Communication. Communication. Distributed Systems. Networks and protocols Sockets Remote Invocation Messages Streams. Fall /10/2001 DoCS

Size: px
Start display at page:

Download "Communication. Communication. Distributed Systems. Networks and protocols Sockets Remote Invocation Messages Streams. Fall /10/2001 DoCS"

Transcription

1 Communication Distributed Systems Fall 2002 Communication Process Process Networks and protocols Sockets Remote Invocation Messages Streams 9/10/2001 DoCS

2 Layered Protocols (1) Layers, interfaces, and protocols in the OSI model. 9/10/2001 DoCS Layered Protocols (2) 2-2 A typical message as it appears on the network. 9/10/2001 DoCS

3 Middleware Protocols An adapted reference model for networked communication. 9/10/2001 DoCS The TCP/IP Layers Application mail, file transfer, web Application Transport Internet tcp, udp ip Internet Internet Transport Internet Media access Media access Media access Media access 9/10/2001 DoCS

4 Layers, Protocols & Messages Application M M Transport H t M H t M Internet H i H t M H i H t M Media access H m H i H t M H m H i H t M 9/10/2001 DoCS Transport Protocols TCP Stream Reliable Sequenced UDP Message / datagram Unreliable 9/10/2001 DoCS

5 TCP for Client / Server request response UDP TCP T/TCP 9/10/2001 DoCS The Application Layer ISO: session, presentation, application Internet: monolithic application Examples SSL - authentication, secure transmission SMTP - electronic messages FTP - bulk transfer HTTP - document retrieval 9/10/2001 DoCS

6 The Middleware Layer Applications, services RMI and RPC This chapter request-reply protocol marshalling and external data representation Middleware layers UDP and TCP 9/10/2001 DoCS Sockets and Ports socket any port agreed port socket client Internet address = message other ports server Internet address = Client creates socket sends to addr/port Server creates socket binds to port advertises addr/port 9/10/2001 DoCS

7 UDP Socket Structure host name port number Server process Client process server socket response request client socket 9/10/2001 DoCS C Client - create a socket #define DATA "The sea is calm tonight, the tide is full... main(argc, argv) int argc; char *argv[ ]; { int sock; struct sockaddr_in name; struct hostent *hp, *gethostbyname(); struct sockaddr_in { short sin_family; u_short sin_port; struct in_addr sin_addr; char sin_zero[8]; }; Internet socket UDP (datagram) /* Create socket on which to send. */ sock = socket(af_inet, SOCK_DGRAM, 0); if (sock < 0) { perror("opening datagram socket"); exit(1); } 9/10/2001 DoCS

8 C Client - Send The Message } hp = gethostbyname(argv[1]); if (hp == 0) { fprintf(stderr, "%s: unknown host\n", argv[1]); exit(2); } bcopy(hp->h_addr, &name.sin_addr, hp->h_length); name.sin_family = AF_INET; name.sin_port = htons(atoi(argv[2])); /* Send message. */ port number if (sendto(sock, DATA, sizeof(data), 0, &name, sizeof(name)) < 0) perror("sending datagram message"); close(sock); server domain name 9/10/2001 DoCS C UDP Server - create socket main() { int sock, length; struct sockaddr_in name; char buf[1024]; /* Create socket from which to read. */ sock = socket(af_inet, SOCK_DGRAM, 0); if (sock < 0) { perror("opening datagram socket"); exit(1); } Internet socket UDP (datagram) 9/10/2001 DoCS

9 C UDP Server - bind to port /* Create name with wildcards. */ name.sin_family = AF_INET; name.sin_addr.s_addr = INADDR_ANY; name.sin_port = 0; if (bind(sock, &name, sizeof(name))) { perror("binding datagram socket"); exit(1); } accept connections from assign default port number 9/10/2001 DoCS C UDP Server - Read the data /* Find assigned port value and print it out. */ length = sizeof(name); if (getsockname(sock, &name, &length)) { perror("getting socket name"); exit(1); } printf("socket has port #%d\en", ntohs(name.sin_port)); /* Read from the socket */ if (read(sock, buf, 1024) < 0) perror("receiving datagram packet"); printf("-->%s\en", buf); close(sock); } 9/10/2001 DoCS

10 Remote Procedure Call Distributed Systems Fall 2002 History of RPC Birrell and Nelson Provide communication transparency Overcome heterogeniety Firefly - Schroeder and Burrows, 1989 High performance Standardised Sun ONC, OSF DCE Object based Emerald, Choices, ANSA, Java 9/10/2001 DoCS

11 Conventional Procedure Call The stack before the call to read(fd, buf, bytes) The stack while the called procedure is active 9/10/2001 DoCS Client and Server Stubs Principle of RPC between a client and server program. 9/10/2001 DoCS

12 Implementation Components IPC IPC client stub runtime runtime stub Server invoke pack args send receive unpack args invoke work return unpack result receive send pack result return Interface Stub is proxy for other side Runtime listens for messages Must always be present Interface 9/10/2001 DoCS Questions How do we specify the interface? How we generate stubs? How are parameters passed? How does a client find/bind to a server? 9/10/2001 DoCS

13 Steps of a Remote Procedure Call 1. Client procedure calls client stub in normal way 2. Client stub builds message, calls local OS 3. Client's OS sends message to remote OS 4. Remote OS gives message to server stub 5. Server stub unpacks parameters, calls server 6. Server does work, returns result to the stub 7. Server stub packs it in message, calls local OS 8. Server's OS sends message to client's OS 9. Client's OS gives message to client stub 10. Stub unpacks result, returns to client 9/10/2001 DoCS Passing Value Parameters Steps involved in doing remote computation through RPC 2-8 9/10/2001 DoCS

14 Passing Value Parameters Original message on a Pentium Int val(5) String val( JILL ) The message after receipt on a SPARC The message after being inverted. The little numbers in boxes indicate the address of each byte 9/10/2001 DoCS Parameters and Stub Generation A procedure The corresponding message. 9/10/2001 DoCS

15 Doors The principle of using doors as IPC mechanism. 9/10/2001 DoCS Component Generation client source interface definition IDL compiler server source client stub header server stub C compiler C compiler C compiler C compiler client object client stub object server stub object server object 9/10/2001 DoCS

16 CORBA IDL Example // In file Person.idl struct Person { string name; string place; long year; } ; interface PersonList { readonly attribute string listname; void addperson(in Person p) ; void getperson(in string name, out Person p); long number(); }; 9/10/2001 DoCS Asynchronous RPC (1) a) The interconnection between client and server in a traditional RPC b) The interaction using asynchronous RPC 9/10/2001 DoCS

17 Asynchronous RPC (2) A client and server interacting through two asynchronous RPCs 9/10/2001 DoCS Binding How do we locate a remote object? May be done at various times later -> more flexible earlier -> more efficient communication Usually done at run-time At initialisation - typical rpc, some object sytems At invocation - to support mobility Both can use the same paradigm locate on first contact and cache relocate if cache fails 9/10/2001 DoCS

18 Remote Binding Problems Is server available? Are versions consistent? Solution - version number Reject or multiple servers Multiple Servers Load balancing First reply 9/10/2001 DoCS Remote Invocation Natural fit to familiar method invocation or procedure call Requires response = doop(request) Interface definition Inter-process communication Network Protocols request = receive() response = do(request) send(response) 9/10/2001 DoCS

19 Linking the Client and Server Server exports an interface IDL assigns each procedure a signature within interface Also an instance or version number Name service provides port or host address Port - direct connection to interface Host - server side dispatcher provides port 9/10/2001 DoCS Binding a Client to a Server Client-to-server binding in DCE. 9/10/2001 DoCS

20 Server Registration IPC runtime stub server Name Service add service record in table register interface export(name) export(name) return return 9/10/2001 DoCS RPC Protocols: Client Binding client stub IPC runtime Name Service IPC runtime ref=import(name) ref=import(name) request service lookup bind(name) lookup return record result 9/10/2001 DoCS

21 Invocation Semantics Invocation semantics Maybe At-least-once At-most-once Retry request message No Yes Yes Delivery guarantees Duplicate filtering at server Not applicable No Yes Re-execute procedure or retransmit reply Not applicable Re-execute procedure Retransmit reply 9/10/2001 DoCS

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

An Introductory 4.4BSD Interprocess Communication Tutorial Stuart Sechrest Computer Science Research Group Computer Science Division Department of Electrical Engineering and Computer Science University

More information

Chapter 5: Remote Invocation. Copyright 2015 Prof. Amr El-Kadi

Chapter 5: Remote Invocation. Copyright 2015 Prof. Amr El-Kadi Chapter 5: Remote Invocation Outline Introduction Request-Reply Protocol Remote Procedure Call Remote Method Invocation This chapter (and Chapter 6) Applications Remote invocation, indirect communication

More information

Outline. EEC-681/781 Distributed Computing Systems. The OSI Network Architecture. Inter-Process Communications (IPC) Lecture 4

Outline. EEC-681/781 Distributed Computing Systems. The OSI Network Architecture. Inter-Process Communications (IPC) Lecture 4 EEC-681/781 Distributed Computing Systems Lecture 4 Department of Electrical and Computer Engineering Cleveland State University wenbing@ieee.org Outline Inter-process communications Computer networks

More information

COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC)

COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC) COMMUNICATION PROTOCOLS: REMOTE PROCEDURE CALL (RPC) 1 2 CONVENTIONAL PROCEDURE CALL (a) (b) Parameter passing in a local procedure call: the stack before the call to read. The stack while the called procedure

More information

Chapter 5: Distributed objects and remote invocation

Chapter 5: Distributed objects and remote invocation Chapter 5: Distributed objects and remote invocation From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Figure 5.1 Middleware layers Applications

More information

Communication. Overview

Communication. Overview Communication Chapter 2 1 Overview Layered protocols Remote procedure call Remote object invocation Message-oriented communication Stream-oriented communication 2 Layered protocols Low-level layers Transport

More information

An Introductory 4.4BSD Interprocess Communication Tutorial

An Introductory 4.4BSD Interprocess Communication Tutorial PSD:20-1 An Introductory 4.4BSD Interprocess Communication Tutorial Stuart Sechrest Computer Science Research Group Computer Science Division Department of Electrical Engineering and Computer Science University

More information

Communication. Distributed Systems Santa Clara University 2016

Communication. Distributed Systems Santa Clara University 2016 Communication Distributed Systems Santa Clara University 2016 Protocol Stack Each layer has its own protocol Can make changes at one layer without changing layers above or below Use well defined interfaces

More information

IPC. Communication. Layered Protocols. Layered Protocols (1) Data Link Layer. Layered Protocols (2)

IPC. Communication. Layered Protocols. Layered Protocols (1) Data Link Layer. Layered Protocols (2) IPC Communication Chapter 2 Inter-Process Communication is the heart of all DSs. Processes on different machines. Always based on low-level message passing. In this chapter: RPC RMI MOM (Message Oriented

More information

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University Embedded Software Lab.

Sockets. Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University  Embedded Software Lab. 1 Sockets Dong-kun Shin Embedded Software Laboratory Sungkyunkwan University http://nyx.skku.ac.kr Internet Connections (1) 2 Connection Clients and servers communicate by sending streams of bytes over

More information

Socket Programming. Dr. -Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme

Socket Programming. Dr. -Ing. Abdalkarim Awad. Informatik 7 Rechnernetze und Kommunikationssysteme Socket Programming Dr. -Ing. Abdalkarim Awad Informatik 7 Rechnernetze und Kommunikationssysteme Before we start Can you find the ip address of an interface? Can you find the mac address of an interface?

More information

Lab 0. Yvan Petillot. Networks - Lab 0 1

Lab 0. Yvan Petillot. Networks - Lab 0 1 Lab 0 Yvan Petillot Networks - Lab 0 1 What You Will Do In This Lab. The purpose of this lab is to help you become familiar with the UNIX/LINUX on the lab network. This means being able to do editing,

More information

Chapter 4 Communication

Chapter 4 Communication DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 4 Communication Layered Protocols (1) Figure 4-1. Layers, interfaces, and protocols in the OSI

More information

Context. Distributed Systems: Sockets Programming. Alberto Bosio, Associate Professor UM Microelectronic Departement

Context. Distributed Systems: Sockets Programming. Alberto Bosio, Associate Professor UM Microelectronic Departement Distributed Systems: Sockets Programming Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr Context Computer Network hosts, routers, communication channels Hosts run applications

More information

CSci Introduction to Distributed Systems. Communication: RPC

CSci Introduction to Distributed Systems. Communication: RPC CSci 5105 Introduction to Distributed Systems Communication: RPC Today Remote Procedure Call Chapter 4 TVS Last Time Architectural styles RPC generally mandates client-server but not always Interprocess

More information

Lecture 5: Object Interaction: RMI and RPC

Lecture 5: Object Interaction: RMI and RPC 06-06798 Distributed Systems Lecture 5: Object Interaction: RMI and RPC Distributed Systems 1 Recap Message passing: send, receive synchronous versus asynchronous No global Time types of failure socket

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 6 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2016 Eom, Hyeonsang All Rights Reserved Outline

More information

Socket Programming TCP UDP

Socket Programming TCP UDP Socket Programming TCP UDP Introduction Computer Network hosts, routers, communication channels Hosts run applications Routers forward information Packets: sequence of bytes contain control information

More information

Remote Invocation. Today. Next time. l Overlay networks and P2P. l Request-reply, RPC, RMI

Remote Invocation. Today. Next time. l Overlay networks and P2P. l Request-reply, RPC, RMI Remote Invocation Today l Request-reply, RPC, RMI Next time l Overlay networks and P2P Types of communication " Persistent or transient Persistent A submitted message is stored until delivered Transient

More information

CHAPTER - 4 REMOTE COMMUNICATION

CHAPTER - 4 REMOTE COMMUNICATION CHAPTER - 4 REMOTE COMMUNICATION Topics Introduction to Remote Communication Remote Procedural Call Basics RPC Implementation RPC Communication Other RPC Issues Case Study: Sun RPC Remote invocation Basics

More information

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar

Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar Socket Programming What is a socket? Using sockets Types (Protocols) Associated functions Styles We will look at using sockets in C Java sockets are conceptually quite similar - Advanced Data Communications:

More information

Department of Computer Science

Department of Computer Science Department of Computer Science Notes on Interprocess Communication in Unix Jean Dollimore,Oct.1990, last revised Feb. 1996 These notes explain how you can write "distributed programs" in C or C++ running

More information

Chapter 4 Communication

Chapter 4 Communication DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 4 Communication Layered Protocols (1) Figure 4-1. Layers, interfaces, and protocols in the OSI

More information

DISTRIBUTED COMPUTER SYSTEMS

DISTRIBUTED COMPUTER SYSTEMS DISTRIBUTED COMPUTER SYSTEMS Communication Fundamental REMOTE PROCEDURE CALL Dr. Jack Lange Computer Science Department University of Pittsburgh Fall 2015 Outline Communication Architecture Fundamentals

More information

SOCKET PROGRAMMING. What is a socket? Using sockets Types (Protocols) Associated functions Styles

SOCKET PROGRAMMING. What is a socket? Using sockets Types (Protocols) Associated functions Styles LABORATORY SOCKET PROGRAMMING What is a socket? Using sockets Types (Protocols) Associated functions Styles 2 WHAT IS A SOCKET? An interface between application and network The application creates a socket

More information

Socket Programming 2007/03/28

Socket Programming 2007/03/28 Socket Programming 2007/03/28 Reference W. Richard Stevens, Unix Network Programming 2/e Volume 1,1998 James F. Kurose and Keith W. Ross, "Computer Networks: A Top-Down Approach Featuring the Internet

More information

Distributed Systems 8. Remote Procedure Calls

Distributed Systems 8. Remote Procedure Calls Distributed Systems 8. Remote Procedure Calls Paul Krzyzanowski pxk@cs.rutgers.edu 10/1/2012 1 Problems with the sockets API The sockets interface forces a read/write mechanism Programming is often easier

More information

Desarrollo de Aplicaciones en Red. El modelo de comunicación. General concepts. Models of communication. Message Passing

Desarrollo de Aplicaciones en Red. El modelo de comunicación. General concepts. Models of communication. Message Passing Desarrollo de Aplicaciones en Red El modelo de comunicación José Rafael Rojano Cáceres http://www.uv.mx/rrojano 1 2 General concepts As we saw in a Distributed System the logical and physical component

More information

CS321: Computer Networks Introduction to Application Layer

CS321: Computer Networks Introduction to Application Layer CS321: Computer Networks Introduction to Application Layer Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Basic Application layer provides services to the

More information

PA #2 Reviews. set_name, get_name, del_name. Questions? Will be modified after PA #4 ~

PA #2 Reviews. set_name, get_name, del_name. Questions? Will be modified after PA #4 ~ Sockets Prof. Jin-Soo Kim( jinsookim@skku.edu) TA Dong-Yun Lee(dylee@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu PA #2 Reviews set_name, get_name, del_name Will

More information

Sockets. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Sockets. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Sockets Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Internet Connections (1) Connection Clients and servers communicate by sending streams of

More information

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech

Advanced Topics in Distributed Systems. Dr. Ayman A. Abdel-Hamid. Computer Science Department Virginia Tech Advanced Topics in Distributed Systems Dr. Ayman A. Abdel-Hamid Computer Science Department Virginia Tech Communication (Based on Ch2 in Distributed Systems: Principles and Paradigms, 1/E or Ch4 in 2/E)

More information

CSC209H Lecture 9. Dan Zingaro. March 11, 2015

CSC209H Lecture 9. Dan Zingaro. March 11, 2015 CSC209H Lecture 9 Dan Zingaro March 11, 2015 Socket Programming (Kerrisk Ch 56, 57, 59) Pipes and signals are only useful for processes communicating on the same machine Sockets are a general interprocess

More information

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy Network Programming Samuli Sorvakko/Nixu Oy Telecommunications software and Multimedia Laboratory T-110.4100 Computer Networks October 16, 2008 Agenda 1 Introduction and Overview Introduction 2 Socket

More information

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security. Network Programming. Samuli Sorvakko/Nixu Oy

Introduction and Overview Socket Programming Lower-level stuff Higher-level interfaces Security. Network Programming. Samuli Sorvakko/Nixu Oy Network Programming Samuli Sorvakko/Nixu Oy Telecommunications software and Multimedia Laboratory T-110.4100 Computer Networks October 5, 2009 Agenda 1 Introduction and Overview 2 Socket Programming 3

More information

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy

Introduction and Overview Socket Programming Higher-level interfaces Final thoughts. Network Programming. Samuli Sorvakko/Nixu Oy Network Programming Samuli Sorvakko/Nixu Oy Telecommunications software and Multimedia Laboratory T-110.4100 Computer Networks October 9, 2006 Agenda 1 Introduction and Overview Introduction 2 Socket Programming

More information

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University

Hyo-bong Son Computer Systems Laboratory Sungkyunkwan University Sockets Hyo-bong Son (proshb@csl.skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Client-Server Model Most network application is based on the client-server model: A server

More information

Communication. Layered Protocols. Topics to be covered. Layered Protocols. Introduction

Communication. Layered Protocols. Topics to be covered. Layered Protocols. Introduction Distributed Systems, Fall 2003 1 Introduction Interprocess communication is at the heart of all distributed systems Communication Based on low-level message passing offered by the underlying network Protocols:

More information

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski

Operating Systems. 18. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Spring /20/ Paul Krzyzanowski Operating Systems 18. Remote Procedure Calls Paul Krzyzanowski Rutgers University Spring 2015 4/20/2015 2014-2015 Paul Krzyzanowski 1 Remote Procedure Calls 2 Problems with the sockets API The sockets

More information

Slides for Chapter 5: Remote Invocation

Slides for Chapter 5: Remote Invocation Slides for Chapter 5: Remote Invocation From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design Edition 5, Addison-Wesley 2012 Text extensions to slides David E. Bakken,

More information

Communication Basics, RPC & RMI. CS403/534 Distributed Systems Erkay Savas Sabanci University

Communication Basics, RPC & RMI. CS403/534 Distributed Systems Erkay Savas Sabanci University Communication Basics, RPC & RMI CS403/534 Distributed Systems Erkay Savas Sabanci University 1 Communication Models 1. Remote Procedure Call (RPC) Client/Server application 2. Remote Method Invocation

More information

Remote Procedure Calls

Remote Procedure Calls CS 5450 Remote Procedure Calls Vitaly Shmatikov Abstractions Abstractions for communication TCP masks some of the pain of communicating over unreliable IP Abstractions for computation Goal: programming

More information

SAI/ST course Distributed Systems

SAI/ST course Distributed Systems SAI/ST course Distributed Systems 2013, Sep. 26 Oct 01 Lecture 3: Communication Agenda Overview Concepts Organization in layers IPC primitives Direct communication Indirect communication R.H. Mak 27-9-2013

More information

RPC and RMI. 2501ICT Nathan

RPC and RMI. 2501ICT Nathan RPC and RMI 2501ICT Nathan Contents Client/Server revisited RPC Architecture XDR RMI Principles and Operation Case Studies Copyright 2002- René Hexel. 2 Client/Server Revisited Server Accepts commands

More information

Lecture 06: Distributed Object

Lecture 06: Distributed Object Lecture 06: Distributed Object Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 0? 1 Recap Interprocess communication Synchronous and Asynchronous communication

More information

CLIENT-SIDE PROGRAMMING

CLIENT-SIDE PROGRAMMING CLIENT-SIDE PROGRAMMING George Porter Apr 11, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These slides

More information

CompSci 356: Computer Network Architectures. Lecture 3: Network Architecture Examples and Lab 1. Xiaowei Yang

CompSci 356: Computer Network Architectures. Lecture 3: Network Architecture Examples and Lab 1. Xiaowei Yang CompSci 356: Computer Network Architectures Lecture 3: Network Architecture Examples and Lab 1 Xiaowei Yang xwy@cs.duke.edu Overview The Internet Architecture OSI Network Architecture Lab 1 Released Due:

More information

ECE 435 Network Engineering Lecture 2

ECE 435 Network Engineering Lecture 2 ECE 435 Network Engineering Lecture 2 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 6 September 2018 Announcements Homework 1 will be posted. Will be on website, will announce

More information

Anatomy of a network. Chapter 3: Network and Communication. Transmission links. Representing data: bits and bytes. Representing data: Frames

Anatomy of a network. Chapter 3: Network and Communication. Transmission links. Representing data: bits and bytes. Representing data: Frames Chapter 3: Network and Communication What is a network? What types of network are there? What networking standards are there? How do you represent information? What is communication protocol? What are

More information

CS321: Computer Networks Socket Programming

CS321: Computer Networks Socket Programming CS321: Computer Networks Socket Programming Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Socket Programming It shows how the network application programs

More information

CS 640: Computer Networking

CS 640: Computer Networking CS 640: Computer Networking Yu-Chi Lai Lecture 3 Network Programming Topics Client-server model Sockets interface Socket primitives Example code for echoclient and echoserver Debugging With GDB Programming

More information

Application Programming Interfaces

Application Programming Interfaces Application Programming Interfaces Stefan D. Bruda Winter 2018 SYSTEM CALLS Machine 1 Machine 2 Application 1 Application 3 Application 4 Application 5 Application 2 API (system functions) API (system

More information

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls

Distributed Systems. How do regular procedure calls work in programming languages? Problems with sockets RPC. Regular procedure calls Problems with sockets Distributed Systems Sockets interface is straightforward [connect] read/write [disconnect] Remote Procedure Calls BUT it forces read/write mechanism We usually use a procedure call

More information

RPC. Remote Procedure Calls. Robert Grimm New York University

RPC. Remote Procedure Calls. Robert Grimm New York University RPC Remote Procedure Calls Robert Grimm New York University Assignments! You need (more) time for interoperability testing!! Your server should be running by midnight Sunday! Assignment 3 test case posted!

More information

DISTRIBUTED OBJECTS AND REMOTE INVOCATION

DISTRIBUTED OBJECTS AND REMOTE INVOCATION DISTRIBUTED OBJECTS AND REMOTE INVOCATION Introduction This chapter is concerned with programming models for distributed applications... Familiar programming models have been extended to apply to distributed

More information

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Remote Procedure Call. Chord: Node Joins and Leaves. Recall? Socket API

C 1. Recap: Finger Table. CSE 486/586 Distributed Systems Remote Procedure Call. Chord: Node Joins and Leaves. Recall? Socket API Recap: Finger Table Finding a using fingers CSE 486/586 Distributed Systems Remote Procedure Call Steve Ko Computer Sciences and Engineering University at Buffalo N102" 86 + 2 4! N86" 20 +

More information

Applications. RMI, RPC and events. Request reply protocol External data representation. Operating System

Applications. RMI, RPC and events. Request reply protocol External data representation. Operating System Figure 5.1 Middleware layer Applications RMI, RPC and events Request reply protocol External data representation Middleware layers Operating System Instructor s Guide for Coulouris, Dollimore and Kindberg

More information

Modulo II Socket, RMI e Corba

Modulo II Socket, RMI e Corba Modulo II Socket, RMI e Corba Prof. Ismael H F Santos April 05 Prof. Ismael H. F. Santos - ismael@tecgraf.puc-rio.br 1 Ementa Sistemas Distribuídos Cliente-Servidor April 05 Prof. Ismael H. F. Santos -

More information

Remote Invocation. Today. Next time. l Indirect communication. l Request-reply, RPC, RMI

Remote Invocation. Today. Next time. l Indirect communication. l Request-reply, RPC, RMI Remote Invocation Today l Request-reply, RPC, RMI Next time l Indirect communication Data representation and marshalling Processes information kept as data structures but sent in msgs as sequence of bytes

More information

RMI: Design & Implementation

RMI: Design & Implementation RMI: Design & Implementation Operating Systems RMI 1 Middleware layers Applications, services RMI and RPC request-reply protocol marshalling and external data representation Middleware layers UDP and TCP

More information

Middleware. Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004

Middleware. Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004 Middleware Adapted from Alonso, Casati, Kuno, Machiraju Web Services Springer 2004 Outline Web Services Goals Where do they come from? Understanding middleware Middleware as infrastructure Communication

More information

Remote Procedure Call

Remote Procedure Call Remote Procedure Call Remote Procedure Call Integrate network communication with programming language Procedure call is well understood implementation use Control transfer Data transfer Goals Easy make

More information

Interprocess Communication

Interprocess Communication Interprocess Communication Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e, (c) 2007 Prentice-Hall, Inc. All rights reserved. 0-13-239227-5 Introduction Applications, services

More information

03 Remote invoaction. Request-reply RPC. Coulouris 5 Birrel_Nelson_84.pdf RMI

03 Remote invoaction. Request-reply RPC. Coulouris 5 Birrel_Nelson_84.pdf RMI 03 Remote invoaction Request-reply RPC Coulouris 5 Birrel_Nelson_84.pdf RMI 2/23 Remote invocation Mechanisms for process communication on a Built on top of interprocess communication primitives Lower

More information

3. Remote Procedure Call

3. Remote Procedure Call 3. Remote Procedure Call Master II Software Engineering Imed Bouchrika Dept of Mathematics & Computer Science University of Souk-Ahras imed@imed.ws Imed Bouchrika. Distributed Objects, Uni of Souk-Ahras

More information

Distributed Systems. Communication (2) Schedule of Today. Distributed Objects. Distributed Objects and RMI. Corba IDL Example

Distributed Systems. Communication (2) Schedule of Today. Distributed Objects. Distributed Objects and RMI. Corba IDL Example 1 Overview Distributed Systems Communication (2) Lecture 4 Schedule of Today Remote Object (Method) Invocation Binding Client to an Object Static versus Dynamic Binding Basics MPI, Sockets, Distributed

More information

Distributed Systems. Chapter 02

Distributed Systems. Chapter 02 Distributed Systems Principles and Paradigms Chapter 02 (version 31st August 2001) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20.

More information

System Models and Communication

System Models and Communication System Models and Communication http://idc.hust.edu.cn/~rxli/ Outline Terminology Client-Server Model OSI Model vs. Middleware Model Summary Ruixuan Li School of Computer Science and Technology Huazhong

More information

The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1. Interprocess Communication (IPC) Work Individually (no groups)

The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1. Interprocess Communication (IPC) Work Individually (no groups) The BSD UNIX Socket Interface (CS 640 Lecture) Assignment 1 Work Individually (no groups) Due Date: in class, Monday, September 19 Robert T Olsen olsen@cswiscedu 7390CS Office Hours: 3-5T, 11-12F - exception

More information

Chapter 3: Client-Server Paradigm and Middleware

Chapter 3: Client-Server Paradigm and Middleware 1 Chapter 3: Client-Server Paradigm and Middleware In order to overcome the heterogeneity of hardware and software in distributed systems, we need a software layer on top of them, so that heterogeneity

More information

416 Distributed Systems. RPC Day 2 Jan 12, 2018

416 Distributed Systems. RPC Day 2 Jan 12, 2018 416 Distributed Systems RPC Day 2 Jan 12, 2018 1 Last class Finish networks review Fate sharing End-to-end principle UDP versus TCP; blocking sockets IP thin waist, smart end-hosts, dumb (stateless) network

More information

Module 3 - Distributed Objects & Remote Invocation

Module 3 - Distributed Objects & Remote Invocation Module 3 - Distributed Objects & Remote Invocation Programming Models for Distributed Applications Remote Procedure Call (RPC) Extension of the conventional procedure call model Allows client programs

More information

Interprocess Communication

Interprocess Communication Interprocess Communication B.Ramamurthy CSE421 11/5/02 B.R 1 Topics Pipes (process level) Sockets (OS level) Distributed System Methods (Java s) Remote Method Invocation (PL Level) Other communication

More information

ICT 6544 Distributed Systems Lecture 5

ICT 6544 Distributed Systems Lecture 5 ICT 6544 Distributed Systems Lecture 5 Hossen Asiful Mustafa Message Brokers Figure 4-21. The general organization of a message broker in a message-queuing system. IBM s WebSphere Message-Queuing System

More information

UNIX Network Programming. Overview of Socket API Network Programming Basics

UNIX Network Programming. Overview of Socket API Network Programming Basics UNIX Network Programming Overview of Socket API Network Programming Basics 1 Client-Server Model Client Machine A Network Server Machine B Web browser and server FTP client and server Telnet client and

More information

Project 3. Reliable Data Transfer over UDP. NTU CSIE Computer Networks 2011 Spring

Project 3. Reliable Data Transfer over UDP. NTU CSIE Computer Networks 2011 Spring Project 3 Reliable Data Transfer over UDP NTU CSIE Computer Networks 2011 Spring Project Goal In Project 3, students are asked to understand and implement reliable data transfer mechanism over UDP. UDP

More information

ECE 435 Network Engineering Lecture 2

ECE 435 Network Engineering Lecture 2 ECE 435 Network Engineering Lecture 2 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 31 August 2017 Announcements Homework 1 will be posted. Will be on website, will announce

More information

Tutorial on Socket Programming

Tutorial on Socket Programming Tutorial on Socket Programming Computer Networks - CSC 458 Department of Computer Science Hao Wang (Slides are mainly from Seyed Hossein Mortazavi, Monia Ghobadi, and Amin Tootoonchian, ) 1 Outline Client-server

More information

UNIT 1 TCP/IP PROGRAMMING CONCEPTS

UNIT 1 TCP/IP PROGRAMMING CONCEPTS UNIT 1 TCP/IP PROGRAMMING CONCEPTS TCP/IP Programming Concepts Structure Page Nos. 1.0 Introduction 5 1.1 Objectives 5 1.2 Client Server Communication 6 1.2.1 Designing Client/Server Programs 7 1.2.2 Socket

More information

Distributed Systems. Communication (2) Lecture Universität Karlsruhe, System Architecture Group

Distributed Systems. Communication (2) Lecture Universität Karlsruhe, System Architecture Group Distributed Systems Communication (2) Lecture 4 2003 Universität Karlsruhe, System Architecture Group 1 Overview Schedule of Today Remote Object (Method) Invocation Distributed Objects Binding Client to

More information

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C

Socket Programming. CSIS0234A Computer and Communication Networks. Socket Programming in C 1 CSIS0234A Computer and Communication Networks Socket Programming in C References Beej's Guide to Network Programming Official homepage: http://beej.us/guide/bgnet/ Local mirror http://www.cs.hku.hk/~c0234a/bgnet/

More information

CSc 450/550 Computer Networks Network Architectures & Client-Server Model

CSc 450/550 Computer Networks Network Architectures & Client-Server Model CSc 450/550 Computer Networks Network Architectures & Client-Server Model Jianping Pan Summer 2007 5/17/07 CSc 450/550 1 Last lectures So far, nuts and bolts views of the Internet Internet evolution and

More information

Distributed Systems. 03. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Fall 2017

Distributed Systems. 03. Remote Procedure Calls. Paul Krzyzanowski. Rutgers University. Fall 2017 Distributed Systems 03. Remote Procedure Calls Paul Krzyzanowski Rutgers University Fall 2017 1 Socket-based communication Socket API: all we get from the OS to access the network Socket = distinct end-to-end

More information

CS 3516: Computer Networks

CS 3516: Computer Networks Welcome to CS 3516: Prof. Yanhua Li Time: 9:00am 9:50am M, T, R, and F Location: AK219 Fall 2018 A-term 1 Some slides are originally from the course materials of the textbook Computer Networking: A Top

More information

Overview. Communication types and role of Middleware Remote Procedure Call (RPC) Message Oriented Communication Multicasting 2/36

Overview. Communication types and role of Middleware Remote Procedure Call (RPC) Message Oriented Communication Multicasting 2/36 Communication address calls class client communication declarations implementations interface java language littleendian machine message method multicast network object operations parameters passing procedure

More information

Client-server model The course that gives CMU its Zip! Network programming Nov 27, Using ports to identify services.

Client-server model The course that gives CMU its Zip! Network programming Nov 27, Using ports to identify services. 15-213 The course that gives CMU its Zip! Network programming Nov 27, 2001 Topics Client- model Sockets interface Echo and Client- model Every network application is based on the - model: Application is

More information

Parallelism. Master 1 International. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique

Parallelism. Master 1 International. Andrea G. B. Tettamanzi. Université de Nice Sophia Antipolis Département Informatique Parallelism Master 1 International Andrea G. B. Tettamanzi Université de Nice Sophia Antipolis Département Informatique andrea.tettamanzi@unice.fr Andrea G. B. Tettamanzi, 2014 1 Lecture 2 Communication

More information

Socket Programming. Sungkyunkwan University. Hyunseung Choo Copyright Networking Laboratory

Socket Programming. Sungkyunkwan University. Hyunseung Choo Copyright Networking Laboratory Socket Programming Sungkyunkwan University Hyunseung Choo choo@skku.edu Copyright 2000-2019 Networking Laboratory Contents Goals Client-Server mechanism Introduction to socket Programming with socket on

More information

Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC)

Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC) Systems Group Department of Computer Science ETH Zürich Networks and Operating Systems Chapter 3: Remote Procedure Call (RPC) Donald Kossmann & Torsten Höfler Frühjahrssemester 2013 DINFK, ETH Zürich.

More information

TCP: Three-way handshake

TCP: Three-way handshake Sockets in C 1 Sockets in C The slides by themselves will not be sufficient to learn how to write socket code. If you did not attend class, then you will want to review the relevant chapters in Kerrisk

More information

Inter-process Communication: RPC

Inter-process Communication: RPC Inter-process Communication: RPC Dr. Yong Guan Department of Electrical and Computer Engineering & Information Assurance Center Iowa State University Outline for Today s Talk Inter-process Communication:

More information

Structured communication (Remote invocation)

Structured communication (Remote invocation) Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Structured communication (Remote invocation) Nov 8th, 2011 Netzprogrammierung (Algorithmen und Programmierung

More information

Sockets. 1 Introduction. (Reference:, Gray Chapter 10) Network Programming Lecture Notes by. Turhan TUNALI

Sockets. 1 Introduction. (Reference:, Gray Chapter 10) Network Programming Lecture Notes by. Turhan TUNALI Sockets (Reference:, Gray Chapter 10) Network Programming Lecture Notes by 1 Introduction Turhan TUNALI Unix uses a common interface for the access of files and devices that reside on a single host. The

More information

System Programming. Introduction to computer networks

System Programming. Introduction to computer networks Content : by Dr. B. Boufama School of Computer Science University of Windsor Instructor: Dr. A. Habed adlane@cs.uwindsor.ca http://cs.uwindsor.ca/ adlane/60-256 Content Content 1 Introduction to Computer

More information

DS 2009: middleware. David Evans

DS 2009: middleware. David Evans DS 2009: middleware David Evans de239@cl.cam.ac.uk What is middleware? distributed applications middleware remote calls, method invocations, messages,... OS comms. interface sockets, IP,... layer between

More information

May Gerd Liefländer System Architecture Group Universität Karlsruhe (TH), System Architecture Group

May Gerd Liefländer System Architecture Group Universität Karlsruhe (TH), System Architecture Group Distributed Systems 6 RMI/MP IPC May-18-2009 Gerd Liefländer System Architecture Group 1 Intended Schedule of Today RMI (only rough overview) Message Passing Motivation Bridge Principle Message Passing

More information

CORBA (Common Object Request Broker Architecture)

CORBA (Common Object Request Broker Architecture) CORBA (Common Object Request Broker Architecture) René de Vries (rgv@cs.ru.nl) Based on slides by M.L. Liu 1 Overview Introduction / context Genealogical of CORBA CORBA architecture Implementations Corba

More information

Architecture of Software Intensive Systems

Architecture of Software Intensive Systems Architecture of Software Intensive Systems Interaction styles Johan Lukkien, Rudolf Mak 1 Goals of this lecture Students have an overview of accepted interaction styles (communication mechanisms) and their

More information

Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright Clifford Slocombe

Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright Clifford Slocombe Simple network applications using sockets (BSD and WinSock) Revision 1 Copyright 2002 - Clifford Slocombe sockets@slocombe.clara.net COPYRIGHT 2002 - CLIFFORD SLOCOMBE PAGE 1 OF 8 Table of Contents Introduction...3

More information