Compact Dual Block AES core on FPGA for CCM Protocol

Size: px
Start display at page:

Download "Compact Dual Block AES core on FPGA for CCM Protocol"

Transcription

1 Compact Dual Block AES core on FPGA for CCM Protocol João Carlos C. Resende Ricardo Chaves 1 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

2 Outline Introduction & Motivation Digital Security Today The AES Block Cipher The CCMP Encryption mode State of the Art in AES implementations on FPGA Proposed Architecture: Description and Implementation Combining Solutions Improved Solution Result Analysis Resource requirements and performance Comparison with related State of the Art Conclusions 2 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

3 Digital Security Today Encryption Authentication Integrity Non-repudiation 3 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

4 Digital Security Today Encryption Authentication Ciphers Hash functions Higher Lvl Protocols Integrity Non-repudiation 4 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

5 Digital Security Today Encryption Authentication Ciphers Hash functions Higher Lvl Protocols Ciphers + Hash 2 cores Integrity Non-repudiation 5 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

6 Digital Security Today Encryption Authentication Ciphers Hash functions Higher Lvl Protocols Ciphers + Hash 2 cores Integrity Non-repudiation Ciphers + Cipher Modes CCM GCM 6 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

7 Digital Security Today (AES-CCM) Cipher Modes (more easily embeddable & efficient) It specifies the order in which blocks are encryption AES-CCM most common: Advanced Encryption Standard Counter with CBC-MAC 7 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

8 Digital Security Today (AES-CCM) Cipher Modes (more easily embeddable & efficient) It specifies the order in which blocks are encryption AES-CCM most common: Advanced Encryption Standard Counter with CBC-MAC Used in: IEEE (WLAN) IEEE (Broadband Wi-Fi) IPSec TLS Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

9 The AES Block Cipher Official NIST standard since 2001 FIPS bit block cipher Logic or Table implementation Shared structure for Enc/Dec Input keys of 128,192 or 256 bits 10, 12 or 14 iterative rounds 9 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

10 The Counter with CBC-MAC Protocol Original submission 2002 RFC 3610 Encryption; Authentication; Integrity for any block cipher Typically AES 10 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

11 The Counter with CBC-MAC Protocol Two stream chains Counter: non-feedback mode Counter tags for each independent Plaintext block CBC-MAC: feedback mode Chainned and dependent Plaintext encryption Cipher s decryption is not required Additional Shared Data for extra security 11 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

12 Outline Introduction & Motivation Digital Security Today The AES Block Cipher The CCMP Encryption mode State of the Art in AES implementations on FPGA Proposed Architecture: Description and Implementation Combining Solutions Improved Solution Result Analysis Resource requirements and performance Comparison with related State of the Art Conclusions 12 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

13 State of the Art in AES implementations on FPGA Chodowiec and Gaj [2003] ShiftRows performed by addressable Shift Register SubBytes performed by BRAM-based S-Boxes MixColumns performed by logic 13 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

14 State of the Art in AES implementations on FPGA Rouvroy et al. [2004] ShiftRows performed by Shift Register SubBytes & MixColumns performed by BRAM-based T-Boxes Extra InvS-Box in BRAM for decryption Embedded Key Scheduler SBOX SBOX SBOX SBOX C O L 1 C O L 2 C O L 3 C O L 4 32b SBOX SBOX SBOX SBOX COL1 COL2 COL3 COL4 32b Matrix TBOX 14 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

15 State of the Art in AES implementations on FPGA Drimer et al. [2010] ShiftRows performed by Logic Shift Register SubBytes & MixColumns by BRAM based T-Boxes XOR operations performed by Cascade of 4 DSPs 8-stage Pipeline for maximum clock frequency 15 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

16 Outline Introduction & Motivation Digital Security Today The AES Block Cipher The CCMP Encryption mode State of the Art in AES implementations on FPGA Proposed Architecture: Description and Implementation Combining Solutions Improved Solution Result Analysis Resource requirements and performance Comparison with related State of the Art Conclusions 16 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

17 Proposed Architecture: Description and Implementation Proposed Structure Combine solutions from State of the Art Improve efficiency through: Removal of DSPs Most use of LUT6 technology Improved Scheduling/Pipelining Minimize Critical Path 17 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

18 Proposed Architecture: Description and Implementation Step-by-step components Initial Whitening Keys 18 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

19 Proposed Architecture: Description and Implementation Step-by-step components Initial Whitening Keys Shift Register for AES x32 bits 19 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

20 Proposed Architecture: Description and Implementation Step-by-step components Initial Whitening Keys Shift Register for AES BRAM based T-Boxes 20 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

21 Proposed Architecture: Description and Implementation Step-by-step components Initial Whitening Keys Shift Register for AES BRAM based T-Boxes AddRoundKey and Feedback 21 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

22 Proposed Architecture: Description and Implementation Step-by-step components Initial Whitening Keys Shift Register for AES BRAM based T-Boxes AddRoundKey and Feedback Output Block Addition // Imediate load of new Block (Counter) 22 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

23 Proposed Architecture: Description and Implementation Scheduling Each block takes 9 cycles to process & re-store. There are 2 blocks = 8 Words (32 bits) 1 dead cycle = 1 register too many 23 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

24 Proposed Architecture: Description and Implementation Scheduling Each block takes 9 cycles to process & re-store. There are 2 blocks = 8 Words (32 bits) 1 dead cycle = 1 register too many Two viable solutions 24 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

25 Proposed Architecture: Description and Implementation Scheduling Each block takes 9 cycles to process & re-store. There are 2 blocks = 8 Words (32 bits) 1 dead cycle = 1 register too many Removal of the SRL ouput register Shorter propagation signal Each block takes 8 cycles to process & re-store. There are 2 blocks = 8 Words (32 bits) 0 dead cycles 25 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

26 Proposed Architecture: Description and Implementation Compact Double Block AES FPGA core. Double Input (Counter or CBC-MAC) Shift Register for Shift Rows BRAM-based TBoxes Output Stage with Final block addition Overlapping Input/Output cycles Critical Path = 1 Logic level + routing Total of 96 LUTs + 2 BRAMs (+32 isolated FFs) 26 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

27 Outline Introduction & Motivation Digital Security Today The AES Block Cipher The CCMP Encryption mode State of the Art in AES implementations on FPGA Proposed Architecture: Description and Implementation Combining Solutions Improved Solution Result Analysis Resource requirements and performance Comparison with related State of the Art Conclusions 27 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

28 Result Analysis State of the Art Comparison (double block) Round Structure Device Resources Throughput Efficiency Slices BRAMs DSPs [Gbps] [Mbps/S] El Maraghy Rolled(128b) V ,327 (2,653) 4,38 (8,75) Chaves Rolled(128b) V ,427 5,96 Bulens Rolled(128b) V ,185 5,46 Drimer Rolled(32b) V , , ,30 V5 70 1,696 24,22 This Work Rolled(32b) V ,555 30,49 S ,575 4,05 Resende Rolled(32b) V ,012 8, V ,955 8,3 Liu Unrolled V ,388 1, V ,107 1,95 de la Piedra Rolled(128b) A ,195 2,44 ECB 633 1,68 Lopez-Trejo w/ CTR Unrolled ,067 1,45 S3 0 MAC ,03 Total 2xUnrolled ,05 0,49 Algredo-Badillo 2xRolled(128b) S ,087 1,04 28 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

29 Result Analysis El Maraghy Chaves Bulens Drimer w/ DSPs Drimer w/o DSPs This Work V5 This Work V6 This Work S3 Resende V5 Resende V Slices Liu V Liu V de la Piedra 80 Lopez-Trejo ECB Lopez-Trejo w/ Lopez-Trejo MAC 1031 Lopez-Trejo Total 2154 Algredo-Badillo Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

30 Result Analysis El Maraghy 26,53 Chaves 24,27 Bulens 21,85 Drimer w/ DSPs 17,6 Drimer w/o DSPs 17,6 This Work V5 16,96 This Work V6 15,55 This Work S3 Resende V5 Resende V6 5,75 10,12 9,55 Slices/100 Throughput [Mbps/100] Liu V5 43,88 Liu V6 61,07 de la Piedra 1,95 Lopez-Trejo ECB 10,67 Lopez-Trejo w/ CTR 10,67 Lopez-Trejo MAC 10,67 Lopez-Trejo Total 10,5 Algredo-Badillo 10,87 30 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

31 Result Analysis El Maraghy 8,75 Chaves Bulens 5,96 5,46 Drimer w/ DSPs 16,45 Drimer w/o DSPs 8,3 This Work V5 24,22 This Work V6 30,49 This Work S3 4,05 Resende V5 Resende V6 8,23 8,3 Efficiency [Mbps/S] Liu V5 Liu V6 de la Piedra Lopez-Trejo ECB Lopez-Trejo w/ CTR Lopez-Trejo MAC Lopez-Trejo Total Algredo-Badillo 1,22 1,95 2,44 1,68 1,45 1,03 0,49 1,04 31 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

32 32-bit Conclusions Compact Double Block AES core on FPGA for CCMP Processing of 2 data streams 51 Slices+3 BRAMs ; 486 MHz ; 1,55 Gbps ; 30,49 Mbps/Slice Improvements (Virtex 5) Smallest 32-bit structure to date Most efficient AES structure in the state of the art Similar Throughput Resources Throughput Efficiency de La Piedra 16xDSPs -12,5% +770% +892% Drimer 4xDSPs -34% -4% +47% Drimer 0xDSPs -67% +177% 128-bit El Maraghy -76% -36% +176% 32 Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

33 Thank you! Questions? Compact Dual Block AES core on FPGA for CCM Protocol João CC Resende & Ricardo Chaves

Compact Dual Block AES core on FPGA for CCM Protocol

Compact Dual Block AES core on FPGA for CCM Protocol Compact Dual Block AES core on FPGA for CCM Protocol João Carlos Resende and Ricardo Chaves Instituto Superior Técnico, Universidade de Lisboa / INESC-ID Rua Alves Redol 9, 1000-029 Lisbon, Portugal joaocresende@tecnico.ulisboa.pt,

More information

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50

Advanced Encryption Standard and Modes of Operation. Foundations of Cryptography - AES pp. 1 / 50 Advanced Encryption Standard and Modes of Operation Foundations of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) is a symmetric cryptographic algorithm AES has been originally requested

More information

Low area implementation of AES ECB on FPGA

Low area implementation of AES ECB on FPGA Total AddRoundkey_3 MixCollumns AddRoundkey_ ShiftRows SubBytes 1 Low area implementation of AES ECB on FPGA Abstract This project aimed to create a low area implementation of the Rajindael cipher (AES)

More information

Implementation and Comparative Analysis of AES as a Stream Cipher

Implementation and Comparative Analysis of AES as a Stream Cipher Implementation and Comparative Analysis of AES as a Stream Cipher Bin ZHOU, Yingning Peng Dept. of Electronic Engineering, Tsinghua University, Beijing, China, 100084 e-mail: zhoubin06@mails.tsinghua.edu.cn

More information

AES as A Stream Cipher

AES as A Stream Cipher > AES as A Stream Cipher < AES as A Stream Cipher Bin ZHOU, Kris Gaj, Department of ECE, George Mason University Abstract This paper presents implementation of advanced encryption standard (AES) as a stream

More information

Lecture 2B. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 2B. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 2B RTL Design Methodology Transition from Pseudocode & Interface to a Corresponding Block Diagram Structure of a Typical Digital Data Inputs Datapath (Execution Unit) Data Outputs System Control

More information

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some

3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some 3 Symmetric Key Cryptography 3.1 Block Ciphers Symmetric key strength analysis Electronic Code Book Mode (ECB) Cipher Block Chaining Mode (CBC) Some popular block ciphers Triple DES Advanced Encryption

More information

A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm

A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm A High-Performance VLSI Architecture for Advanced Encryption Standard (AES) Algorithm N. M. Kosaraju, M. Varanasi & Saraju P. Mohanty VLSI Design and CAD Laboratory Homepage: http://www.vdcl.cse.unt.edu

More information

AES Core Specification. Author: Homer Hsing

AES Core Specification. Author: Homer Hsing AES Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1.1 October 30, 2012 This page has been intentionally left blank. www.opencores.org Rev 0.1.1 ii Revision History Rev. Date Author

More information

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos

ECE596C: Handout #7. Analysis of DES and the AES Standard. Electrical and Computer Engineering, University of Arizona, Loukas Lazos ECE596C: Handout #7 Analysis of DES and the AES Standard Electrical and Computer Engineering, University of Arizona, Loukas Lazos Abstract. In this lecture we analyze the security properties of DES and

More information

Looting the LUTs : FPGA Optimization of AES and AES-like Ciphers for Authenticated Encryption

Looting the LUTs : FPGA Optimization of AES and AES-like Ciphers for Authenticated Encryption Looting the LUTs : FPGA Optimization of AES and AES-like Ciphers for Authenticated Encryption Mustafa Khairallah 1, Anupam Chattopadhyay 1,2, and Thomas Peyrin 1,2 1 School of Physical and Mathematical

More information

Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA

Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 59 Efficient Hardware Realization of Advanced Encryption Standard Algorithm using Virtex-5 FPGA Muhammad

More information

Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl

Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl Sharing Resources Between AES and the SHA-3 Second Round Candidates Fugue and Grøstl Kimmo Järvinen Department of Information and Computer Science Aalto University, School of Science and Technology Espoo,

More information

ECE 646 Lecture 8. Modes of operation of block ciphers

ECE 646 Lecture 8. Modes of operation of block ciphers ECE 646 Lecture 8 Modes of operation of block ciphers Required Reading: I. W. Stallings, "Cryptography and Network-Security," 5 th and 6 th Edition, Chapter 6 Block Cipher Operation II. A. Menezes, P.

More information

Implementation of Full -Parallelism AES Encryption and Decryption

Implementation of Full -Parallelism AES Encryption and Decryption Implementation of Full -Parallelism AES Encryption and Decryption M.Anto Merline M.E-Commuication Systems, ECE Department K.Ramakrishnan College of Engineering-Samayapuram, Trichy. Abstract-Advanced Encryption

More information

Implementation of the AES-128 on Virtex-5 FPGAs

Implementation of the AES-128 on Virtex-5 FPGAs Implementation of the AES-128 on Virtex-5 FPGAs Philippe Bulens 1, François-Xavier Standaert 1, Jean-Jacques Quisquater 1, Pascal Pellegrin 2, Gaël Rouvroy 2 1 UCL Crypto Group, Place du Levant, 3, B-1348

More information

High Performance Single-Chip FPGA Rijndael Algorithm Implementations

High Performance Single-Chip FPGA Rijndael Algorithm Implementations High Performance Single-Chip FPGA Rijndael Algorithm Implementations Máire McLoone and J.V McCanny DSiP TM Laboratories, School of Electrical and Electronic Engineering, The Queen s University of Belfast,

More information

A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box

A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.9, September 2009 305 A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box Muhammad

More information

Security IP-Cores. AES Encryption & decryption RSA Public Key Crypto System H-MAC SHA1 Authentication & Hashing. l e a d i n g t h e w a y

Security IP-Cores. AES Encryption & decryption RSA Public Key Crypto System H-MAC SHA1 Authentication & Hashing. l e a d i n g t h e w a y AES Encryption & decryption RSA Public Key Crypto System H-MAC SHA1 Authentication & Hashing l e a d i n g t h e w a y l e a d i n g t h e w a y Secure your sensitive content, guarantee its integrity and

More information

Efficient Hardware Architecture for the AES-CCM Protocol of the IEEE i Standard

Efficient Hardware Architecture for the AES-CCM Protocol of the IEEE i Standard *Manuscript Click here to view linked References Efficient Hardware Architecture for the AES-CCM Protocol of the IEEE 802.11i Standard Ignacio Algredo-Badillo 1, Claudia Feregrino-Uribe 2, René Cumplido

More information

Flexible and Compact Multi-Algorithm Cryptographic Engine

Flexible and Compact Multi-Algorithm Cryptographic Engine Flexible and Compact Multi-Algorithm Cryptographic Engine João Carlos Cabrita Resende Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisors: Prof. Ricardo Jorge

More information

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation

The Use of Runtime Reconfiguration on FPGA Circuits to Increase the Performance of the AES Algorithm Implementation Journal of Universal Computer Science, vol. 13, no. 3 (2007), 349-362 submitted: 30/11/06, accepted: 16/2/07, appeared: 28/3/07 J.UCS The Use of Runtime Reconfiguration on FPGA Circuits to Increase the

More information

Hardware-Focused Performance Comparison for the Standard Block Ciphers AES, Camellia, and Triple-DES

Hardware-Focused Performance Comparison for the Standard Block Ciphers AES, Camellia, and Triple-DES Hardware-ocused Performance Comparison for the Standard Block Ciphers AES, Camellia, and Triple-DES Akashi Satoh and Sumio Morioka Tokyo Research Laboratory IBM Japan Ltd. Contents Compact and High-Speed

More information

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware

Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Comparison of the Hardware Performance of the AES Candidates Using Reconfigurable Hardware Master s Thesis Pawel Chodowiec MS CpE Candidate, ECE George Mason University Advisor: Dr. Kris Gaj, ECE George

More information

Analyzing the Generation and Optimization of an FPGA Accelerator using High Level Synthesis

Analyzing the Generation and Optimization of an FPGA Accelerator using High Level Synthesis Paper Analyzing the Generation and Optimization of an FPGA Accelerator using High Level Synthesis Sebastian Kaltenstadler Ulm University Ulm, Germany sebastian.kaltenstadler@missinglinkelectronics.com

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

Area Optimization in Masked Advanced Encryption Standard

Area Optimization in Masked Advanced Encryption Standard IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 06 (June. 2014), V1 PP 25-29 www.iosrjen.org Area Optimization in Masked Advanced Encryption Standard R.Vijayabhasker,

More information

Symmetric Key Encryption. Symmetric Key Encryption. Advanced Encryption Standard ( AES ) DES DES DES 08/01/2015. DES and 3-DES.

Symmetric Key Encryption. Symmetric Key Encryption. Advanced Encryption Standard ( AES ) DES DES DES 08/01/2015. DES and 3-DES. Symmetric Key Encryption Symmetric Key Encryption and 3- Tom Chothia Computer Security: Lecture 2 Padding Block cipher modes Advanced Encryption Standard ( AES ) AES is a state-of-the-art block cipher.

More information

Use of Embedded FPGA Resources in Implementations of Five Round Three SHA-3 Candidates

Use of Embedded FPGA Resources in Implementations of Five Round Three SHA-3 Candidates Use of Embedded FPGA Resources in Implementations of Five Round Three SHA-3 Candidates Malik Umar Sharif, Rabia Shahid, Marcin Rogawski, Kris Gaj Abstract In this paper, we present results of the comprehensive

More information

Architectures and FPGA Implementations of the. 64-bit MISTY1 Block Cipher

Architectures and FPGA Implementations of the. 64-bit MISTY1 Block Cipher Architectures and FPGA Implementations of the 64-bit MISTY1 Block Cipher P. Kitsos *, M. D. Galanis, O. Koufopavlou VLSI Design Laboratory Electrical and Computer Engineering Department University of Patras,

More information

A High-Speed Unified Hardware Architecture for AES and the SHA-3 Candidate Grøstl

A High-Speed Unified Hardware Architecture for AES and the SHA-3 Candidate Grøstl A High-Speed Unified Hardware Architecture for AES and the SHA-3 Candidate Grøstl Marcin Rogawski Kris Gaj Cryptographic Engineering Research Group (CERG) http://cryptography.gmu.edu Department of ECE,

More information

ECE 646 Lecture 7. Modes of Operation of Block Ciphers. Modes of Operation. Required Reading:

ECE 646 Lecture 7. Modes of Operation of Block Ciphers. Modes of Operation. Required Reading: C 646 Lecture 7 Modes of Operation of Block Ciphers Required Reading: I. W. Stallings, "Cryptography and Network-Security," 5th dition, Chapter 6 Block Cipher Operation II. A. Menezes, P. van Oorschot,

More information

SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on FPGAs

SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on FPGAs SIMON Says, Break the Area Records for Symmetric Key Block Ciphers on FPGAs Aydin Aysu, Ege Gulcan, and Patrick Schaumont Secure Embedded Systems Center for Embedded Systems for Critical Applications Bradley

More information

128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication

128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 128 Bit ECB-AES Crypto Core Design using Rijndeal Algorithm for Secure Communication

More information

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications General Description The AES core implements Rijndael encoding and decoding in compliance with the NIST Advanced Encryption Standard. Basic core is very small (less than 3,000 gates). Enhanced versions

More information

On Optimized FPGA Implementations of the SHA-3 Candidate Grøstl

On Optimized FPGA Implementations of the SHA-3 Candidate Grøstl On Optimized FPGA Implementations of the SHA-3 Candidate Grøstl Bernhard Jungk, Steffen Reith, and Jürgen Apfelbeck Fachhochschule Wiesbaden University of Applied Sciences {jungk reith}@informatik.fh-wiesbaden.de

More information

Application Specific Scalable Architectures for Advanced Encryption Standard (AES) Algorithm

Application Specific Scalable Architectures for Advanced Encryption Standard (AES) Algorithm Application Specific Scalable Architectures for Advanced Encryption Standard (AES) Algorithm S.S.Naqvi, S.R.Naqvi, S.A Khan, S.A. Malik Department of Electrical Engineering COMSATS Institute of Information

More information

Content of this part

Content of this part UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Introduction to Cryptography ECE 597XX/697XX Part 5 More About Block Ciphers Israel Koren ECE597/697 Koren Part.5.1 Content of this

More information

Fundamentals of Cryptography

Fundamentals of Cryptography Fundamentals of Cryptography Topics in Quantum-Safe Cryptography June 23, 2016 Part III Data Encryption Standard The Feistel network design m m 0 m 1 f k 1 1 m m 1 2 f k 2 2 DES uses a Feistel network

More information

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays

Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable Gate Arrays Kris Gaj and Pawel Chodowiec Electrical and Computer Engineering George Mason University Fast implementation and fair comparison of the final candidates for Advanced Encryption Standard using Field Programmable

More information

Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications

Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 2010 Design and analysis of an FPGA-based, multiprocessor HW-SW system for SCC applications Andrew Fitzgerald

More information

ECE 545 Lecture 8b. Hardware Architectures of Secret-Key Block Ciphers and Hash Functions. George Mason University

ECE 545 Lecture 8b. Hardware Architectures of Secret-Key Block Ciphers and Hash Functions. George Mason University ECE 545 Lecture 8b Hardware Architectures of Secret-Key Block Ciphers and Hash Functions George Mason University Recommended reading K. Gaj and P. Chodowiec, FPGA and ASIC Implementations of AES, Chapter

More information

Countermeasures against EM Analysis

Countermeasures against EM Analysis Countermeasures against EM Analysis Paolo Maistri 1, SebastienTiran 2, Amine Dehbaoui 3, Philippe Maurine 2, Jean-Max Dutertre 4 (1) (2) (3) (4) Context Side channel analysis is a major threat against

More information

AES ALGORITHM FOR ENCRYPTION

AES ALGORITHM FOR ENCRYPTION Volume 02 - Issue 05 May 2016 PP. 63-68 AES ALGORITHM FOR ENCRYPTION Radhika D.Bajaj M.Tech VLSI G.H. Raisoni Institute of Engineering And Technology For Women, Nagpur. Dr. U.M. Gokhale Electronics and

More information

An Implementation of the AES cipher using HLS

An Implementation of the AES cipher using HLS 2013 III Brazilian Symposium on Computing Systems Engineering An Implementation of the AES cipher using HLS Rodrigo Schmitt Meurer Tiago Rogério Mück Antônio Augusto Fröhlich Software/Hardware Integration

More information

AES on FPGA from the fastest to the smallest

AES on FPGA from the fastest to the smallest AES on FPGA from the fastest to the smallest Tim Good and Mohammed Benaissa Department of Electronic & Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S 3JD, UK {t.good, m.benaissa}@sheffield.ac.uk

More information

Exploring Area/Delay Tradeoffs in an AES FPGA Implementation

Exploring Area/Delay Tradeoffs in an AES FPGA Implementation Exploring Area/Delay Tradeoffs in an AES FPGA Implementation Joseph Zambreno, David Nguyen, and Alok Choudhary Department of Electrical and Computer Engineering Northwestern University Evanston, IL 60208,

More information

Efficient FPGA Implementation of AES 128 Bit for IEEE e Mobile WiMax Standards

Efficient FPGA Implementation of AES 128 Bit for IEEE e Mobile WiMax Standards Circuits and Systems, 2016, 7, 371-380 Published Online April 2016 in SciRes. http://www.scirp.org/journal/cs http://dx.doi.org/10.4236/cs.2016.74032 Efficient FPGA Implementation of AES Bit for IEEE 802.16e

More information

Implementation and Analysis of the PRIMATEs Family of Authenticated Ciphers

Implementation and Analysis of the PRIMATEs Family of Authenticated Ciphers Implementation and Analysis of the PRIMATEs Family of Authenticated Ciphers Ahmed Ferozpuri Abstract Lightweight devices used for encrypted communication require a scheme that can operate in a low resource

More information

Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board

Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple DES Using SLAAC-1V FPGA Accelerator Board Pawel Chodowiec 1, Kris Gaj 1, Peter Bellows 2, and Brian Schott 2 1

More information

05 - WLAN Encryption and Data Integrity Protocols

05 - WLAN Encryption and Data Integrity Protocols 05 - WLAN Encryption and Data Integrity Protocols Introduction 802.11i adds new encryption and data integrity methods. includes encryption algorithms to protect the data, cryptographic integrity checks

More information

ENEE 459-C Computer Security. Symmetric key encryption in practice: DES and AES algorithms

ENEE 459-C Computer Security. Symmetric key encryption in practice: DES and AES algorithms ENEE 459-C Computer Security Symmetric key encryption in practice: DES and AES algorithms A perfect encryption of a block Say you have a block of n bits You want to encrypt it You want to use the same

More information

Block Cipher Modes of Operation

Block Cipher Modes of Operation Block Cipher Modes of Operation Luke Anderson luke@lukeanderson.com.au 23 rd March 2018 University Of Sydney Overview 1. Crypto-Bulletin 2. Modes Of Operation 2.1 Evaluating Modes 2.2 Electronic Code Book

More information

Efficient Hardware Design and Implementation of AES Cryptosystem

Efficient Hardware Design and Implementation of AES Cryptosystem Efficient Hardware Design and Implementation of AES Cryptosystem PRAVIN B. GHEWARI 1 MRS. JAYMALA K. PATIL 1 AMIT B. CHOUGULE 2 1 Department of Electronics & Telecommunication 2 Department of Computer

More information

Winter 2011 Josh Benaloh Brian LaMacchia

Winter 2011 Josh Benaloh Brian LaMacchia Winter 2011 Josh Benaloh Brian LaMacchia Symmetric Cryptography January 20, 2011 Practical Aspects of Modern Cryptography 2 Agenda Symmetric key ciphers Stream ciphers Block ciphers Cryptographic hash

More information

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA

Hardware Implementation of Cryptosystem by AES Algorithm Using FPGA Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 6.017 IJCSMC,

More information

Block Ciphers Introduction

Block Ciphers Introduction Technicalities Block Models Block Ciphers Introduction Orr Dunkelman Computer Science Department University of Haifa, Israel March 10th, 2013 Orr Dunkelman Cryptanalysis of Block Ciphers Seminar Introduction

More information

PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX APPLICATION WITH IMPROVED POWER-THROUGHPUT

PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX APPLICATION WITH IMPROVED POWER-THROUGHPUT Journal of Engineering Science and Technology Vol. 11, No. 12 (2016) 1678-1694 School of Engineering, Taylor s University PERFORMANCE COMPARISON OF ADVANCED ENCRYPTION STANDARD-128 ALGORITHMS FOR WIMAX

More information

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed

FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed FPGA Implementation of High Speed AES Algorithm for Improving The System Computing Speed Vijaya Kumar. B.1 #1, T. Thammi Reddy.2 #2 #1. Dept of Electronics and Communication, G.P.R.Engineering College,

More information

Vortex. A New Family of One-Way Hash Functions. Based on AES Rounds and Carry-less Multiplication. Intel Corporation, IL

Vortex. A New Family of One-Way Hash Functions. Based on AES Rounds and Carry-less Multiplication. Intel Corporation, IL Vortex A New Family of One-Way Hash Functions Based on AES Rounds and Carry-less Multiplication Shay Gueron Michael E. Kounavis Intel Corporation, IL Intel Corporation, US and University of Haifa, IL Information

More information

Secret Key Cryptography

Secret Key Cryptography Secret Key Cryptography General Block Encryption: The general way of encrypting a 64-bit block is to take each of the: 2 64 input values and map it to a unique one of the 2 64 output values. This would

More information

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18)

HOST Cryptography III ECE 525 ECE UNM 1 (1/18/18) AES Block Cipher Blockciphers are central tool in the design of protocols for shared-key cryptography What is a blockcipher? It is a function E of parameters k and n that maps { 0, 1} k { 0, 1} n { 0,

More information

Private-Key Encryption

Private-Key Encryption Private-Key Encryption Ali El Kaafarani Mathematical Institute Oxford University 1 of 50 Outline 1 Block Ciphers 2 The Data Encryption Standard (DES) 3 The Advanced Encryption Standard (AES) 4 Attacks

More information

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT

VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT VLSI ARCHITECTURE FOR NANO WIRE BASED ADVANCED ENCRYPTION STANDARD (AES) WITH THE EFFICIENT MULTIPLICATIVE INVERSE UNIT K.Sandyarani 1 and P. Nirmal Kumar 2 1 Research Scholar, Department of ECE, Sathyabama

More information

The Helion basic guide to AES encryption in hardware

The Helion basic guide to AES encryption in hardware The Helion basic guide to AES encryption in hardware What is AES? During September 1997, the National Institute of Standards and Technology (NIST), the main standards body in the US, issued an open request

More information

P2_L6 Symmetric Encryption Page 1

P2_L6 Symmetric Encryption Page 1 P2_L6 Symmetric Encryption Page 1 Reference: Computer Security by Stallings and Brown, Chapter 20 Symmetric encryption algorithms are typically block ciphers that take thick size input. In this lesson,

More information

An Instruction Set Extension for Fast and Memory- Efficient AES Implementation. Stefan Tillich, Johann Großschädl, Alexander Szekely

An Instruction Set Extension for Fast and Memory- Efficient AES Implementation. Stefan Tillich, Johann Großschädl, Alexander Szekely Institute for Applied Information Processing and Communications () GRAZ UNIVERSITY OF TECHNOLOGY An Instruction Set Extension for Fast and Memory- Efficient AES Implementation Stefan Tillich, Johann Großschädl,

More information

Week 5: Advanced Encryption Standard. Click

Week 5: Advanced Encryption Standard. Click Week 5: Advanced Encryption Standard Click http://www.nist.gov/aes 1 History of AES Calendar 1997 : Call For AES Candidate Algorithms by NIST 128-bit Block cipher 128/192/256-bit keys Worldwide-royalty

More information

Investigation of DPA Resistance of Block RAMs in Cryptographic Implementations on FPGAs

Investigation of DPA Resistance of Block RAMs in Cryptographic Implementations on FPGAs Investigation of DPA Resistance of Block RAMs in Cryptographic Implementations on FPGAs Shaunak Shah Corsec Security, Inc Fairfax, VA, USA Email: sshah@corsec.com Rajesh Velegalati, Jens-Peter Kaps, David

More information

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers

Introduction to Modern Cryptography. Lecture 2. Symmetric Encryption: Stream & Block Ciphers Introduction to Modern Cryptography Lecture 2 Symmetric Encryption: Stream & Block Ciphers Stream Ciphers Start with a secret key ( seed ) Generate a keying stream i-th bit/byte of keying stream is a function

More information

The Rectangle Attack

The Rectangle Attack The Rectangle Attack and Other Techniques for Cryptanalysis of Block Ciphers Orr Dunkelman Computer Science Dept. Technion joint work with Eli Biham and Nathan Keller Topics Block Ciphers Cryptanalysis

More information

Symmetric-Key Cryptography

Symmetric-Key Cryptography Symmetric-Key Cryptography CS 161: Computer Security Prof. Raluca Ada Popa Sept 13, 2016 Announcements Project due Sept 20 Special guests Alice Bob The attacker (Eve - eavesdropper, Malice) Sometimes Chris

More information

Cryptographic Implementations In Digital Design

Cryptographic Implementations In Digital Design EECS 151 Spring 2018 Cryptographic Implementations In Digital Design 1 Cryptography and Digital Implementations Cryptography has long been a "typical" application for digital design A large repetitive

More information

FPGA Based Design of AES with Masked S-Box for Enhanced Security

FPGA Based Design of AES with Masked S-Box for Enhanced Security International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 3 Issue 5ǁ May 2014 ǁ PP.01-07 FPGA Based Design of AES with Masked S-Box for Enhanced Security

More information

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010

Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 CS 494/594 Computer and Network Security Dr. Jinyuan (Stella) Sun Dept. of Electrical Engineering and Computer Science University of Tennessee Fall 2010 1 Secret Key Cryptography Block cipher DES 3DES

More information

Energy Evaluation of AES based Authenticated Encryption Algorithms (Online + NMR)

Energy Evaluation of AES based Authenticated Encryption Algorithms (Online + NMR) Energy Evaluation of AES based Authenticated Encryption Algorithms (Online + NMR) Subhadeep Banik 1, Andrey Bogdanov 1, Francesco Regazzoni 2 1 DTU Compute, Technical University of Denmark, Lyngby 2 ALARI,

More information

IDEA, RC5. Modes of operation of block ciphers

IDEA, RC5. Modes of operation of block ciphers C 646 - Lecture 8 IDA, RC5 Modes of operation of block ciphers Required Reading: I. W. Stallings, "Cryptography and Network-Security," 5th dition, Chapter 6 Block Cipher Operation II. A. Menezes, P. van

More information

High Level Synthesis of Cryptographic Hardware. Jeremy Trimble ECE 646

High Level Synthesis of Cryptographic Hardware. Jeremy Trimble ECE 646 High Level Synthesis of Cryptographic Hardware Jeremy Trimble ECE 646 High Level Synthesis Synthesize (FPGA) hardware using software programming languages: C / C++, Domain specific Languages ( DSL ) Typical

More information

FPGA and ASIC Implementations of AES

FPGA and ASIC Implementations of AES Chapter 10 FPGA and ASIC Implementations of AES Kris Gaj and Pawel Chodowiec 10.1 Introduction In 1997, an effort was initiated to develop a new American encryption standard to be commonly used well into

More information

Block Ciphers. Lucifer, DES, RC5, AES. CS 470 Introduction to Applied Cryptography. Ali Aydın Selçuk. CS470, A.A.Selçuk Block Ciphers 1

Block Ciphers. Lucifer, DES, RC5, AES. CS 470 Introduction to Applied Cryptography. Ali Aydın Selçuk. CS470, A.A.Selçuk Block Ciphers 1 Block Ciphers Lucifer, DES, RC5, AES CS 470 Introduction to Applied Cryptography Ali Aydın Selçuk CS470, A.A.Selçuk Block Ciphers 1 ... Block Ciphers & S-P Networks Block Ciphers: Substitution ciphers

More information

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel

ENGI 8868/9877 Computer and Communications Security III. BLOCK CIPHERS. Symmetric Key Cryptography. insecure channel (a) Introduction - recall symmetric key cipher: III. BLOCK CIPHERS k Symmetric Key Cryptography k x e k y yʹ d k xʹ insecure channel Symmetric Key Ciphers same key used for encryption and decryption two

More information

VLSI Implementation of Enhanced AES Cryptography

VLSI Implementation of Enhanced AES Cryptography ISSN (e): 2250 3005 Vol, 04 Issue, 7 July 2014 International Journal of Computational Engineering Research (IJCER) VLSI Implementation of Enhanced AES Cryptography Lakavath Srinivas 1, Zuber M. Patel 2,

More information

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University

CS 4770: Cryptography. CS 6750: Cryptography and Communication Security. Alina Oprea Associate Professor, CCIS Northeastern University CS 4770: Cryptography CS 6750: Cryptography and Communication Security Alina Oprea Associate Professor, CCIS Northeastern University February 8 2018 Review CPA-secure construction Security proof by reduction

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 5 Advanced Encryption Standard Advance Encryption Standard Topics Origin of AES Basic AES Inside Algorithm Final Notes Origins

More information

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016

2016 Maxwell Scientific Publication Corp. Submitted: August 21, 2015 Accepted: September 11, 2015 Published: January 05, 2016 Research Journal of Applied Sciences, Engineering and Technology 12(1): 52-62, 2016 DOI:10.19026/rjaset.12.2303 ISSN: 2040-7459; e-issn: 2040-7467 2016 Maxwell Scientific Publication Corp. Submitted: August

More information

Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures

Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures 1 Suresh Sharma, 2 T S B Sudarshan 1 Student, Computer Science & Engineering, IIT, Khragpur 2 Assistant

More information

Block Cipher Modes of Operation

Block Cipher Modes of Operation Block Cipher Modes of Operation Luke Anderson luke@lukeanderson.com.au 24th March 2016 University Of Sydney Overview 1. Crypto-Bulletin 2. Modes Of Operation 2.1 Evaluating Modes 2.2 Electronic Code Book

More information

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM DES and DES3 Encryption Engine (MC-XIL-DES) May 19, 2008 Product Specification AllianceCORE Facts 10805 Rancho Bernardo Road Suite 110 San Diego, California 92127 USA Phone: (858) 385-7652 Fax: (858) 385-7770

More information

Using block ciphers 1

Using block ciphers 1 Using block ciphers 1 Using block ciphers DES is a type of block cipher, taking 64-bit plaintexts and returning 64-bit ciphetexts. We now discuss a number of ways in which block ciphers are employed in

More information

FACE : Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data

FACE : Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data : Fast AES CTR mode Encryption Techniques based on the Reuse of Repetitive Data Jin Hyung Park and Dong Hoon Lee Center for Information Security Technologies, Korea University Introduction 1 IV(Counter)

More information

IMPLEMENTATION OF EFFICIENT AND HIGH SPEED AES ALGORITHM FOR SECURED DATA TRANSMISSION

IMPLEMENTATION OF EFFICIENT AND HIGH SPEED AES ALGORITHM FOR SECURED DATA TRANSMISSION International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN 2249-684X Vol.2, Issue 3 (Spl.) Sep 2012 22-29 TJPRC Pvt. Ltd., IMPLEMENTATION

More information

Modern Symmetric Block cipher

Modern Symmetric Block cipher Modern Symmetric Block cipher 81 Shannon's Guide to Good Ciphers Amount of secrecy should determine amount of labour appropriate for encryption and decryption The set of keys and enciphering algorithm

More information

A System Level Implementation of Rijndael on a Memory-slot based FPGA Card

A System Level Implementation of Rijndael on a Memory-slot based FPGA Card A System Level Implementation of Rijndael on a Memory-slot based FPGA Card Dennis Ka Yau Tong, Pui Sze Lo, Kin Hong Lee, Philip H.W. Leong {kytong, pslo, khlee, phwl}@cse.cuhk.edu.hk Department of Computer

More information

The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node

The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node The Study of GF (2 4 ) 2 AES Encryption for Wireless FPGA Node W.Suntiamorntut 1, W. Wittayapanpracha Computer Engineering Department, Faculty of Engineering, Prince of Songkla University Hatyai Songkhla

More information

AES Cryptosystem Acceleration Using Graphics Processing Units. Ethan Willoner Supervisors: Dr. Ramon Lawrence, Scott Fazackerley

AES Cryptosystem Acceleration Using Graphics Processing Units. Ethan Willoner Supervisors: Dr. Ramon Lawrence, Scott Fazackerley AES Cryptosystem Acceleration Using Graphics Processing Units Ethan Willoner Supervisors: Dr. Ramon Lawrence, Scott Fazackerley Overview Introduction Compute Unified Device Architecture (CUDA) Advanced

More information

Block Ciphers. Secure Software Systems

Block Ciphers. Secure Software Systems 1 Block Ciphers 2 Block Cipher Encryption function E C = E(k, P) Decryption function D P = D(k, C) Symmetric-key encryption Same key is used for both encryption and decryption Operates not bit-by-bit but

More information

Low-cost hardware implementations of Salsa20 stream cipher in programmable devices

Low-cost hardware implementations of Salsa20 stream cipher in programmable devices Journal of Polish Safety and Reliability Association Summer Safety and Reliability Seminars, Volume 4, Number 1, 2013 Wrocław University of Technology, Wrocław, Poland Low-cost hardware implementations

More information

Implementation and Performance analysis of Skipjack & Rijndael Algorithms. by Viswnadham Sanku ECE646 Project Fall-2001

Implementation and Performance analysis of Skipjack & Rijndael Algorithms. by Viswnadham Sanku ECE646 Project Fall-2001 Implementation and Performance analysis of Skipjack & Rijndael Algorithms by Viswnadham Sanku ECE646 Project Fall-2001 TABLE OF CONTENTS TABLE OF CONTENTS 2 1. OBJECTIVE 3 2. SKIPJACK CIPHER 3 2.1 CIPHER

More information

Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm

Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm Fully Pipelined High Throughput Cost Effective FPGA Based Implementation of AES Algorithm Athira Das A J 1, Ajith Kumar B P 2 1 Student, Dept. of Electronics and Communication, Karavali Institute of Technology,

More information

A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption

A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption International Journal of Scientific and Research Publications, Volume 3, Issue 9, September 2013 1 A Novel Approach of Area Optimized and pipelined FPGA Implementation of AES Encryption and Decryption

More information