able to cover large geographical areas and therefore to address very large sets of receivers. This makes a solution based on static routing, with routes manually set up and hardwired in feeds, inadequate as the number 2

3 SATELLITE NETWORK UPLINK R1: FEED R2, R3: ROUTERS R1 R2 SUBNET REGULAR CONNECTIONS R3 S1 SERVER Figure 2: Subnet access of receivers might be huge. Thus, we consider dynamic routing solutions. Furthermore, note that satellite transmissions can fade away and thus create black holes if routes are dened statically. However, dynamic routing solutions still need some work and some modications must be applied to routing protocols in order to handle unidirectional links for both basic and subnetwork access, as we illustrate next. 3.1 Basic Access The main problem with basic access is related to the ARP protocol [rfc826] because ARP assumes that links are bidirectional, and it expects a communication between directly connected hosts. Thus, it cannot work properly in Figure 1, since an ARP request sent by a feed to a host that belongs to the satellite network cannot expect a response from receivers. Another problem is related to routing protocols since a station (such as H1 in Figure 1) has two IP addresses : SAT.x (belongs to the satellite network) and INT.y (e.g. PPP connection to an Internet service provider). H1 send packets via the interface INT.y, but incoming packets should be routed to the default address SAT.x. 3.2 Subnetwork access We consider here feeds and receivers as IP routers (R1 and R2 in Figure 3). The general problem is : how can a receiver announce routes to feeds since it cannot communicate directly with them? Our work is mainly based on the study of the most common routing protocols that will be used by feeds and receivers such as RIP [rfc1723], OSPF [rfc1583], and DVMRP [rfc1075] for multicast routing. 3

4 Unlike receivers, feeds can broadcast routing messages via the satellite network. A feed will expect to receive messages (e.g. a response to a request on a specic interface) from all its interfaces. Since a feed cannot receive messages from the satellite network, routing protocols will consider that there is no reachable networks beyond it. In order to announce routes to feeds by receivers, routing messages must be sent to the unicast address of each feed. This assumes that receivers can communicate with feeds via regular connections (See Figure 3). UPLINK SATELLITE NETWORK R1: FEED R2: RECEIVER R1 R2 REGULAR CONNECTIONS Figure 3: Subnet access Moreover, both the feed's and receiver's interfaces connected to the Internet (using regular connections) hardly ever belong to the same subnetwork (due to long distances between feeds and receivers). Routing protocol daemons check, in order to ensure security, that the sender's address of a message belongs to the same subnetwork as the interface which received it. Therefore routing information will not be taken into account since the packet will be rejected. We have just described some problems that occur when trying to handle unidirectional links by common routing protocols. Specic problems related to RIP [1], OSPF[2] and DVMRP[3] are described in other documents. 3.3 An example: RIP RIP is one of the rst dynamic routing protocols used in the Internet. It was designed to work in networks where adjacent gateways communicate using the same link in both directions. Links may be asymmetric, e.g., have dierent delays and throughputs in dierent directions, but they have to be bidirectional. RIP is based on the exchange of routing information known as distance vectors between directly-connected routers. A router broadcasts routing messages on all its interfaces with a TTL of 1 (a routing message is never forwarded). Thus, receivers are unable to inform feeds of destinations they can reach. They must however send reports to the feeds to indicate the subnets for which they are ready to receive packets. RIP v2 allows the use of an authentication eld. We propose to associate a specic authentication code with the satellite network. All RIP packets sent over the satellite 4

5 network are authenticated. receivers. The handling of this code will be dierent by feeds and Handling by receivers Upon reception of a RIP packet, receivers examine the authentication code. They note that this packet was sent by a satellite feed. They ignore all subnet-distance announces contained in this packet, but they add the source address of the packet [IP source] to the list of "potential feeds". At pseudo-regular intervals, the receivers send to the potential feeds a RIP packet that will be authenticated as a "satellite packet". This packet, however, is not sent to the regular multicast address of all the RIP routers. Instead, a copy of this packet is sent to the unicast address of each feed. Normally, sending a packet to the unicast address of each feed sets the IP source address of this packet to the IP address of the outgoing interface. In RIP specications, this latter is then used by feeds in their routing table to specify the next router along a path to a destination. But this address is not relevant because it does not belong to the subnets connected to the feeds. Therefore, when a receiver sends a RIP packet, the IP source address must be changed to the IP address of the interface which is connected to the unidirectional link Processing by feeds Processing of RIP packets by feeds is almost unchanged, except for the following : all packets sent over the multicast link are authenticated. all packets authenticated as satellite packets are processed even if they are routed by another interface. 4 Conclusion Improving user connectivity to the Internet at low cost seems possible, for both basic access or subnetwork access. However handling unidirectional links by standard routing protocols (RIP, OSPF, DVMRP) is not trivial and currently not supported, and it requires changes in the current protocol specications. Fortunately these changes should not lead to new versions of routing protocols (RIP and DVMRP) and should be transparent for routers not connected to satellite networks. Note: This work has been presented at the udlr (unidirectional link routing) BoF session during the IETF meeting in Montreal (June 96). It is also possible to subscribe to the udlr mailing list sending a mail to udlr-request@sophia.inria.fr asking for subscription. 5

6 References [ASBD] V. Arora, N. Suphasindhu, J.S. Baras, D. Dillon, Asymmetric Internet Access over Satellite- Terrestrial Networks, [1] C. Huitema, E. Duros, ftp://zenon.inria.fr/rodeo/udlr/doc/draft-ietf-rip-unidirectional-link- 00.txt, March 96 [2] E. Duros, ftp://zenon.inria.fr/rodeo/udlr/doc/draft-ietf-ospf-unidirectional-link-00.txt, March 96 [3] W. Dabbous, E. Duros, ftp://zenon.inria.fr/rodeo/udlr/doc/draft-ietf-dvmrp-unidirectional-link- 00.txt, March 96 [rfc823] David C. Plummer, "An Ethernet Address Resolution Protocol", Request For Comments (RFC) 826, November [rfc1723] Malkin, G., "RIP Version 2 - Carrying Additional Information", Request For Comments (RFC) 1723, Xylogics, Inc., November,1994. [rfc1583] J. Moy,"OSPF Version 2", Request For Comments (RFC) 1583, Proteon, Inc., March [rfc1075] S. Deering, C. Partridge, D. Waitzman, "Distance Vector Multicast Routing Protocol", November

If the distance-vector algorithm is used :

If the distance-vector algorithm is used : An Experimental tudy of Asymmetric Routing Manish Karir y karir@isr.umd.edu University of Maryland College Park, MD 20742 Yongguang Zhang ygz@hrl.com HRL Laboratories Malibu, CA 90265 Abstract Traditionally,

More information

The Internet. Internet. Agent. MBone. Satellite Gateway. Data Redistribution Center. Multicast Group Requests. Tunneled. Multicast Data.

The Internet. Internet. Agent. MBone. Satellite Gateway. Data Redistribution Center. Multicast Group Requests. Tunneled. Multicast Data. Extensions of DBS and Hybrid Internet 1,2 Manish Karir Vijay Bharadwaj Keith Holleman Narin Suphasindhu Spyro Papademetriou John S. Baras Center for Satellite & Hybrid Communication Networks University

More information

Network Working Group Request for Comments: 3077 Category: Standards Track INRIA Sophia-Antipolis H. Izumiyama N. Fujii WIDE Y. Zhang HRL March 2001

Network Working Group Request for Comments: 3077 Category: Standards Track INRIA Sophia-Antipolis H. Izumiyama N. Fujii WIDE Y. Zhang HRL March 2001 Network Working Group Request for Comments: 3077 Category: Standards Track E. Duros UDcast W. Dabbous INRIA Sophia-Antipolis H. Izumiyama N. Fujii WIDE Y. Zhang HRL March 2001 A Link-Layer Tunneling Mechanism

More information

IP over Huge Scale Broadcast Media

IP over Huge Scale Broadcast Media IP over Huge Scale Broadcast Media Masataka OHTA (mohta@necom830.hpcl.titech.ac.jp) Computer Center, Tokyo Institute of Technology, Japan Manolo SOLA (sola@jet.es) Graduate School of Science and Engineering,

More information

RIP Configuration. RIP Overview. Operation of RIP. Introduction. RIP routing table. RIP timers

RIP Configuration. RIP Overview. Operation of RIP. Introduction. RIP routing table. RIP timers Table of Contents RIP Configuration 1 RIP Overview 1 Operation of RIP 1 Operation of RIP 2 RIP Version 2 RIP Message Format 3 Protocols and Standards 4 Configuring RIP Basic Functions 5 Configuration Prerequisites

More information

IP Addressing and Subnetting

IP Addressing and Subnetting IP Addressing and Subnetting Internet Layer The purpose of the Internet layer is to send packets from a network node and have them arrive at the destination node independent of the path taken. Internet

More information

Open Shortest Path Firts -2 OSPF-2 (RFC As mentioned before, there are two basic routing algorithms. rst one, distance ve

Open Shortest Path Firts -2 OSPF-2 (RFC As mentioned before, there are two basic routing algorithms. rst one, distance ve Layer Routing - IV Network OSPF-2 Yatindra Nath Singh ynsingh@ieee.org Dept. Of Electrical Engineering IIT Kanpur-208016 22 August 2001 1 Open Shortest Path Firts -2 OSPF-2 (RFC 2328 - http://www.ietf.org/)

More information

Asymmetric Satellite Services. Introduction and Background. Transmit Interface Command. Agenda. Asymmetric Satellite Services

Asymmetric Satellite Services. Introduction and Background. Transmit Interface Command. Agenda. Asymmetric Satellite Services 1 Agenda Introduction and Background Transmit Interface Command Asymmetric Satellite s Point to Point Example Point to Multipoint Example Other Considerations UDLR 2 Asymmetric Satellite s Introduction

More information

Configuring IP Multicast over Unidirectional Links

Configuring IP Multicast over Unidirectional Links Configuring IP Multicast over Unidirectional Links IP multicast requires bidirectional communication, yet some networks include broadcast satellite links, which are unidirectional. Unidirectional link

More information

Comparison of Concepts for IP Multicast over ATM. 1 Introduction. 2 IP Multicast. 3 IP-Multicast over ATM

Comparison of Concepts for IP Multicast over ATM. 1 Introduction. 2 IP Multicast. 3 IP-Multicast over ATM Comparison of Concepts for IP Multicast over ATM Torsten Braun, Stefan Gumbrich, and Heinrich J. Stüttgen IBM European Networking Center, Vangerowstr. 18, D-69115 Heidelberg E-mail: braun@heidelbg.ibm.com,

More information

REIHE INFORMATIK 1/2000 Protocol Independent Multicast and Asymmetric Routing

REIHE INFORMATIK 1/2000 Protocol Independent Multicast and Asymmetric Routing REIHE INFORMATIK 1/2000 Protocol Independent Multicast and Asymmetric Routing Thomas T. Fuhrmann Praktische Informatik IV University of Mannheim 68131 Mannheim, Germany February 1, 2000 1 2 Protocol Independent

More information

Imi :... Data:... Nazwisko:... Stron:...

Imi :... Data:... Nazwisko:... Stron:... Imi :.................................................... Data:....................... Nazwisko:............................................... Stron:...................... 1. Which of the following protocols

More information

Network Working Group. Obsoletes: 1388 November 1994 Updates: 1058 Category: Standards Track

Network Working Group. Obsoletes: 1388 November 1994 Updates: 1058 Category: Standards Track Network Working Group G. Malkin Request for Comments: 1723 Xylogics, Inc. Obsoletes: 1388 November 1994 Updates: 1058 Category: Standards Track Status of this Memo RIP Version 2 Carrying Additional Information

More information

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions Tuomo Karhapää tuomo.karhapaa@otaverkko.fi Otaverkko Oy Why multicast? The concept of multicast Multicast groups Multicast addressing Multicast routing protocols MBONE Multicast applications Conclusions

More information

Expires May 26, File: draft-ietf-rsvp-routing-01.ps November RSRR: A Routing Interface For RSVP

Expires May 26, File: draft-ietf-rsvp-routing-01.ps November RSRR: A Routing Interface For RSVP Internet Draft Daniel Zappala Expires May 26, 1997 USC/ISI File: draft-ietf-rsvp-routing-01.ps November 1996 RSRR: A Routing Interface For RSVP Status of Memo November 26, 1996 This document is an Internet-Draft.

More information

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols

Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme. Auxiliary Protocols Auxiliary Protocols IP serves only for sending packets with well-known addresses. Some questions however remain open, which are handled by auxiliary protocols: Address Resolution Protocol (ARP) Reverse

More information

Configuring IP Multicast over Unidirectional Links

Configuring IP Multicast over Unidirectional Links Configuring IP Multicast over Unidirectional Links Last Updated: December 16, 2011 IP multicast requires bidirectional communication, yet some networks include broadcast satellite links, which are unidirectional.

More information

MLD. MLDv1 (defined in RFC 2710), which is derived from IGMPv2. MLDv2 (defined in RFC 3810), which is derived from IGMPv3.

MLD. MLDv1 (defined in RFC 2710), which is derived from IGMPv2. MLDv2 (defined in RFC 3810), which is derived from IGMPv3. Introduction to Multicast listener discovery protocol () is used by an IPv6 router to discover the presence of multicast listeners on directly-attached subnets. Multicast listeners are nodes wishing to

More information

ITEC310 Computer Networks II

ITEC310 Computer Networks II ITEC310 Computer Networks II Chapter 22 Network Layer:, and Routing Department of Information Technology Eastern Mediterranean University Objectives 2/131 After completing this chapter you should be able

More information

IP Multicast Routing Technology Overview

IP Multicast Routing Technology Overview Finding Feature Information, on page 1 Information About IP Multicast Technology, on page 1 Finding Feature Information Your software release may not support all the features documented in this module.

More information

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols

Top-Down Network Design, Ch. 7: Selecting Switching and Routing Protocols. Top-Down Network Design. Selecting Switching and Routing Protocols Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Copyright 2010 Cisco Press & Priscilla Oppenheimer 1 Switching 2 Page 1 Objectives MAC address table Describe the features

More information

Operation Manual Routing Protocol. Table of Contents

Operation Manual Routing Protocol. Table of Contents Table of Contents Table of Contents Chapter 1 IP Routing Protocol Overview... 1-1 1.1 Introduction to IP Route and Routing Table... 1-1 1.1.1 IP Route... 1-1 1.1.2 Routing Table... 1-1 1.2 Routing Management

More information

Extensions to RTP to support Mobile Networking: Brown, Singh 2 within the cell. In our proposed architecture [3], we add a third level to this hierarc

Extensions to RTP to support Mobile Networking: Brown, Singh 2 within the cell. In our proposed architecture [3], we add a third level to this hierarc Extensions to RTP to support Mobile Networking Kevin Brown Suresh Singh Department of Computer Science Department of Computer Science University of South Carolina Department of South Carolina Columbia,

More information

Efficient Planning of Satellite-Terrestrial Hybrid Networks for Multicast Applications

Efficient Planning of Satellite-Terrestrial Hybrid Networks for Multicast Applications Efficient Planning of Satellite-Terrestrial Hybrid Networks for Multicast Applications Fethi Filali', Walid Dabbous', Farouk Kamoun2 'I.N.R.I.A. 2004 Route des Lucioles, BP-93 06902 Sophia-Antipolis, France

More information

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding. Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of

More information

Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two)

Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two) ICND1 OSPF Questions Question 1 Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two) A. It is locally significant. B. It is globally significant. C.

More information

The Mobile-IP Testbed of the HP-OVUA. MNM Team. March 25, Abstract

The Mobile-IP Testbed of the HP-OVUA. MNM Team. March 25, Abstract The Mobile-IP Testbed of the HP-OVUA Stephen Heilbronner MNM Team heilbron@informatik.uni-muenchen.de March 25, 1997 Abstract Within the HP-OUA a special interest group on Mobility was founded in 1995.

More information

Isolate-User-VLAN Technology White Paper

Isolate-User-VLAN Technology White Paper Isolate-User-VLAN Technology White Paper Keywords: Isolate-user-VLANs, secondary VLANs Abstract: Isolate-user-VLAN adopts a two-tier VLAN structure: an upper level isolate-user-vlan and multiple lower-level

More information

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast Contents Multicast overview 1 Introduction to multicast 1 Information transmission techniques 1 Multicast features 3 Common notations in multicast 4 Multicast advantages and applications 4 Multicast models

More information

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast

Multicast overview. Introduction to multicast. Information transmission techniques. Unicast Contents Multicast overview 1 Introduction to multicast 1 Information transmission techniques 1 Multicast features 3 Common notations in multicast 4 Multicast benefits and applications 4 Multicast models

More information

Enhancement of the CBT Multicast Routing Protocol

Enhancement of the CBT Multicast Routing Protocol Enhancement of the CBT Multicast Routing Protocol Seok Joo Koh and Shin Gak Kang Protocol Engineering Center, ETRI, Korea E-mail: sjkoh@pec.etri.re.kr Abstract In this paper, we propose a simple practical

More information

Supporting IP Multicast for Mobile Hosts. Yu Wang Weidong Chen. Southern Methodist University. May 8, 1998.

Supporting IP Multicast for Mobile Hosts. Yu Wang Weidong Chen. Southern Methodist University. May 8, 1998. Supporting IP Multicast for Mobile Hosts Yu Wang Weidong Chen Southern Methodist University fwy,wcheng@seas.smu.edu May 8, 1998 Abstract IP Multicast is an ecient mechanism of delivering a large amount

More information

EXAM - HP0-Y52. Applying HP FlexNetwork Fundamentals. Buy Full Product.

EXAM - HP0-Y52. Applying HP FlexNetwork Fundamentals. Buy Full Product. HP EXAM - HP0-Y52 Applying HP FlexNetwork Fundamentals Buy Full Product http://www.examskey.com/hp0-y52.html Examskey HP HP0-Y52 exam demo product is here for you to test the quality of the product. This

More information

UDLR Unidirectional Link Routing overview and examples

UDLR Unidirectional Link Routing overview and examples UDLR Unidirectional Link Routing overview and examples ourse Number Presentation_ID 1999, isco Systems, Inc. 1 UDLR Tunnels UDLR simulates a bi-directional link by tunneling over the return path Supports

More information

Request for Comments: June A MAPOS version 1 Extension - Switch-Switch Protocol

Request for Comments: June A MAPOS version 1 Extension - Switch-Switch Protocol Network Working Group Request for Comments: 2174 Category: Informational K. Murakami M. Maruyama NTT Laboratories June 1997 Status of this Memo A MAPOS version 1 Extension - Switch-Switch Protocol This

More information

MANET Architecture and address auto-configuration issue

MANET Architecture and address auto-configuration issue MANET Architecture and address auto-configuration issue Namhi Kang Catholic University E-mail: kang@catholic.ac.kr Contents Background Information Overview Common MANET misperception Multilink subnet issue

More information

Subnet Multicast for Delivery of One-to-Many Multicast Applications

Subnet Multicast for Delivery of One-to-Many Multicast Applications Subnet Multicast for Delivery of One-to-Many Multicast Applications We propose a new delivery scheme for one-to-many multicast applications such as webcasting service used for the web-based broadcasting

More information

\Classical" RSVP and IP over ATM. Steven Berson. April 10, Abstract

\Classical RSVP and IP over ATM. Steven Berson. April 10, Abstract \Classical" RSVP and IP over ATM Steven Berson USC Information Sciences Institute April 10, 1996 Abstract Integrated Services in the Internet is rapidly becoming a reality. Meanwhile, ATM technology is

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat not true in practice Hierarchical Routing Our routing study thus far - idealization all routers identical network flat not true in practice scale: with 200 million destinations: can t store all destinations in routing tables!

More information

Vanguard Managed Solutions

Vanguard Managed Solutions Vanguard Managed Solutions Vanguard Applications Ware IP and LAN Feature Protocols Open Shortest Path First (OSPF) Notice 2003 Vanguard Managed Solutions, LLC 575 West Street Mansfield, Massachusetts 02048

More information

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents

Operation Manual IPv4 Routing H3C S3610&S5510 Series Ethernet Switches. Table of Contents Table of Contents Table of Contents Chapter 1 Static Routing Configuration... 1-1 1.1 Introduction... 1-1 1.1.1 Static Route... 1-1 1.1.2 Default Route... 1-1 1.1.3 Application Environment of Static Routing...

More information

TCP/IP and the OSI Model

TCP/IP and the OSI Model TCP/IP BASICS TCP/IP and the OSI Model TCP/IP BASICS The network protocol of the Internet Composed of six main protocols IP Internet Protocol UDP User Datagram Protocol TCP Transmission Control Protocol

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Seven Selecting Switching and Routing Protocols Original slides by Cisco Press & Priscilla Oppenheimer Selection Criteria for Switching and Routing Protocols Network traffic

More information

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols

Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols 1 Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among

More information

Table of Contents 1 PIM Configuration 1-1

Table of Contents 1 PIM Configuration 1-1 Table of Contents 1 PIM Configuration 1-1 PIM Overview 1-1 Introduction to PIM-DM 1-2 How PIM-DM Works 1-2 Introduction to PIM-SM 1-4 How PIM-SM Works 1-5 Introduction to Administrative Scoping in PIM-SM

More information

Routing Overview. Information About Routing CHAPTER

Routing Overview. Information About Routing CHAPTER 21 CHAPTER This chapter describes underlying concepts of how routing behaves within the ASA, and the routing protocols that are supported. This chapter includes the following sections: Information About

More information

Section 6.2, IP Routing. Section 6.4, IP/VPN Policy. Section 6.5, IP Quality of Service. Section 6.6, The BANDIT as Firewall

Section 6.2, IP Routing. Section 6.4, IP/VPN Policy. Section 6.5, IP Quality of Service. Section 6.6, The BANDIT as Firewall Chapter 6 IP Routing and IPX Routing This chapter discusses IP routing, IP/VPN Policy, and related features in the BANDIT products. It also discusses IPX routing. See the following sections: Section 6.2,

More information

Introduction to computer networking

Introduction to computer networking edge core Introduction to computer networking Comp Sci 3600 Security Outline edge core 1 2 edge 3 core 4 5 6 The edge core Outline edge core 1 2 edge 3 core 4 5 6 edge core Billions of connected computing

More information

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190 Chapter 17 OSPF Protocol Overview The Open Shortest Path First (OSPF) protocol is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS). OSPF uses link-state information

More information

A Multi-link architecture for a global wireless Internet connectivity. Guillaume Bichot Thomson Corporate Research

A Multi-link architecture for a global wireless Internet connectivity. Guillaume Bichot Thomson Corporate Research A Multi-link architecture for a global wireless Internet connectivity Guillaume Bichot Thomson Corporate Research 1 Content Multi-link technologies: state of the art Channel bonding Layer 2 multilink Layer

More information

ICS 351: Today's plan. routing protocol comparison encapsulation network dynamics multicasting in general IP multicasting IGMP PIM

ICS 351: Today's plan. routing protocol comparison encapsulation network dynamics multicasting in general IP multicasting IGMP PIM ICS 351: Today's plan routing protocol comparison encapsulation network dynamics multicasting in general IP multicasting IGMP PIM what routing is not: Ethernet switching does not use IP addresses in any

More information

Configuring IP Routing Protocols

Configuring IP Routing Protocols Configuring IP Routing Protocols This chapter describes how to configure the various Internet Protocol (IP) routing protocols. For a complete description of the commands listed in this chapter, refer to

More information

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1

Table of Contents 1 Static Routing Configuration RIP Configuration 2-1 Table of Contents 1 Static Routing Configuration 1-1 Introduction 1-1 Static Route 1-1 Default Route 1-1 Application Environment of Static Routing 1-1 Configuring a Static Route 1-2 Configuration Prerequisites

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Teldat Router. RIP Protocol

Teldat Router. RIP Protocol Teldat Router RIP Protocol Doc. DM518-I Rev. 8.00 July, 1999 INDEX Chapter 1 Introduction... 3 1. Introduction to the RIP...4 2. Routing Information Protocol...5 3. RIP Configuration...7 Chapter 2 RIP

More information

Appendix B Networks, Routing, and Firewall Basics

Appendix B Networks, Routing, and Firewall Basics Appendix B Networks, Routing, and Firewall Basics This appendix provides an overview of IP networks, routing, and firewalls. Related Publications As you read this document, you may be directed to various

More information

Routing in a network

Routing in a network Routing in a network Focus is small to medium size networks, not yet the Internet Overview Then Distance vector algorithm (RIP) Link state algorithm (OSPF) Talk about routing more generally E.g., cost

More information

Request for Comments: 5569 Category: Informational January 2010 ISSN:

Request for Comments: 5569 Category: Informational January 2010 ISSN: Independent Submission R. Despres Request for Comments: 5569 RD-IPtech Category: Informational January 2010 ISSN: 2070-1721 Abstract IPv6 Rapid Deployment on IPv4 Infrastructures (6rd) IPv6 rapid deployment

More information

Communication Networks

Communication Networks Communication Networks Chapter 5 Interconnection of Networks Communication Networks - 6. Interconnecting Networks 172 Overview 1. Repeater 2. Hub 4. Switch 5. Router 6. Gateway Communication Networks -

More information

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa

Multicast Communications. Slide Set were original prepared by Dr. Tatsuya Susa Multicast Communications Slide Set were original prepared by Dr. Tatsuya Susa Outline 1. Advantages of multicast 2. Multicast addressing 3. Multicast Routing Protocols 4. Multicast in the Internet 5. IGMP

More information

Connecting to the Network

Connecting to the Network Connecting to the Network Networking for Home and Small Businesses Chapter 3 1 Objectives Explain the concept of networking and the benefits of networks. Explain the concept of communication protocols.

More information

Operation Manual BGP. Table of Contents

Operation Manual BGP. Table of Contents Table of Contents Table of Contents... 1-1 1.1 BGP/MBGP Overview... 1-1 1.1.1 Introduction to BGP... 1-1 1.1.2 BGP Message Types... 1-2 1.1.3 BGP Routing Mechanism... 1-2 1.1.4 MBGP... 1-3 1.1.5 BGP Peer

More information

Mobile Communications. Ad-hoc and Mesh Networks

Mobile Communications. Ad-hoc and Mesh Networks Ad-hoc+mesh-net 1 Mobile Communications Ad-hoc and Mesh Networks Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto Ad-hoc+mesh-net 2 What is an ad-hoc network? What are differences between

More information

Request for Comments: 1293 Wellfleet Communications, Inc. January 1992

Request for Comments: 1293 Wellfleet Communications, Inc. January 1992 Network Working Group Request for Comments: 1293 T. Bradley C. Brown Wellfleet Communications, Inc. January 1992 1. Status of this Memo Inverse Address Resolution Protocol This RFC specifies an IAB standards

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

3GPP TS V6.1.0 ( )

3GPP TS V6.1.0 ( ) TS 29.161 V6.1.0 (2005-06) Technical Specification 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; Interworking between the Public Land Mobile Network (PLMN)

More information

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF

ICS 351: Today's plan. distance-vector routing game link-state routing OSPF ICS 351: Today's plan distance-vector routing game link-state routing OSPF distance-vector routing game 1. prepare a list of all neighbors and the links to them, and the metric for each link 2. create

More information

IP Routing Volume Organization

IP Routing Volume Organization IP Routing Volume Organization Manual Version 20091105-C-1.03 Product Version Release 6300 series Organization The IP Routing Volume is organized as follows: Features IP Routing Overview Static Routing

More information

Introduction xvii. Assessment Test xxxiii

Introduction xvii. Assessment Test xxxiii Contents at a Glance Introduction xvii Assessment Test xxxiii Chapter 1 The Components of a Juniper Networks Router 1 Chapter 2 Interfaces 61 Chapter 3 Protocol-Independent Routing 107 Chapter 4 Routing

More information

Distributed Conditional Multicast Access for IP TV in High-Speed Wireless Networks (Destination Specific Multicast)

Distributed Conditional Multicast Access for IP TV in High-Speed Wireless Networks (Destination Specific Multicast) 137 Distributed Conditional Multicast Access for IP TV in High-Speed Wireless Networks (Destination Specific Multicast) 1, 2 Jan Fesl, 1 Richard Klee, 1 Marie Dolezalova 1 Institute of Applied Informatics,

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

THE TRANSPORT LAYER UNIT IV

THE TRANSPORT LAYER UNIT IV THE TRANSPORT LAYER UNIT IV The Transport Layer: The Transport Service, Elements of Transport Protocols, Congestion Control,The internet transport protocols: UDP, TCP, Performance problems in computer

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Copyright 2011 Sakun Sharma

Copyright 2011 Sakun Sharma Communication at Network Layer (Layer 3) Network layer is layer 3 of OSI Model. Network layer adds support of connecting multiple networks with each other. Network layer uses its own unique addressing

More information

LAN Emulation Overview

LAN Emulation Overview This overview chapter gives a high-level description of (LANE). Procedures for configuring LANE are provided in the following chapters in this publication: Configuring chapter Configuring Token Ring chapter

More information

Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee

Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee Optimized Paging Cache Mappings for efficient location management Hyun Jun Lee, Myoung Chul Jung, and Jai Yong Lee Abstract Cellular IP maintains distributed cache for location management and routing purposes.

More information

Why we need to divide network?

Why we need to divide network? Content Introduction Layer 3 IP Protocol IP-Header: www.ietf.org and RFC-760 Addressing Schemes Subnetting Routing Layer 3 Solution in Trains Communication Matrix (Information Based Communication) 53 Why

More information

Open Shortest Path First (OSPF)

Open Shortest Path First (OSPF) CHAPTER 42 Open Shortest Path First (OSPF) Background Open Shortest Path First (OSPF) is a routing protocol developed for Internet Protocol (IP) networks by the interior gateway protocol (IGP) working

More information

The Internet. The Internet is an interconnected collection of netw orks.

The Internet. The Internet is an interconnected collection of netw orks. The Internet The Internet is an interconnected collection of netw orks. Internetw orking-1 Internetworking! Communications Network: A facility that provides a data transfer service among stations attached

More information

CSCI Spring Final Exam Solution

CSCI Spring Final Exam Solution CSCI 4211 16Spring Final Exam Solution 1. When an IP packet arrives a router, how the router decides what is the next router (output link) this packet to be forwarded to? What are the routing table and

More information

Exam Questions

Exam Questions Exam Questions 100-105 ICND1 Cisco Interconnecting Cisco Networking Devices Part 1 (ICND1 v3.0) https://www.2passeasy.com/dumps/100-105/ 1.Refer to the exhibit. Assume that all router interfaces are operational

More information

Information About Routing

Information About Routing 19 CHAPTER This chapter describes underlying concepts of how routing behaves within the adaptive security appliance, and the routing protocols that are supported. The chapter includes the following sections:,

More information

Internet and Satellite 1/9/2003

Internet and Satellite 1/9/2003 Internet and Satellite 1/9/2003 JSAT Co./WIDE Project Jun TAKEI takei@csm.jcsat.co.jp Day1 Agenda Satellite communication fundamentals The history of satellite communications and internet Day2 Satellite

More information

IP Multicast: PIM Configuration Guide

IP Multicast: PIM Configuration Guide Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Multicast Routing Protocols in a Satellite Environment*

Multicast Routing Protocols in a Satellite Environment* Multicast Routing Protocols in a Satellite Environment* Nikhil Ninan and Godred Fairhurst Electronics Research Group, Department Of Engineering Aberdeen University, Scotland, AB24 3UE Email: {nikhil, gorry}

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

Course Routing Classification Properties Routing Protocols 1/39

Course Routing Classification Properties Routing Protocols 1/39 Course 8 3. Routing Classification Properties Routing Protocols 1/39 Routing Algorithms Types Static versus dynamic Single-path versus multipath Flat versus hierarchical Host-intelligent versus router-intelligent

More information

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo

Charles Perkins Nokia Research Center 2 July Mobility Support in IPv6 <draft-ietf-mobileip-ipv6-14.txt> Status of This Memo IETF Mobile IP Working Group INTERNET-DRAFT David B. Johnson Rice University Charles Perkins Nokia Research Center 2 July 2000 Mobility Support in IPv6 Status of This

More information

Category: Standards Track A. Malis Ascend Communications, Inc. September Inverse Address Resolution Protocol. Status of this Memo

Category: Standards Track A. Malis Ascend Communications, Inc. September Inverse Address Resolution Protocol. Status of this Memo Network Working Group Request for Comments: 2390 Obsoletes: 1293 Category: Standards Track T. Bradley Avici Systems, Inc. C. Brown Consultant A. Malis Ascend Communications, Inc. September 1998 Status

More information

Exercise 1 INTERNET. x.x.x.254. net /24. net /24. x.x.x.33. x.x.x.254. x.x.x.52. x.x.x.254. x.x.x.254. x.x.x.

Exercise 1 INTERNET. x.x.x.254. net /24. net /24. x.x.x.33. x.x.x.254. x.x.x.52. x.x.x.254. x.x.x.254. x.x.x. Exercise 1 Given the IP network below: Assign feasible IP addresses to the interfaces and write down a feasible routing table for routers A and B guaranteeing full connectivity x.x.x.33 x.x.x.254 net 131.175.16.0/24

More information

IP Multicast: PIM Configuration Guide, Cisco IOS Release 12.4T

IP Multicast: PIM Configuration Guide, Cisco IOS Release 12.4T IP Multicast: PIM Configuration Guide, Cisco IOS Release 12.4T Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS

More information

Bridging and Switching Basics

Bridging and Switching Basics CHAPTER 4 Bridging and Switching Basics This chapter introduces the technologies employed in devices loosely referred to as bridges and switches. Topics summarized here include general link-layer device

More information

IP Multicast: PIM Configuration Guide

IP Multicast: PIM Configuration Guide Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883 THE SPECIFICATIONS AND INFORMATION

More information

IP Multicast Technology Overview

IP Multicast Technology Overview IP multicast is a bandwidth-conserving technology that reduces traffic by delivering a single stream of information simultaneously to potentially thousands of businesses and homes. Applications that take

More information

Table of Contents Chapter 1 IP Addressing Configuration

Table of Contents Chapter 1 IP Addressing Configuration Table of Contents Table of Contents... 1-1 1.1 IP Addressing Overview... 1-1 1.1.1 IP Address Classes... 1-1 1.1.2 Special Case IP Addresses... 1-2 1.1.3 Subnetting and Masking... 1-3 1.1.4 IP Unnumbered...

More information

Advanced Network Training Multicast

Advanced Network Training Multicast Division of Brocade Advanced Network Training Multicast Larry Mathews Systems Engineer lmathews@brocade.com Training Objectives Session will concentrate on Multicast with emphasis on Protocol Independent

More information

Appendix C Software Specifications

Appendix C Software Specifications Appendix C Software Specifications This appendix lists the following information: IEEE compliance RFC support ISO/IEC specification support Internet draft support NOTE: For a list of features supported

More information

Date: June 4 th a t 1 4:00 1 7:00

Date: June 4 th a t 1 4:00 1 7:00 Kommunika tionssyste m FK, Examina tion G 5 0 7 Date: June 4 th 0 0 3 a t 4:00 7:00 KTH/IMIT/LCN No help material is allowed. You may answer questions in English or Swedish. Please answer each question

More information