TPF Communications - TCP/IP Enhancements

Size: px
Start display at page:

Download "TPF Communications - TCP/IP Enhancements"

Transcription

1 TPF Communications - TCP/IP Enhancements Jamie Farmer

2 TPF TCP/IP Enhancements 7 New TCP/IP Enhancements All native stack enhancements 4 of the enhancements are TPF Users Group Requirements 3 enhancements are other customer requirements

3 Traffic Limiting : PJ28901

4 Traffic Limiting - Background Connection Limiting PUT 17 APAR PJ28493 Limits the number of active connections for a given application Connection Limiting Limitations Only works for TCP sockets Controls connections only, not traffic rates.

5 Traffic Limiting Limits the amount of inbound traffic for a specific TPF server application Traffic Limiting works for TCP and UDP sockets Works as a resource manager Improves intrusion detection services (IDS) One application cannot use all the resources in the system Statistical information about traffic limits is kept and can be displayed online.

6 Traffic Limiting Options Two traffic limiting options Can limit the amount of traffic for the entire application Can limit the amount of traffic for each socket created for a given server (TCP only) Both can be done together for an application No application programming changes needed When application is over the traffic limit, system will slow the rate of data presented to the application. Works for all read type APIs read(), recv(), recvfrom(), activate_on_receipt(), etc.

7 Traffic Limiting Implementation PUT 16 : TPF delivered the network services database (NSD), APAR PJ28195 Original NSD extended the /etc/services file to support other quality of service (QoS) functions. Ability to define traffic limits for servers defined in the NSD using new parameters APPLRATE Msg/sec limit of inbound traffic for all sockets connected to this server application SOCRATE Msg/sec limit of inbound traffic for each socket connected to this TCP server application Defaults to unlimited when parameters are not coded

8 Sample /etc/services file smtp 25/tcp weight-100 socrate-20 applrate-100 #Mail ftp 21/tcp tos-34 weight-100 maxconnin-5 dns 53/udp weight-100 applrate-50 #DNS tftp 69/udp weight-100 #Trivial File Transfer http 80/tcp weight-100 applrate-100 #World Wide Web pop3 110/tcp weight-100 #Post Office Protocol - Version 3 imap 143/tcp weight-100 #Internet Message Access Protocol snmp 161/udp weight-100 #SNMP snmp-trap 162/udp weight-100 #SNMP trap matipa 350/tcp weight-100 #MATIP Type A matipb 351/tcp weight-100 #MATIP Type B https 443/tcp weight-100 #Secure HTTP rip 520/udp weight-100 #RIP mq 1414/tcp weight-100 #MQ ipbridge 9500/tcp weight-100 socrate-50 #IPBRIDGE tpfar 446/tcp weight-100 maxconnout-50 #TPFAR userappl 9999/tcp weight-100 maxconnin-5 maxconnout-10 #APPL

9 Exceeding the Traffic Limit on TPF Transparent to the application that it has reached a traffic limit. If data arrives for a socket and the application is over its traffic limit, TPF will not present the data to the application until the current 1-second interval expires. For TCP Sockets TCP windowing slows the rate so no data is lost. For UDP sockets If read buffer for the socket fills, system will throw away any new messages received for that socket. Nothing new, UDP works like this today.

10 Read Type API issued with Socket Over the Traffic Limit Socket in nonblocking mode Returns to the application with SOCWOULDBLOCK (no change from today) Socket in blocking mode read(), recv(), recvfrom() ECB is suspended until current 1-second interval elapsed activate_on_receipt (AOR) Return to application immediately when AOR is issued (No Change) Specified application program activated in new ECB after current 1-second interval expires Delays can be longer than 1 second if message arrival rate is more than double the APPLRATE limit.

11 Online Display of Network Services Database : PJ28901

12 Original Network Services Database (NSD) Support For PUT 16, TPF delivered the network services database (PJ28195) Database defining the characteristics of server applications Defined in the /etc/services file Gathers information on an application basis Original NSD counted messages by application for use by data collection

13 Online Display of the Network Services Database Displays all information defined in /etc/services Displays message rates for a given application (similar to data collection) Displays connection limiting statistical information Displays traffic limiting statistical information Displays TCP backlog statistical information

14 Online Display of /etc/services File ZIPDB DISPLAY ALL IPDB0003I 10:24:05 NSD DISPLAY APPLICATION PORT PROTOCOL WEIGHT TOS APPLRATE SOCRATE FARES TCP MQ 1414 TCP TPFAR 5005 TCP FREQFLY 6782 UDP END OF DISPLAY

15 Online Display of Individual Applications User:ZIPDB DISPLAY NAME-TEST System:IPDB0003I 10:02:14 NETWORK SERVICES DATABASE DISPLAY NSD Parameters Traffic Limiting Info Connection Limiting Info TCP Backlog Info NAME - TEST PORT PROTOCOL - TCP WEIGHT TOS - 0 SOCRATE - 50 DEFINED APPLRATE LIMIT 300 CURRENT APPL MESSAGE RATE 123 HIGHEST APPL MESSAGE RATE 222 NUMBER TIMES LIMIT EXCEEDED 0 CONNECTIONS INBOUND OUTBOUND DEFINED LIMIT 100 NONE CURRENT VALUE 5 2 HIGHEST VALUE NUMBER REJECTED 0 0 IP - ANY BACKLOG DEFINED 5 CURRENT BACKLOG 1 HIGHEST BACKLOG 3 CONNECTIONS REJECTED 0

16 Online Display of Message Counts by Application ZIPDB MESSAGES ALL IPDB0004I 10:24:05 BEGIN PROCESSING MESSAGE RATES IPDB0005I 10:24:10 MESSAGE RATES FOR A 5-SECOND INTERVAL INPUT INPUT INPUT OUTPUT OUTPUT OUTPUT APP NAME PORT MSG/SEC PKT/SEC BYTES/SEC MSG/SEC PKT/SEC BYTES/SEC FTP-DATA FTP-CTL TFTP RIP PROGA OTHER TOTAL END OF DISPLAY

17 New API to Read a Complete TCP Message : PJ29118

18 Reading TCP Message TCP architecture has no concept of a message Application data usually contains a header in front of the message containing the length of the message At least two reads for each message One or more reads for the length One or more reads for the message For AOR, multiple ECBs may be created for one message This has been a common cause of error in application programming 4-Byte Header: A read for 4 bytes does not guarantee that 4 bytes will be received.

19 New API to Read a Complete TCP Message Two new APIs created tpf_read_tcp_message - Reads an entire TCP message activate_on_receipt_of_tcp_message - Reads in an entire message using AOR. Performance Improvement Less APIs an application must issue (less dispatching of ECB's) Less ECB creation when using AOR Makes application programming easier Makes converting LU 6.2 applications to TCP/IP easier LU 6.2 has structured data, can replace LU 6.2 read API with the new TCP read message API

20 How Does the Read Message API Work? The format of the message being received is passed to the API Where the message length field within the header resides The message length field does not have to be at the start of the header The system will get the size of the message and read the entire message before passing it to the application The entire message, including the header is passed to the application Partial messages are never passed to the application

21 Example of the read message API Sample Application Message Format TYPE LEN ID MESSAGE 4 bytes 2 bytes 2 bytes Two new parameters on the read message API Offset of Length Field: 4 Length of the length field: 2

22 Comparison to read message API Sample Application Message Format TYPE LEN 10,000 bytes ID Data: 9,992 4 bytes 2 bytes 2 bytes Using traditional socket APIs 1. Set the socket low-water mark to 8 to read the header 2. Issue a read type API for a size of 8 3. Parse the header to determine the length of the entire message 4. Set the socket low water mark to 10,000 bytes to read the message 5. Issue a read type API for a size of 10,000 bytes All of this logic can be replaced with a single TCP read message API

23 Separate TCP Keepalive Timer : PJ28996

24 What is Keepalive? TCP is a connectionless protocol In SNA, if remote node fails, TPF would be notified In TCP, if TPF is waiting for data and the remote fails No way to know the remote is no longer available In this case, the socket can use the keepalive option to send keepalive messages to the remote. Heartbeat messages that determine if remote node is still active.

25 The Keepalive Timer The TCP architecture states that the time-frame between keepalive messages should be set at 2 hours For most platforms, this is not a reasonable time to wait before determining the remote is unavailable User-settable option created on most platforms

26 TPF's Original Keepalive Timer Originally, TPF's keepalive processing was kicked off via the socket sweeper. SOCKSWP parameter of SNAKEY Sweeper is kicked off in increments of minutes Each time the sweeper is kicked off, keepalive messages will be sent for all idle TCP sockets with the setsockopt() option SO_KEEPALIVE set. In some cases waiting for minutes to send out keepalive messages is too long also.

27 TPF's New Keepalive Timer New TPF Keepalive Timer TCPALIVE parameter of SNAKEY Value is in increments of seconds Keepalive processing is no longer performed by the socket sweeper If the TCPALIVE parameter is not specified, it defaults to: Value of SOCKSWP converted to seconds TCPALIVE = (Value of the SOCKSWP parameter) * 60

28 Display of Sockets Using Most IPMT Resources : PJ28997

29 Displaying Heavy IPMT Users IP Message Table (IPMT) is a common pool of storage used by all sockets Running low on IPMT blocks causes problems for all sockets. Currently have a display of how much IPMT storage is in use (ZTTCP DISPLAY STATS) Displays the high-water mark Where are most of the IPMT Blocks? Which sockets are using the most?

30 New IPMT Usage Display Display shows the top x number of sockets that are using the most IPMT resources Includes the total number of IPMT blocks used Number of input IPMT blocks Number of output IPMT blocks Whether the socket is blocked from sending any output messages Display can be used to find troubled sockets and free up IPMT resources

31 Example of ZSOCK IPMT ZSOCK IPMT TOP-5 CSMP0097I CPU-B SS-BSS SSU-HPN IS-01 SOCK0033I BEGIN IPMT USAGE DISPLAY SEND RANK FD BLOCKS INPUT OUTPUT BLOCKED C YES 2 00C YES 3 00C NO 4 00C NO 5 00C02DD NO END OF DISPLAY

32 Problem determination of sockets using IPMT Determine if any data is flowing on the socket ZSOCK DATAFLOW SOCK-C00020 CSMP0097I CPU-B SS-BSS SSU-HPN IS-01 SOCK0024I BEGIN PROCESSING SOCKET DATAFLOW STATISTICS CSMP0097I CPU-B SS-BSS SSU-HPN IS-01 SOCK0025I SOCKET DATAFLOW STATISTICS FOR A 5-SECOND INTERVAL SOCKET DESCRIPTOR-C00020 BYTES SENT - 0 BYTES RECEIVED - 0 END OF ZSOCK DATAFLOW SOCKET DISPLAY No data is flowing, deactivate stalled socket ZSOCK INACT SOCK-C00020 CSMP0097I CPU-B SS-BSS SSU-HPN IS-01 SOCK0016I SOCKET 00C00020 IS NOW INACTIVE

33 Congestion Control and Avoidance : PJ29144

34 Congestion Control and Avoidance RFC 2001 followed by RFC 2581 define ideas for doing congestion control for TCP sockets. Congestion control is done on a socket basis to reduce the amount of congestion in the network Original congestion control algorithms have weaknesses, causing many platforms to design variations of these algorithms Short-lived connections are slowed considerably by congestion control

35 TPF's Implementation of Congestion Control and Avoidance Followed RFC 2581, which defines the concepts TPF modified algorithms to make them more efficient. Implemented a Congestion Control algorithm When TPF determines packets are lost, congestion is likely, so reduce the data rate Implemented a Congestion Avoidance algorithm When TPF detects that congestion is about to occur, reduce the data rate before packets are lost Combination of the two algorithms dramatically improves end to end throughput

36 Slow Start Algorithm Congestion control uses the slow start algorithm to slowly ramp up traffic. Slow start processing may impact performance for short-lived connections. TPF implementation gives user's the ability to turn off initial slow start processing for a given socket. Issue the ioctl() API specifying the TPF_NOSLOWSTART parameter If congestion occurs (packets are lost), slow start will be done for the socket. Regardless of TPF_NOSLOWSTART value

37 Congestion Avoidance Source-based congestion avoidance algorithm TPF will monitor round-trip times (RTT) for the socket If the RTT continues to increase for the socket TPF will adjust the amount of data that can be sent to avoid congestion.

38 Congestion Control and Avoidance Test Environment TPF System OSA TPF System OSA GbE Switch GbE Switch Data Flow Router Router Network Cloud

39 Comparison Testing Congestion Control and Avoidance One TPF system sending 10,000 messages to another TPF system 1400-byte messages Each TPF system running with 1 I-stream Without Congestion Control or Avoidance WithCongestion, without Avoidance With Congestion Control and Avoidance Time to Completion 156 sec 53 sec 45 sec Retransmits

40 Summary Traffic Limiting: PJ28901 Online Display of the Network Sevices Database: PJ28901 Online display of message rates by application Connection and traffic limiting statistical information Online Display of TCP backlog information: PJ28901 New API to read a complete TCP message: PJ29118 Separate TCP keepalive timer: PJ28996 Display of sockets using the most IPMT resources: PJ28997 Congestion Control and Avoidance: PJ29144

TPF 4.1 Communications - TCP/IP Enhancements

TPF 4.1 Communications - TCP/IP Enhancements TPF Users Group Grapevine, Texas IBM Software Group TPF 4.1 Communications - TCP/IP Enhancements Jamie Farmer October 2004 AIM Core and Enterprise Solutions IBM z/transaction Processing Facility Enterprise

More information

TCP/IP Native Stack Roadmap for TPF 4.1

TCP/IP Native Stack Roadmap for TPF 4.1 TCP/IP Native Stack Roadmap for TPF 4.1 Mark Gambino It Came from the 80's TCP/IP has become the most prevalent networking protocol The IP and TCP architectures were developed many years ago: Request for

More information

Name : Mark Gambino Venue : Communications Subcommittee

Name : Mark Gambino Venue : Communications Subcommittee z/tpf EE V1.1 z/tpfdf V1.1 TPF Toolkit for WebSphere Studio V3 TPF Operations Server V1.2 IBM Software Group TPF Users Group Spring 2006 TCP/IP Enhancements Name : Mark Gambino Venue : Communications Subcommittee

More information

z/tpf Communications Enhancements

z/tpf Communications Enhancements TPF Users Group Fall 2007 z/tpf Communications Enhancements Name: Mark Gambino Venue: Communications Subcommittee Overview This presentation covers recent z/tpf communications enhancements All APARs listed

More information

Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 3-1 The Transport Layer Provides efficient and robust end-to-end

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - B COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - A COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1

6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6. Transport Layer 6.1 Internet Transport Layer Architecture 6.2 UDP (User Datagram Protocol) 6.3 TCP (Transmission Control Protocol) 6. Transport Layer 6-1 6.1 Internet Transport Layer Architecture The

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

z/tpf OpenSSL Support Dan Yee IBM Software Engineer August 10, 2016

z/tpf OpenSSL Support Dan Yee IBM Software Engineer August 10, 2016 z/tpf OpenSSL Support Dan Yee IBM Software Engineer August 10, 2016 1 Disclaimer Any reference to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion.

More information

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24 Lecture 20 Overview Last Lecture Transport Control Protocol (1) This Lecture Transport Control Protocol (2) Source: chapters 23, 24 Next Lecture Internet Applications Source: chapter 26 COSC244 & TELE202

More information

TCP/IP Performance ITL

TCP/IP Performance ITL TCP/IP Performance ITL Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25, HDLC etc. ATM 4/30/2002 Hans Kruse & Shawn Ostermann,

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 1b: The Transport Layer in the Internet January 17, 2006 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu 01/17/06

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

Transport Protocols and TCP

Transport Protocols and TCP Transport Protocols and TCP Functions Connection establishment and termination Breaking message into packets Error recovery ARQ Flow control Multiplexing, de-multiplexing Transport service is end to end

More information

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer

Internet Applications and the Application Layer Material from Kurose and Ross, Chapter 2: The Application Layer Midterm Study Sheet Below is a list of topics that will be covered on the midterm exam. Some topics may have summaries to clarify the coverage of the topic during the lecture. Disclaimer: the list may

More information

Managing Caching Performance and Differentiated Services

Managing Caching Performance and Differentiated Services CHAPTER 10 Managing Caching Performance and Differentiated Services This chapter explains how to configure TCP stack parameters for increased performance ant throughput and how to configure Type of Service

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

Department of Computer and IT Engineering University of Kurdistan. Transport Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Transport Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Transport Layer By: Dr. Alireza Abdollahpouri TCP/IP protocol suite 2 Transport Layer The transport layer is responsible for process-to-process

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Transport Layer TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why a transport layer? IP gives us end-to-end connectivity doesn't it? Why, or why not, more

More information

CNT 6885 Network Review on Transport Layer

CNT 6885 Network Review on Transport Layer CNT 6885 Network Review on Transport Layer Jonathan Kavalan, Ph.D. Department of Computer, Information Science and Engineering (CISE), University of Florida User Datagram Protocol [RFC 768] no frills,

More information

CMPE 150 Winter 2009

CMPE 150 Winter 2009 CMPE 150 Winter 2009 Lecture 16 March 3, 2009 P.E. Mantey CMPE 150 -- Introduction to Computer Networks Instructor: Patrick Mantey mantey@soe.ucsc.edu http://www.soe.ucsc.edu/~mantey/ / t / Office: Engr.

More information

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects

Internet. 1) Internet basic technology (overview) 3) Quality of Service (QoS) aspects Internet 1) Internet basic technology (overview) 2) Mobility aspects 3) Quality of Service (QoS) aspects Relevant information: these slides (overview) course textbook (Part H) www.ietf.org (details) IP

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016

TRANSMISSION CONTROL PROTOCOL. ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 TRANSMISSION CONTROL PROTOCOL ETI 2506 TELECOMMUNICATION SYSTEMS Monday, 7 November 2016 ETI 2506 - TELECOMMUNICATION SYLLABUS Principles of Telecom (IP Telephony and IP TV) - Key Issues to remember 1.

More information

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP)

Connectionless and Connection-Oriented Protocols OSI Layer 4 Common feature: Multiplexing Using. The Transmission Control Protocol (TCP) Lecture (07) OSI layer 4 protocols TCP/UDP protocols By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU Fall2014, Computer Networks II Introduction Most data-link protocols notice errors then discard frames

More information

Lecture 13: Transportation layer

Lecture 13: Transportation layer Lecture 13: Transportation layer Contents Goals of transportation layer UDP TCP Port vs. Socket QoS AE4B33OSS Lecture 12 / Page 2 Goals of transportation layer End-to-end communication Distinguish different

More information

TCP/IP Networking. Part 4: Network and Transport Layer Protocols

TCP/IP Networking. Part 4: Network and Transport Layer Protocols TCP/IP Networking Part 4: Network and Transport Layer Protocols Orientation Application Application protocol Application TCP TCP protocol TCP IP IP protocol IP IP protocol IP IP protocol IP Network Access

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

BEng. (Hons) Telecommunications. Examinations for / Semester 2

BEng. (Hons) Telecommunications. Examinations for / Semester 2 BEng. (Hons) Telecommunications Cohort: BTEL/16B/FT Examinations for 2016 2017 / Semester 2 Resit Examinations for BTEL/15B/FT MODULE: NETWORKS MODULE CODE: CAN 1102C Duration: 2 ½ hours Instructions to

More information

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers

CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers CCNA 1 v3.11 Module 11 TCP/IP Transport and Application Layers 2007, Jae-sul Lee. All rights reserved. 1 Agenda 11.1 TCP/IP Transport Layer 11.2 The Application Layer What does the TCP/IP transport layer

More information

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals

Transport Layer Protocols. Internet Transport Layer. Agenda. TCP Fundamentals Transport Layer Protocols Application SMTP HTTP FTP Telnet DNS BootP DHCP ( M I M E ) Presentation Session SNMP TFTP Internet Transport Layer TCP Fundamentals, TCP Performance Aspects, UDP (User Datagram

More information

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015

Paper solution Subject: Computer Networks (TE Computer pattern) Marks : 30 Date: 5/2/2015 Paper solution Subject: Computer Networks (TE Computer- 2012 pattern) Marks : 30 Date: 5/2/2015 Q1 a) What is difference between persistent and non persistent HTTP? Also Explain HTTP message format. [6]

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

OSA-Express Support for TPF

OSA-Express Support for TPF 6XEFRPPLWWHH OSA-Express Support for TPF Mark Gambino Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such

More information

Lecture (11) OSI layer 4 protocols TCP/UDP protocols

Lecture (11) OSI layer 4 protocols TCP/UDP protocols Lecture (11) OSI layer 4 protocols TCP/UDP protocols Dr. Ahmed M. ElShafee ١ Agenda Introduction Typical Features of OSI Layer 4 Connectionless and Connection Oriented Protocols OSI Layer 4 Common feature:

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 13, 2011 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2011-75 minutes This examination

More information

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL

Just enough TCP/IP. Protocol Overview. Connection Types in TCP/IP. Control Mechanisms. Borrowed from my ITS475/575 class the ITL Just enough TCP/IP Borrowed from my ITS475/575 class the ITL 1 Protocol Overview E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP RTP RTCP SCTP IP ICMP ARP RARP (Auxiliary Services) Ethernet, X.25,

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Transport Protocols. Raj Jain. Washington University in St. Louis

Transport Protocols. Raj Jain. Washington University in St. Louis Transport Protocols Raj Jain Washington University Saint Louis, MO 63131 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 16-1 Overview q TCP q Key features

More information

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F.

CSEN 503 Introduction to Communication Networks. Mervat AbuElkheir Hana Medhat Ayman Dayf. ** Slides are attributed to J. F. CSEN 503 Introduction to Communication Networks Mervat AbuElkheir Hana Medhat Ayman Dayf ** Slides are attributed to J. F. Kurose Chapter 3 outline Transport-layer services Multiplexing and demultiplexing

More information

9th Slide Set Computer Networks

9th Slide Set Computer Networks Prof. Dr. Christian Baun 9th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 9th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

Transport Layer TCP & UDP Week 7. Module : Computer Networks Lecturers : Lucy White Office : 324

Transport Layer TCP & UDP Week 7. Module : Computer Networks Lecturers : Lucy White Office : 324 Transport Layer TCP & UDP Week 7 Module : Computer Networks Lecturers : Lucy White lbwhite@wit.ie Office : 324 1 Purpose of the Transport Layer The Transport layer provides for the segmentation of data

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach

Chapter 2 Application Layer. Lecture 4: principles of network applications. Computer Networking: A Top Down Approach Chapter 2 Application Layer Lecture 4: principles of network applications Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Application Layer 2-1 Chapter

More information

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E.

UNIX Sockets. Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. UNIX Sockets Developed for the Azera Group By: Joseph D. Fournier B.Sc.E.E., M.Sc.E.E. Socket and Process Communication application layer User Process Socket transport layer (TCP/UDP) network layer (IP)

More information

Configuring Cisco IOS IP SLAs Operations

Configuring Cisco IOS IP SLAs Operations CHAPTER 50 This chapter describes how to use Cisco IOS IP Service Level Agreements (SLAs) on the switch. Cisco IP SLAs is a part of Cisco IOS software that allows Cisco customers to analyze IP service

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich

Operating Systems and Networks. Network Lecture 8: Transport Layer. Adrian Perrig Network Security Group ETH Zürich Operating Systems and Networks Network Lecture 8: Transport Layer Adrian Perrig Network Security Group ETH Zürich I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it

More information

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services.

Operating Systems and Networks. Network Lecture 8: Transport Layer. Where we are in the Course. Recall. Transport Layer Services. Operating Systems and s Lecture 8: Transport Layer I was going to tell you a joke about UDP, but I wasn t sure if you were going to get it Adrian Perrig Security Group ETH Zürich 2 Where we are in the

More information

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim

TCP Performance. EE 122: Intro to Communication Networks. Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim TCP Performance EE 122: Intro to Communication Networks Fall 2006 (MW 4-5:30 in Donner 155) Vern Paxson TAs: Dilip Antony Joseph and Sukun Kim http://inst.eecs.berkeley.edu/~ee122/ Materials with thanks

More information

Configuring Cisco IOS IP SLA Operations

Configuring Cisco IOS IP SLA Operations CHAPTER 58 This chapter describes how to use Cisco IOS IP Service Level Agreements (SLA) on the switch. Cisco IP SLA is a part of Cisco IOS software that allows Cisco customers to analyze IP service levels

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page:

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page: CSE 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data

UDP and TCP. Introduction. So far we have studied some data link layer protocols such as PPP which are responsible for getting data ELEX 4550 : Wide Area Networks 2015 Winter Session UDP and TCP is lecture describes the two most common transport-layer protocols used by IP networks: the User Datagram Protocol (UDP) and the Transmission

More information

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing

CS519: Computer Networks. Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing : Computer Networks Lecture 5, Part 1: Mar 3, 2004 Transport: UDP/TCP demux and flow control / sequencing Recall our protocol layers... ... and our protocol graph IP gets the packet to the host Really

More information

Avi Networks Technical Reference (16.3)

Avi Networks Technical Reference (16.3) Page 1 of 7 view online A TCP/UDP profile determines the type and settings of the network protocol that a subscribing virtual service will use. It sets a number of parameters, such as whether the virtual

More information

Different Layers Lecture 21

Different Layers Lecture 21 Different Layers Lecture 21 10/17/2003 Jian Ren 1 The Transport Layer 10/17/2003 Jian Ren 2 Transport Services and Protocols Provide logical communication between app processes running on different hosts

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CSE 4213: Computer Networks II

CSE 4213: Computer Networks II Next CSE 4213: Computer Networks II The layer Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/4213 These slides are adapted

More information

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service

Page 1. Review: Internet Protocol Stack. Transport Layer Services EEC173B/ECS152C. Review: TCP. Transport Layer: Connectionless Service EEC7B/ECS5C Review: Internet Protocol Stack Review: TCP Application Telnet FTP HTTP Transport Network Link Physical bits on wire TCP LAN IP UDP Packet radio Do you remember the various mechanisms we have

More information

Z/TPF TCP/IP SOCK Driver 12/14/10. z/tpf TCP/IP SOCKET Driver Users Guide. Copyright IBM Corp. 2010

Z/TPF TCP/IP SOCK Driver 12/14/10. z/tpf TCP/IP SOCKET Driver Users Guide. Copyright IBM Corp. 2010 z/tpf TCP/IP SOCKET Driver Users Guide Copyright IBM Corp. 2010 1. 1.0 Introduction Z/TPF TCP/IP SOCK Driver 12/14/10 The socket driver consists of multiple DLMs that issue TCP/IP API calls to send and

More information

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao

EEC-484/584 Computer Networks. Lecture 16. Wenbing Zhao EEC-484/584 Computer Networks Lecture 16 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review Services provided by transport layer

More information

SIP System Features. SIP Timer Values. Rules for Configuring the SIP Timers CHAPTER

SIP System Features. SIP Timer Values. Rules for Configuring the SIP Timers CHAPTER CHAPTER 4 Revised: October 30, 2012, This chapter describes features that apply to all SIP system operations. It includes the following topics: SIP Timer Values, page 4-1 Limitations on Number of URLs,

More information

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol)

Transport Layer. -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) Transport Layer -UDP (User Datagram Protocol) -TCP (Transport Control Protocol) 1 Transport Services The transport layer has the duty to set up logical connections between two applications running on remote

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

Chapter 3- parte B outline

Chapter 3- parte B outline Chapter 3- parte B outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport:

More information

Introduction to Open System Interconnection Reference Model

Introduction to Open System Interconnection Reference Model Chapter 5 Introduction to OSI Reference Model 1 Chapter 5 Introduction to Open System Interconnection Reference Model Introduction The Open Systems Interconnection (OSI) model is a reference tool for understanding

More information

Lecture 8. TCP/IP Transport Layer (2)

Lecture 8. TCP/IP Transport Layer (2) Lecture 8 TCP/IP Transport Layer (2) Outline (Transport Layer) Principles behind transport layer services: multiplexing/demultiplexing principles of reliable data transfer learn about transport layer protocols

More information

Protocol Overview. TCP/IP Performance. Connection Types in TCP/IP. Resource Management. Router Queues. Control Mechanisms ITL

Protocol Overview. TCP/IP Performance. Connection Types in TCP/IP. Resource Management. Router Queues. Control Mechanisms ITL Protocol Overview TCP/IP Performance E-Mail HTTP (WWW) Remote Login File Transfer TCP UDP ITL IP ICMP ARP RARP (Auxiliary Services) ATM Ethernet, X.25, HDLC etc. 2/13/06 Hans Kruse & Shawn Ostermann, Ohio

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

UNIT 2 TRANSPORT LAYER

UNIT 2 TRANSPORT LAYER Network, Transport and Application UNIT 2 TRANSPORT LAYER Structure Page No. 2.0 Introduction 34 2.1 Objective 34 2.2 Addressing 35 2.3 Reliable delivery 35 2.4 Flow control 38 2.5 Connection Management

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

Chapter 6. The Transport Layer. The Transport Service. Services Provided to the Upper Layers. Transport Service Primitives (3) 10/7/2010

Chapter 6. The Transport Layer. The Transport Service. Services Provided to the Upper Layers. Transport Service Primitives (3) 10/7/2010 The Transport Service Chapter 6 The Transport Layer Services Provided to the Upper Layers Transport Service Primitives Berkeley Sockets An Example of Socket Programming: An Internet File Server Services

More information

Chapter III: Transport Layer

Chapter III: Transport Layer Chapter III: Transport Layer UG3 Computer Communications & Networks (COMN) Mahesh Marina mahesh@ed.ac.uk Slides thanks to Myungjin Lee and copyright of Kurose and Ross Principles of congestion control

More information

Objectives. Chapter 10. Upon completion you will be able to:

Objectives. Chapter 10. Upon completion you will be able to: Chapter 10 Figure 10.1 Position of IGMP in the network layer Objectives Upon completion you will be able to: Know the purpose of IGMP Know the types of IGMP messages Understand how a member joins a group

More information

Internetworking Models The OSI Reference Model

Internetworking Models The OSI Reference Model Internetworking Models When networks first came into being, computers could typically communicate only with computers from the same manufacturer. In the late 1970s, the Open Systems Interconnection (OSI)

More information

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control

Chapter 3 outline. 3.5 Connection-oriented transport: TCP. 3.6 Principles of congestion control 3.7 TCP congestion control Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented transport: TCP segment

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

Introduction to Protocols

Introduction to Protocols Chapter 6 Introduction to Protocols 1 Chapter 6 Introduction to Protocols What is a Network Protocol? A protocol is a set of rules that governs the communications between computers on a network. These

More information

8. TCP Congestion Control

8. TCP Congestion Control 8. TCP Congestion Control 1 TCP Congestion Control Slow-start increase Multiplicative decrease Congestion avoidance Measurement of variation Exponential timer backoff 2002 Yanghee Choi 2 Congestion Control

More information

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: "Internet of Things ", Raj Kamal, Publs.: McGraw-Hill Education

Lesson 5 TCP/IP suite, TCP and UDP Protocols. Chapter-4 L05: Internet of Things , Raj Kamal, Publs.: McGraw-Hill Education Lesson 5 TCP/IP suite, TCP and UDP Protocols 1 TCP/IP Suite: Application layer protocols TCP/IP Suite set of protocols with layers for the Internet TCP/IP communication 5 layers: L7, L4, L3, L2 and L1

More information

OER uses the following default value if this command is not configured or if the no form of this command is entered: timer: 300

OER uses the following default value if this command is not configured or if the no form of this command is entered: timer: 300 holddown holddown To configure the Optimized Edge Routing (OER) prefix route dampening timer to set the minimum period of time that a new exit must be used before an alternate exit can be selected, use

More information

CSCI-GA Operating Systems. Networking. Hubertus Franke

CSCI-GA Operating Systems. Networking. Hubertus Franke CSCI-GA.2250-001 Operating Systems Networking Hubertus Franke frankeh@cs.nyu.edu Source: Ganesh Sittampalam NYU TCP/IP protocol family IP : Internet Protocol UDP : User Datagram Protocol RTP, traceroute

More information

Appendix B Policies and Filters

Appendix B Policies and Filters Appendix B Policies and Filters NOTE: This appendix does not describe Access Control Lists (ACLs) or IPX SAP ACLs, which are additional methods for filtering packets. See Software-Based IP Access Control

More information

SIP System Features. Differentiated Services Codepoint CHAPTER

SIP System Features. Differentiated Services Codepoint CHAPTER CHAPTER 6 Revised: December 30 2007, This chapter describes features that apply to all SIP system operations. It includes the following topics: Differentiated Services Codepoint section on page 6-1 Limitations

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

Da t e: August 2 0 th a t 9: :00 SOLUTIONS

Da t e: August 2 0 th a t 9: :00 SOLUTIONS Interne t working, Examina tion 2G1 3 0 5 Da t e: August 2 0 th 2 0 0 3 a t 9: 0 0 1 3:00 SOLUTIONS 1. General (5p) a) Place each of the following protocols in the correct TCP/IP layer (Application, Transport,

More information

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Transport Layer. Network Fundamentals Chapter 4. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Transport Layer Network Fundamentals Chapter 4 Version 4.0 1 Transport Layer Role and Services Transport layer is responsible for overall end-to-end transfer of application data 2 Transport Layer Role

More information

TPF TCP/IP Load Balancing

TPF TCP/IP Load Balancing 6XEFRPPLWWHH TPF TCP/IP Load Balancing Mark Gambino Any references to future plans are for planning purposes only. IBM reserves the right to change those plans at its discretion. Any reliance on such a

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 8 Announcements Plan for Today: Networks: TCP Firewalls Midterm 1: One week from Today! 2/17/2009 In class, short answer, multiple choice,

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Outline Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 RFC? Transport layer introduction UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 The Transport Layer Transport layer

More information

Chapter 2. Communicating Over The Network. CCNA1-1 Chapter 2

Chapter 2. Communicating Over The Network. CCNA1-1 Chapter 2 Chapter 2 Communicating Over The Network CCNA1-1 Chapter 2 Communicating Over the Network The Platform for Communications CCNA1-2 Chapter 2 Elements of Communication People communicate in many different

More information

Managing Linux for Control and Performance

Managing Linux for Control and Performance IBM Software Group Tivoli Software Managing Linux for Control and Performance Laura Knapp ljknapp@us.ibm.com 2005 IBM Corporation Agenda Introduction and background Performance Methodologies 6 Common Problems

More information

CSC 4900 Computer Networks: TCP

CSC 4900 Computer Networks: TCP CSC 4900 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information