Mechanized Proofs for a Recursive Authentication Protocol

Size: px
Start display at page:

Download "Mechanized Proofs for a Recursive Authentication Protocol"

Transcription

1 Recursive Authentication Protocol 1 L. C. Paulson Mechanized Proofs for a Recursive Authentication Protocol Lawrence C. Paulson Computer Laboratory University of Cambridge

2 Recursive Authentication Protocol 2 L. C. Paulson Overview of the Protocol Based on Otway-Rees Distributes session keys for any number of agents Can be implemented as remote procedure calls application components are in control of security policy and its enforcement John Bull Some modifications to assist proofs

3 Recursive Authentication Protocol 3 L. C. Paulson The Protocol, with 3 Clients S C,S,Nc, B,C,Nb, A,B,Na,~ B,C,Nb, A,B,Na,~ A,B,Na,~ A B C {Kcs,S,Nc}Kc, {Kbc,B,Nc}Kc, {Kbc,C,Nb}Kb, {Kab,A,Nb}Kb, {Kab,B,Na}Ka {Kab,B,Na}Ka {Kbc,C,Nb}Kb, {Kab,A,Nb}Kb, {Kab,B,Na}Ka

4 Recursive Authentication Protocol 4 L. C. Paulson The Protocol: Accumulation of Requests Hashing to make Message Authentication Codes: Hash X Y { Hash{ X, Y }, Y } 1. A B : Hash Ka { A, B, Na, } 2. B C : Hash Kb { B, C, Nb, Hash Ka { A, B, Na, } } 2. C S : Hash Kc { C, S, Nc, Hash Kb { B, C, Nb, } } No limit on the nesting of requests

5 Recursive Authentication Protocol 5 L. C. Paulson The Protocol: Distribution of Certificates 3. S C : { Kcs, S, Nc } Kc, { Kbc, B, Nc } Kc, { Kbc, C, Nb } Kb, { Kab, A, Nb } Kb, { Kab, B, Na } Ka 4. C B : { Kbc, C, Nb } Kb, { Kab, A, Nb } Kb, { Kab, B, Na } Ka 4. B A : { Kab, B, Na } Ka

6 Recursive Authentication Protocol 6 L. C. Paulson The Verification Method Formal proof, not finite state checking Trace semantics, no beliefs or other modalities Inductive definitions: a simple, general model of action Any number of interleaved runs A general & uniform attacker Mechanized using Isabelle/HOL

7 Recursive Authentication Protocol 7 L. C. Paulson Processing Message Histories parts: message components Crypt KX X parts H contains everything potentially recoverable from H analz: message decryption Crypt KX, K 1 X analz H contains everything currently recoverable from H synth: message faking X, K Crypt KX synth H contains everything expressible using H

8 Recursive Authentication Protocol 8 L. C. Paulson The Introduction of Hashing Allow the message Hash X. How to extend the operators? Don t add Hash X parts H = X parts H Don t add Hash X analz H = X analz H Do add X synth H = Hash X synth H Hashing is one-way, so hash values are atomic Components vs Ingredients

9 Recursive Authentication Protocol 9 L. C. Paulson Inductively Defining the Protocol, If evs is a trace and Na is fresh, may add Says A B (Hash shrk A { A, B, Na, }) 2. If evs has Says A B P a and P a = { Xa, A, B, Na, P } and Nb is fresh, may add Says B C (Hash shrk B { B, C, Nb, P a }) B doesn t know the true sender & can t verify hash Xa

10 Recursive Authentication Protocol 10 L. C. Paulson Inductively Defining the Protocol, If evs contains the event Says B S P b, may add a suitable response Says S B Rb 4. If evs contains the events Says B C (Hash shrk B { B, C, Nb, P a }) Says C B { Crypt(shrK B){ Kbc, C, Nb }, Crypt(shrK B){ Kab, A, N b }, R } may add Says B A R

11 Recursive Authentication Protocol 11 L. C. Paulson Inductively Modelling the Server, 1 1. If Kab is a fresh key (not used in evs) then ( Hash shrk A { A, B, Na, }, (request) Crypt(shrK A){ Kab, B, N a }, (response) Kab) respond evs (last key) Only if the hash can be verified

12 Recursive Authentication Protocol 12 L. C. Paulson Inductively Modelling the Server, 2 2. If (P a, Ra, Kab) respond evs and Kbc is fresh and P a = Hash shrk A { A, B, Na, P } then ( Hash shrk B { B, C, Nb, P a }, (request) { Crypt(shrK B){ Kbc, C, N b }, (response) Crypt(shrK B){ Kab, A, N b }, Ra }, Kbc) respond evs (last key)

13 Recursive Authentication Protocol 13 L. C. Paulson An Easy Proof: Long-Term Keys Aren t Lost By induction over (P, R, K ) respond evs: K parts{r} = K is fresh By induction over evs recur lost: K parts H K lost (any long-term key K found in traffic was lost initially) Typically need two nested inductions

14 Recursive Authentication Protocol 14 L. C. Paulson Unicity of Nonces At most one hash in the history H contains the key of an uncompromised agent (A lost) any specified nonce value, Na B P. B P. Hash{ Key(shrK A), A, B, Na, P } parts H B = B P = P

15 Recursive Authentication Protocol 15 L. C. Paulson Unicity of Session Keys At most two certificates in the response (R) contain any particular session key, Kab... made for two uncompromised agents (A, B lost) A B. A B N. Crypt(Key(shrK A)){ Kab, B, N } parts{r} (A = A B = B) (A = B B = A)

16 Recursive Authentication Protocol 16 L. C. Paulson Secrecy Essential lemma, for any session key Kab: K analz( {Kab} H ) K = Kab K analz H Guarantee between uncompromised agents A and B: Crypt(shrK A){ Kab, B, N } parts H = Kab analz H Nonces not involved in proofs

17 Recursive Authentication Protocol 17 L. C. Paulson Difficulties involving Certificates Danger of re-ordering Need for explicitness: name of other agent Special treatment of first & last agents Complexity of respond s definition Simpler version: arbitrary lists of certificates

18 Recursive Authentication Protocol 18 L. C. Paulson Limitations of the Proofs Authentication of B to A not proved Authentication of A to B not provable! No dynamic loss of long-term keys Encryption assumed secure Type confusion not considered (not relevant?)

19 Recursive Authentication Protocol 19 L. C. Paulson Statistics Two weeks human effort for proofs 30 lemmas and theorems 135 tactic commands Under five minutes CPU time Savings from protocol s symmetries

20 Recursive Authentication Protocol 20 L. C. Paulson Conclusions Inductive definitions can model non-trivial processes Nested inductions cause no problems Multiple session keys are no obstacle Many types of protocols can be analyzed Must distinguish abstract level from implementation

Mechanized Proofs for a Recursive Authentication Protocol 1

Mechanized Proofs for a Recursive Authentication Protocol 1 Mechanized Proofs for a Recursive Authentication Protocol 1 Lawrence C. Paulson Computer Laboratory University of Cambridge Pembroke Street Cambridge CB2 3QG England lcp@cl.cam.ac.uk 1 An abridged version

More information

Mechanising BAN Kerberos by the Inductive Method

Mechanising BAN Kerberos by the Inductive Method Mechanising BAN Kerberos by the Inductive Method Giampaolo Bella Lawrence C Paulson Computer Laboratory University of Cambridge New Museums Site, Pembroke Street Cambridge CB2 3QG (UK) {gb221,lcp}@cl.cam.ac.uk

More information

The Inductive Approach to Verifying Cryptographic Protocols

The Inductive Approach to Verifying Cryptographic Protocols The Inductive Approach to Verifying Cryptographic Protocols Lawrence C. Paulson Computer Laboratory University of Cambridge Pembroke Street Cambridge CB2 3QG England lcp@cl.cam.ac.uk 10 December 1998 Abstract

More information

Relations Between Secrets: Two Formal Analyses of the Yahalom Protocol

Relations Between Secrets: Two Formal Analyses of the Yahalom Protocol Relations Between Secrets: Two Formal Analyses of the Yahalom Protocol Lawrence C. Paulson Computer Laboratory University of Cambridge Pembroke Street Cambridge CB2 3QG England lcp@cl.cam.ac.uk July 1997

More information

CS 395T. Analyzing SET with Inductive Method

CS 395T. Analyzing SET with Inductive Method CS 395T Analyzing SET with Inductive Method Theorem Proving for Protocol Analysis Prove correctness instead of looking for bugs Use higher-order logic to reason about all possible protocol executions No

More information

Mechanized Proofs of Security Protocols: Needham-Schroeder with Public Keys

Mechanized Proofs of Security Protocols: Needham-Schroeder with Public Keys Mechanized Proofs of Security Protocols: Needham-Schroeder with Public Keys Lawrence C. Paulson Computer Laboratory University of Cambridge lcp@cl.cam.ac.uk January 1997 Abstract The inductive approach

More information

Analysis Techniques. Protocol Verification by the Inductive Method. Analysis using theorem proving. Recall: protocol state space.

Analysis Techniques. Protocol Verification by the Inductive Method. Analysis using theorem proving. Recall: protocol state space. CS 259 Protocol Verification by the Inductive Method Analysis Techniques Crypto Protocol Analysis Formal Models Dolev-Yao (perfect cryptography) Computational Models John Mitchell Modal Logics Model Checking

More information

Abstract Internet browsers use security protocols to protect condential messages. An inductive analysis of TLS (a descendant of SSL 3.0) has been perf

Abstract Internet browsers use security protocols to protect condential messages. An inductive analysis of TLS (a descendant of SSL 3.0) has been perf Inductive Analysis of the Internet Protocol TLS Lawrence C. Paulson Computer Laboratory University of Cambridge Pembroke Street Cambridge CB2 3QG England lcp@cl.cam.ac.uk 16 December 1997 Abstract Internet

More information

Computer Networks & Security 2016/2017

Computer Networks & Security 2016/2017 Computer Networks & Security 2016/2017 Network Security Protocols (10) Dr. Tanir Ozcelebi Courtesy: Jerry den Hartog Courtesy: Kurose and Ross TU/e Computer Science Security and Embedded Networked Systems

More information

Outline. Login w/ Shared Secret: Variant 1. Login With Shared Secret: Variant 2. Login Only Authentication (One Way) Mutual Authentication

Outline. Login w/ Shared Secret: Variant 1. Login With Shared Secret: Variant 2. Login Only Authentication (One Way) Mutual Authentication Outline Security Handshake Pitfalls (Chapter 11 & 12.2) Login Only Authentication (One Way) Login i w/ Shared Secret One-way Public Key Lamport s Hash Mutual Authentication Shared Secret Public Keys Timestamps

More information

Elements of Security

Elements of Security Elements of Security Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: April 8, 2015 at 12:47 Slideset 7: 1 Car Talk Puzzler You have a friend in a police state

More information

Analysis of an E-voting Protocol using the Inductive Method

Analysis of an E-voting Protocol using the Inductive Method Analysis of an E-voting Protocol using the Inductive Method Najmeh Miramirkhani 1, Hamid Reza Mahrooghi 1, Rasool Jalili 1 1 Sharif University of Technology,Tehran, Iran {miramirkhani@ce., mahrooghi@ce.,

More information

An Executable Model for JFKr

An Executable Model for JFKr An Executable Model for JFKr An ACL2 approach to key-establishment protocol verification Presented by: David Rager Outline Derivation of JFKr Books developed for JFKr reasoning Demonstrate the JFKr executable

More information

Overview. Terminology. Password Storage

Overview. Terminology. Password Storage Class: CSG254 Network Security Team: Enigma (team 2) Kevin Kingsbury Tejas Parikh Tony Ryan Shenghan Zhang Assignment: PS3 Secure IM system Overview Our system uses a server to store the passwords, and

More information

Hello World in HLPSL. Turning ASCII protocol specifications into HLPSL

Hello World in HLPSL. Turning ASCII protocol specifications into HLPSL Hello World in HLPSL Turning ASCII protocol specifications into HLPSL Modeling with HLPSL HLPSL is a higher-level protocol specification language we can transform ASCII protocol specifications into HLPSL

More information

Analysis of Verification Tools for Security Protocols

Analysis of Verification Tools for Security Protocols Analysis of Verification Tools for Security Protocols Sergey Reznick, Igor Kotenko Computer Security Research Group, St. Petersburg Institute for Informatics and Automation of Russian Academy of Sciences

More information

Structured Attacks on Cryptographic Protocols. Karl Mahlburg Everett Bull, Advisor

Structured Attacks on Cryptographic Protocols. Karl Mahlburg Everett Bull, Advisor Structured Attacks on Cryptographic Protocols by Karl Mahlburg Everett Bull, Advisor Advisor: Second Reader: (Francis Su) May 2001 Department of Mathematics Abstract Structured Attacks on Cryptographic

More information

BAN Logic. Logic of Authentication 1. BAN Logic. Source. The language of BAN. The language of BAN. Protocol 1 (Needham-Schroeder Shared-Key) [NS78]

BAN Logic. Logic of Authentication 1. BAN Logic. Source. The language of BAN. The language of BAN. Protocol 1 (Needham-Schroeder Shared-Key) [NS78] Logic of Authentication 1. BAN Logic Ravi Sandhu BAN Logic BAN is a logic of belief. In an analysis, the protocol is first idealized into messages containing assertions, then assumptions are stated, and

More information

Overview. Symbolic Protocol Analysis. Protocol Analysis Techniques. Obtaining a Finite Model. Decidable Protocol Analysis. Strand Space Model

Overview. Symbolic Protocol Analysis. Protocol Analysis Techniques. Obtaining a Finite Model. Decidable Protocol Analysis. Strand Space Model CS 259 Overview Symbolic Protocol Analysis Vitaly Shmatikov Strand space model Protocol analysis with unbounded attacker Parametric strands Symbolic attack traces Protocol analysis via constraint solving

More information

Formal Methods for Security Protocols

Formal Methods for Security Protocols Role of Temur.Kutsia@risc.uni-linz.ac.at Formal Methods Seminar January 26, 2005 Role of Outline 1 Role of 2 Security Properties Attacker Models Keys Symmetric and Asymmetric Systems 3 Notation and Examples

More information

Network Security CHAPTER 31. Solutions to Review Questions and Exercises. Review Questions

Network Security CHAPTER 31. Solutions to Review Questions and Exercises. Review Questions CHAPTER 3 Network Security Solutions to Review Questions and Exercises Review Questions. A nonce is a large random number that is used only once to help distinguish a fresh authentication request from

More information

Provable Anonymity. Epistemic Logic for Anonymizing Protocols. Ichiro Hasuo. Radboud University Nijmegen The Netherlands

Provable Anonymity. Epistemic Logic for Anonymizing Protocols. Ichiro Hasuo. Radboud University Nijmegen The Netherlands Provable Anonymity Epistemic Logic for Anonymizing Protocols Ichiro Hasuo Radboud University Nijmegen The Netherlands Internatinal Summer School Marktoberdorf Provable Anonymity Ichiro Hasuo, Nijmegen,

More information

Formalizing Provable Anonymity in Isabelle/HOL

Formalizing Provable Anonymity in Isabelle/HOL Under consideration for publication in Formal Aspects of Computing Formalizing Provable Anonymity in Isabelle/HOL Yongjian Li Chinese Academy of Sciences Institute of Software State Key Laboratory of Computer

More information

Outline More Security Protocols CS 239 Computer Security February 4, 2004

Outline More Security Protocols CS 239 Computer Security February 4, 2004 Outline More Security Protocols CS 239 Computer Security February 4, 2004 Combining key distribution and authentication Verifying security protocols Page 1 Page 2 Combined Key Distribution and Authentication

More information

Cryptographically Sound Security Proofs for Basic and Public-key Kerberos

Cryptographically Sound Security Proofs for Basic and Public-key Kerberos Cryptographically Sound Security Proofs for Basic and Public-key Kerberos ESORICS 2006 M. Backes 1, I. Cervesato 2, A. D. Jaggard 3, A. Scedrov 4, and J.-K. Tsay 4 1 Saarland University, 2 Carnegie Mellon

More information

CSC 474/574 Information Systems Security

CSC 474/574 Information Systems Security CSC 474/574 Information Systems Security Topic 3.3: Security Handshake Pitfalls CSC 474/574 Dr. Peng Ning 1 Authentication Handshakes Secure communication almost always includes an initial authentication

More information

Outline More Security Protocols CS 239 Computer Security February 6, 2006

Outline More Security Protocols CS 239 Computer Security February 6, 2006 Outline More Security Protocols CS 239 Computer Security February 6, 2006 Combining key distribution and authentication Verifying security protocols Page 1 Page 2 Combined Key Distribution and Authentication

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.4501 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Stallings: Ch 7.4; 7.3; 10.1 1 The Use

More information

Module: Cryptographic Protocols. Professor Patrick McDaniel Spring CMPSC443 - Introduction to Computer and Network Security

Module: Cryptographic Protocols. Professor Patrick McDaniel Spring CMPSC443 - Introduction to Computer and Network Security CMPSC443 - Introduction to Computer and Network Security Module: Cryptographic Protocols Professor Patrick McDaniel Spring 2009 1 Key Distribution/Agreement Key Distribution is the process where we assign

More information

Week 5 Tutorial Structural Induction

Week 5 Tutorial Structural Induction Department of Computer Science, Australian National University COMP2600 / COMP6260 Formal Methods in Software Engineering Semester 2, 2016 Week 5 Tutorial Structural Induction You should hand in attempts

More information

Security Analysis of Bluetooth v2.1 + EDR Pairing Authentication Protocol. John Jersin Jonathan Wheeler. CS259 Stanford University.

Security Analysis of Bluetooth v2.1 + EDR Pairing Authentication Protocol. John Jersin Jonathan Wheeler. CS259 Stanford University. Security Analysis of Bluetooth v2.1 + EDR Pairing Authentication Protocol John Jersin Jonathan Wheeler CS259 Stanford University March 20, 2008 Version 1 Security Analysis of Bluetooth v2.1 + EDR Pairing

More information

CS 395T. Symbolic Constraint Solving

CS 395T. Symbolic Constraint Solving CS 395T Symbolic Constraint Solving Overview Strand space model Protocol analysis with unbounded attacker Parametric strands Symbolic attack traces Protocol analysis via constraint solving SRI constraint

More information

Strong Invariants for the Efficient Construction of Machine-Checked Protocol Security Proofs

Strong Invariants for the Efficient Construction of Machine-Checked Protocol Security Proofs 2010 23rd IEEE Computer Security Foundations Symposium Strong Invariants for the Efficient Construction of Machine-Checked Protocol Security Proofs Simon Meier, Cas Cremers, David Basin ETH Zurich, Switzerland

More information

UNIT - IV Cryptographic Hash Function 31.1

UNIT - IV Cryptographic Hash Function 31.1 UNIT - IV Cryptographic Hash Function 31.1 31-11 SECURITY SERVICES Network security can provide five services. Four of these services are related to the message exchanged using the network. The fifth service

More information

What did we talk about last time? Public key cryptography A little number theory

What did we talk about last time? Public key cryptography A little number theory Week 4 - Friday What did we talk about last time? Public key cryptography A little number theory If p is prime and a is a positive integer not divisible by p, then: a p 1 1 (mod p) Assume a is positive

More information

Protocols II. Computer Security Lecture 12. David Aspinall. 17th February School of Informatics University of Edinburgh

Protocols II. Computer Security Lecture 12. David Aspinall. 17th February School of Informatics University of Edinburgh Protocols II Computer Security Lecture 12 David Aspinall School of Informatics University of Edinburgh 17th February 2011 Outline Introduction Shared-key Authentication Asymmetric authentication protocols

More information

Security protocols and their verification. Mark Ryan University of Birmingham

Security protocols and their verification. Mark Ryan University of Birmingham Security protocols and their verification Mark Ryan University of Birmingham Contents 1. Authentication protocols (this lecture) 2. Electronic voting protocols 3. Fair exchange protocols 4. Digital cash

More information

Encryption as an Abstract Datatype:

Encryption as an Abstract Datatype: June 2003 1/18 Outline Encryption as an Abstract Datatype: an extended abstract Dale Miller INRIA/Futurs/Saclay and École polytechnique 1. Security protocols specified using multisets rewriting. 2. Eigenvariables

More information

Robbing the Bank with a Theorem Prover

Robbing the Bank with a Theorem Prover Robbing the Bank with a Theorem Prover (Transcript of Discussion) Jolyon Clulow Cambridge University So it s a fairly provocative title, how did we get to that? Well automated tools have been successfully

More information

On Preventing Type Flaw Attacks on Security Protocols With a Simplified Tagging Scheme *

On Preventing Type Flaw Attacks on Security Protocols With a Simplified Tagging Scheme * JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 21, 59-84 (2005) On Preventing Type Flaw Attacks on Security Protocols With a Simplified Tagging Scheme * Department of Computer and Information Science National

More information

A Short SPAN+AVISPA Tutorial

A Short SPAN+AVISPA Tutorial A Short SPAN+AVISPA Tutorial Thomas Genet IRISA/Université de Rennes 1 genet@irisa.fr November 6, 2015 Abstract The objective of this short tutorial is to show how to use SPAN to understand and debug HLPSL

More information

Security protocols. Correctness of protocols. Correctness of protocols. II. Logical representation and analysis of protocols.i

Security protocols. Correctness of protocols. Correctness of protocols. II. Logical representation and analysis of protocols.i Security protocols Logical representation and analysis of protocols.i A security protocol is a set of rules, adhered to by the communication parties in order to ensure achieving various security or privacy

More information

22-security.txt Tue Nov 27 09:13: Notes on Security Protocols , Fall 2012 Carnegie Mellon University Randal E.

22-security.txt Tue Nov 27 09:13: Notes on Security Protocols , Fall 2012 Carnegie Mellon University Randal E. 22-security.txt Tue Nov 27 09:13:37 2012 1 Notes on Security Protocols 15-440, Fall 2012 Carnegie Mellon University Randal E. Bryant References: Tannenbaum: 9.1, 9.2 (skip 9.2.3), 9.4.1 BASICS Desired

More information

T Cryptography and Data Security

T Cryptography and Data Security T-79.159 Cryptography and Data Security Lecture 10: 10.1 Random number generation 10.2 Key management - Distribution of symmetric keys - Management of public keys Kaufman et al: Ch 11.6; 9.7-9; Stallings:

More information

Chapter 2 & 3: Representations & Reasoning Systems (2.2)

Chapter 2 & 3: Representations & Reasoning Systems (2.2) Chapter 2 & 3: A Representation & Reasoning System & Using Definite Knowledge Representations & Reasoning Systems (RRS) (2.2) Simplifying Assumptions of the Initial RRS (2.3) Datalog (2.4) Semantics (2.5)

More information

Proofs for Key Establishment Protocols

Proofs for Key Establishment Protocols Information Security Institute Queensland University of Technology December 2007 Outline Key Establishment 1 Key Establishment 2 3 4 Purpose of key establishment Two or more networked parties wish to establish

More information

Introduction to Security

Introduction to Security Introduction to Security Avinanta Tarigan Universitas Gunadarma 1 Avinanta Tarigan Introduction to Security Layout Problems General Security Cryptography & Protocol reviewed 2 Avinanta Tarigan Introduction

More information

What I m talking about comes down to a more basic philosophical principle: Don t trust nobody.

What I m talking about comes down to a more basic philosophical principle: Don t trust nobody. Security Protocols Luca Viganò Institut für Informatik Albert-Ludwigs-Universität Freiburg www.informatik.uni-freiburg.de/~luca 01.03.02 Luca Viganò 1 Roadmap Introduction. Definition and purpose of security

More information

Chapter 3: Propositional Languages

Chapter 3: Propositional Languages Chapter 3: Propositional Languages We define here a general notion of a propositional language. We show how to obtain, as specific cases, various languages for propositional classical logic and some non-classical

More information

Outline. More Security Protocols CS 239 Security for System Software April 22, Needham-Schroeder Key Exchange

Outline. More Security Protocols CS 239 Security for System Software April 22, Needham-Schroeder Key Exchange Outline More Security Protocols CS 239 Security for System Software April 22, 2002 Combining key distribution and authentication Verifying security protocols Page 1 Page 2 Combined Key Distribution and

More information

Design and Analysis of Security Protocols

Design and Analysis of Security Protocols CS 395T Design and Analysis of Security Protocols Vitaly Shmatikov http://www.cs.utexas.edu/~shmat/courses/cs395t_fall04/ Course Logistics Lectures Monday, Wednesday 3:30-5pm Project presentations in the

More information

Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography

Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography Cryptography Lecture 9 Key distribution and trust, Elliptic curve cryptography Key Management The first key in a new connection or association is always delivered via a courier Once you have a key, you

More information

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification

ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification ICT 6541 Applied Cryptography Lecture 8 Entity Authentication/Identification Hossen Asiful Mustafa Introduction Entity Authentication is a technique designed to let one party prove the identity of another

More information

Authentication Handshakes

Authentication Handshakes AIT 682: Network and Systems Security Topic 6.2 Authentication Protocols Instructor: Dr. Kun Sun Authentication Handshakes Secure communication almost always includes an initial authentication handshake.

More information

Lecture 1: Course Introduction

Lecture 1: Course Introduction Lecture 1: Course Introduction Thomas Johansson T. Johansson (Lund University) 1 / 37 Chapter 9: Symmetric Key Distribution To understand the problems associated with managing and distributing secret keys.

More information

Spring 2010: CS419 Computer Security

Spring 2010: CS419 Computer Security Spring 2010: CS419 Computer Security Vinod Ganapathy Lecture 7 Topic: Key exchange protocols Material: Class handout (lecture7_handout.pdf) Chapter 2 in Anderson's book. Today s agenda Key exchange basics

More information

Lecture 4: Authentication Protocols

Lecture 4: Authentication Protocols Graduate Course on Computer Security Lecture 4: Authentication Protocols Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, Inc @ NRL Washington DC http://www.cs.stanford.edu/~iliano/ DIMI, Universita

More information

CS 395T. Formal Model for Secure Key Exchange

CS 395T. Formal Model for Secure Key Exchange CS 395T Formal Model for Secure Key Exchange Main Idea: Compositionality Protocols don t run in a vacuum Security protocols are typically used as building blocks in a larger secure system For example,

More information

SEMINAR REPORT ON BAN LOGIC

SEMINAR REPORT ON BAN LOGIC SEMINAR REPORT ON BAN LOGIC Submitted by Name : Abhijeet Chatarjee Roll No.: 14IT60R11 SCHOOL OF INFORMATION TECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR-721302 (INDIA) Abstract: Authentication

More information

Verifying Security Protocols with Brutus

Verifying Security Protocols with Brutus Verifying Security Protocols with Brutus E.M. CLARKE Carnegie Mellon University S. JHA University of Wisconsin and W. MARRERO DePaul University Due to the rapid growth of the Internet and the World Wide

More information

Towards Verifying Voter Privacy Through Unlinkability

Towards Verifying Voter Privacy Through Unlinkability Author manuscript, published in "ESSoS13 - International Symposium on Engineering Secure Software and Systems - 2013 (2013)" DOI : 10.1007/978-3-642-36563-8_7 Towards Verifying Voter Privacy Through Unlinkability

More information

Symmetric Encryption

Symmetric Encryption Symmetric Encryption Ahmed Y. Banihammd & Ihsan, ALTUNDAG Mon November 5, 2007 Advanced Cryptography 1st Semester 2007-2008 University Joseph Fourrier, Verimag Master Of Information Security And Coding

More information

Symmetric Encryption 2: Integrity

Symmetric Encryption 2: Integrity http://wwmsite.wpengine.com/wp-content/uploads/2011/12/integrity-lion-300x222.jpg Symmetric Encryption 2: Integrity With material from Dave Levin, Jon Katz, David Brumley 1 Summing up (so far) Computational

More information

Network Security and Internet Protocols

Network Security and Internet Protocols Network Security and Internet Protocols Luca Viganò Dipartimento di Informatica Università di Verona Sicurezza delle Reti A.A. 12/13 Lecture 5 Luca Viganò (Università di Verona) Network Security and Internet

More information

Lecture 5: Protocols - Authentication and Key Exchange* CS 392/6813: Computer Security Fall Nitesh Saxena

Lecture 5: Protocols - Authentication and Key Exchange* CS 392/6813: Computer Security Fall Nitesh Saxena Lecture 5: Protocols - Authentication and Key Exchange* CS 392/6813: Computer Security Fall 2009 Nitesh Saxena *Adopted from a previous lecture by Gene Tsudik Course Admin HW3 Problem 3 due Friday midnight

More information

Presented by Jack G. Nestell. Topics for Discussion. I. Introduction. Discussion on the different logics and methods of reasonings of Formal Methods

Presented by Jack G. Nestell. Topics for Discussion. I. Introduction. Discussion on the different logics and methods of reasonings of Formal Methods A Discussion on Security Protocols over open networks and distributed Systems: Formal methods for their Analysis, Design, and Verification S. Gritzalis, D. Spinellis, and P. Georgiadis Presented by Jack

More information

Relating the MSR Crypto-Protocol Specification Language to Rewriting Logic with Dependent Types

Relating the MSR Crypto-Protocol Specification Language to Rewriting Logic with Dependent Types WRLA 2004 - Barcelona, Spain March 27, 2004 Relating the MSR Crypto-Protocol Specification Language to Rewriting Logic with Dependent Types Iliano Cervesato iliano@itd.nrl.navy.mil ITT Industries, inc

More information

Trusted Disk Loading in the Emulab Network Testbed. Cody Cutler, Mike Hibler, Eric Eide, Rob Ricci

Trusted Disk Loading in the Emulab Network Testbed. Cody Cutler, Mike Hibler, Eric Eide, Rob Ricci Trusted Disk Loading in the Emulab Network Testbed Cody Cutler, Mike Hibler, Eric Eide, Rob Ricci 1 Emulab Public network testbed Create complex experiments quickly 500+ nodes at Utah Emulab 2 Emulab Nodes

More information

Chapter 9: Key Management

Chapter 9: Key Management Chapter 9: Key Management Session and Interchange Keys Key Exchange Cryptographic Key Infrastructure Storing and Revoking Keys Digital Signatures Slide #9-1 Overview Key exchange Session vs. interchange

More information

Digital Signatures. Luke Anderson. 7 th April University Of Sydney.

Digital Signatures. Luke Anderson. 7 th April University Of Sydney. Digital Signatures Luke Anderson luke@lukeanderson.com.au 7 th April 2017 University Of Sydney Overview 1. Digital Signatures 1.1 Background 1.2 Basic Operation 1.3 Attack Models Replay Naïve RSA 2. PKCS#1

More information

Security Models: Proofs, Protocols and Certification

Security Models: Proofs, Protocols and Certification Security Models: Proofs, Protocols and Certification Florent Autrau - Yassine Lakhnech - Jean-Louis Roch Master-2 Security, Cryptology and Coding of Information Systems ENSIMAG/Grenoble-INP UJF Grenoble

More information

CS5232 Formal Specification and Design Techniques. Using PAT to verify the Needham-Schroeder Public Key Protocol

CS5232 Formal Specification and Design Techniques. Using PAT to verify the Needham-Schroeder Public Key Protocol CS5232 Formal Specification and Design Techniques Using PAT to verify the Needham-Schroeder Public Key Protocol Semester 2, AY 2008/2009 1/37 Table of Contents 1. Project Introduction 3 2. Building the

More information

Chapter 9. Public Key Cryptography, RSA And Key Management

Chapter 9. Public Key Cryptography, RSA And Key Management Chapter 9 Public Key Cryptography, RSA And Key Management RSA by Rivest, Shamir & Adleman of MIT in 1977 The most widely used public-key cryptosystem is RSA. The difficulty of attacking RSA is based on

More information

Real-time protocol. Chapter 16: Real-Time Communication Security

Real-time protocol. Chapter 16: Real-Time Communication Security Chapter 16: Real-Time Communication Security Mohammad Almalag Dept. of Computer Science Old Dominion University Spring 2013 1 Real-time protocol Parties negotiate interactively (Mutual) Authentication

More information

6.033 Computer System Engineering

6.033 Computer System Engineering MIT OpenCourseWare http://ocw.mit.edu 6.033 Computer System Engineering Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Nickolai Zeldovich

More information

Trusted Disk Loading in the Emulab Network Testbed. Cody Cutler, Eric Eide, Mike Hibler, Rob Ricci

Trusted Disk Loading in the Emulab Network Testbed. Cody Cutler, Eric Eide, Mike Hibler, Rob Ricci Trusted Disk Loading in the Emulab Network Testbed Cody Cutler, Eric Eide, Mike Hibler, Rob Ricci 1 Emulab Public network testbed Create complex experiments quickly 500+ nodes at Utah Emulab 2 Emulab Nodes

More information

A Coordination-based Methodology for Security Protocol Verification

A Coordination-based Methodology for Security Protocol Verification Electronic Notes in Theoretical Computer Science 121 (2005) 23 46 www.elsevier.com/locate/entcs A Coordination-based Methodology for Security Protocol Verification Giacomo Baldi Andrea Bracciali Gianluigi

More information

Your projected and optimistically projected grades should be in the grade center soon o Projected: Your current weighted score /30 * 100

Your projected and optimistically projected grades should be in the grade center soon o Projected: Your current weighted score /30 * 100 You should worry if you are below this point Your projected and optimistically projected grades should be in the grade center soon o Projected: Your current weighted score /0 * 100 o Optimistic: (Your

More information

Lecture Note 6 Date:

Lecture Note 6 Date: P.Lafourcade Lecture Note 6 Date: 18.10.2010 Security models 1st Semester 2010/2011 Jeremy BRUN-NOUVION Hicham HOSSAYNI Contents 1 Logical Attacks 3 1.1 Perfect Encryption Hypothesis.............................

More information

Logic of Authentication

Logic of Authentication Logic of Authentication Dennis Kafura Derived from materials authored by: Burrows, Abadi, Needham 1 Goals and Scope Goals develop a formalism to reason about authentication protocols uses determine guarantees

More information

Analysis of Attacks to Multi-Protocols

Analysis of Attacks to Multi-Protocols Università degli Studi di Catania Corso di Laurea in Informatica Casimiro Greco Analysis of Attacks to Multi-Protocols mwsf05 Catania, 16 Dicembre 2005 The 2005 miniworkshop on 1 Security Frameworks INTRODUCTION

More information

Bindings for Security Protocol Message Composition

Bindings for Security Protocol Message Composition Bindings for Security Protocol Message Composition Genge Bela 1, Haller Piroska 2 Abstract We present a method for creating security protocols, based on message composition. The novelty of our approach

More information

CS 395T. JFK Protocol in Applied Pi Calculus

CS 395T. JFK Protocol in Applied Pi Calculus CS 395T JFK Protocol in Applied Pi Calculus Proving Security Real protocol Process-calculus specification of the actual protocol Ideal protocol Achieves the same goal as the real protocol, but is secure

More information

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature

Key Management. Digital signatures: classical and public key Classic and Public Key exchange. Handwritten Signature Key Management Digital signatures: classical and public key Classic and Public Key exchange 1 Handwritten Signature Used everyday in a letter, on a check, sign a contract A signature on a signed paper

More information

Cryptography and Network Security Chapter 13. Digital Signatures & Authentication Protocols

Cryptography and Network Security Chapter 13. Digital Signatures & Authentication Protocols Cryptography and Network Security Chapter 13 Digital Signatures & Authentication Protocols Digital Signatures have looked at message authentication but does not address issues of lack of trust digital

More information

Lecture 9. Authentication & Key Distribution

Lecture 9. Authentication & Key Distribution Lecture 9 Authentication & Key Distribution 1 Where are we now? We know a bit of the following: Conventional (symmetric) cryptography Hash functions and MACs Public key (asymmetric) cryptography Encryption

More information

A Derivation System for Security Protocols and its Logical Formalization

A Derivation System for Security Protocols and its Logical Formalization A Derivation System for Security Protocols and its Logical Formalization Anupam Datta Ante Derek John C. Mitchell Dusko Pavlovic Stanford University CSFW July 1, 2003 Kestrel Institute Contributions Protocol

More information

Session key establishment protocols

Session key establishment protocols our task is to program a computer which gives answers which are subtly and maliciously wrong at the most inconvenient possible moment. -- Ross Anderson and Roger Needham, Programming Satan s computer Session

More information

6. Security Handshake Pitfalls Contents

6. Security Handshake Pitfalls Contents Contents 1 / 45 6.1 Introduction 6.2 Log-in Only 6.3 Mutual Authentication 6.4 Integrity/Encryption of Data 6.5 Mediated Authentication (with KDC) 6.6 Bellovin-Merrit 6.7 Network Log-in and Password Guessing

More information

CS 161 Computer Security

CS 161 Computer Security Popa & Wagner Spring 2016 CS 161 Computer Security Discussion 5 Week of February 19, 2017 Question 1 Diffie Hellman key exchange (15 min) Recall that in a Diffie-Hellman key exchange, there are values

More information

Session key establishment protocols

Session key establishment protocols our task is to program a computer which gives answers which are subtly and maliciously wrong at the most inconvenient possible moment. -- Ross Anderson and Roger Needham, Programming Satan s computer Session

More information

SAT-based Verifiction of NSPKT Protocol Including Delays in the Network

SAT-based Verifiction of NSPKT Protocol Including Delays in the Network SAT-based Verifiction of NSPKT Protocol Including Delays in the Network Czestochowa University of Technology Cardinal Stefan Wyszynski University MMFT2017 1 2 3 4 5 6 Importance of Security Protocols Key

More information

Cryptographic Checksums

Cryptographic Checksums Cryptographic Checksums Mathematical function to generate a set of k bits from a set of n bits (where k n). k is smaller then n except in unusual circumstances Example: ASCII parity bit ASCII has 7 bits;

More information

Cryptographic Protocols 1

Cryptographic Protocols 1 Cryptographic Protocols 1 Luke Anderson luke@lukeanderson.com.au 5 th May 2017 University Of Sydney Overview 1. Crypto-Bulletin 2. Problem with Diffie-Hellman 2.1 Session Hijacking 2.2 Encrypted Key Exchange

More information

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm

A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Appears as Technical Memo MIT/LCS/TM-590, MIT Laboratory for Computer Science, June 1999 A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm Miguel Castro and Barbara Liskov

More information

A Limitation of BAN Logic Analysis on a Man-in-the-middle Attack

A Limitation of BAN Logic Analysis on a Man-in-the-middle Attack ISS 1746-7659, England, U Journal of Information and Computing Science Vol. 1, o. 3, 2006, pp. 131-138 Limitation of Logic nalysis on a Man-in-the-middle ttack + Shiping Yang, Xiang Li Computer Software

More information

Overview. Cryptographic key infrastructure Certificates. May 13, 2004 ECS 235 Slide #1. Notation

Overview. Cryptographic key infrastructure Certificates. May 13, 2004 ECS 235 Slide #1. Notation Overview Key exchange Session vs. interchange keys Classical, public key methods Key generation Cryptographic key infrastructure Certificates Key storage Key escrow Key revocation Digital signatures May

More information

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class

1.264 Lecture 27. Security protocols Symmetric cryptography. Next class: Anderson chapter 10. Exercise due after class 1.264 Lecture 27 Security protocols Symmetric cryptography Next class: Anderson chapter 10. Exercise due after class 1 Exercise: hotel keys What is the protocol? What attacks are possible? Copy Cut and

More information

Efficient Construction of Machine-Checked Symbolic Protocol Security Proofs

Efficient Construction of Machine-Checked Symbolic Protocol Security Proofs Efficient Construction of Machine-Checked Symbolic Protocol Security Proofs Simon Meier, Cas Cremers, David Basin Institute of Information Security, ETH Zurich, Switzerland Email: {simon.meier, cas.cremers,

More information

Network Security - ISA 656 IPsec IPsec Key Management (IKE)

Network Security - ISA 656 IPsec IPsec Key Management (IKE) Network Security - ISA 656 IPsec IPsec (IKE) Angelos Stavrou September 28, 2008 What is IPsec, and Why? What is IPsec, and Why? History IPsec Structure Packet Layout Header (AH) AH Layout Encapsulating

More information