COSC4377. TCP vs UDP Example Statistics

Size: px
Start display at page:

Download "COSC4377. TCP vs UDP Example Statistics"

Transcription

1 Lecture 16 TCP vs UDP Example Statistics Trace Sample UDP/TCP Ratio Total IP Traffic (pkts/bytes/flows) pkts bytes flows CAIDA OC (1371M/838GB/79M) (463M/267GB/26M) GigaSUNET (422M/294GB/9M) CAIDA OC (4427M/2279GB/197M) (1922M/1410GB/110M) OptoSUNET (1100M/657GB/41M) analysis/tcpudpratio/ 2 1

2 Internet Private Addresses (IPv4) RFC1918 IP address range 24 bit block bit block number of addresses 16,777,216 1,048, bit block ,536 classful description single class A network 16 contiguous class B network 256 contiguous class C network largest CIDR block (subnet mask) /8 ( ) Address ranges reserved by IANA for Private Addresses /12 ( ) /1 6 ( ) host id size 24 bits 20 bits 16 bits 3 NAT: network address translation rest of Internet local network (e.g., home network) / all datagrams leaving local network have same single source NAT IP address: ,different source port numbers datagrams with source or destination in this network have /24 address for source, destination (as usual) 4 2

3 NAT: network address translation motivation: local network uses just one IP address as far as outside world is concerned: range of addresses not needed from ISP: just one IP address for all devices can change addresses of devices in local network without notifying outside world can change ISP without changing addresses of devices in local network devices inside local net not explicitly addressable, visible by outside world (a security plus) 5 NAT: network address translation implementation: NAT router must: outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)... remote clients/servers will respond using (NAT IP address, new port #) as destination addr remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table 6 3

4 NAT: network address translation 2: NAT router changes datagram source addr from , 3345 to , 5001, updates table 2 NAT translation table WAN side addr LAN side addr , , 3345 S: , 5001 D: , S: , 80 D: , : reply arrives dest. address: , S: , 3345 D: , 80 1 S: , 80 D: , : host sends datagram to , : NAT router changes datagram dest addr from , 5001 to , NAT: network address translation 16 bit port number field: 60,000 simultaneous connections with a single LAN side address! NAT is controversial: routers should only process up to layer 3 violates end to end argument NAT possibility must be taken into account by app designers, e.g., P2P applications address shortage should instead be solved by 8 4

5 NAT traversal problem client wants to connect to server with address server address local to LAN (client can t use it as destination addr) only one externally visible NATed address: solution1: statically configure NAT to forward incoming connection requests at given port to server e.g., ( , port 2500) always forwarded to port client? NAT router NAT traversal problem solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to: learn public IP address ( ) add/remove port mappings (with lease times) i.e., automate static NAT port map configuration NAT router For more info on UPnP, IGD and Port Control Protocol (PCP) see IETF Working Grop docs ietf pcp upnp igd interworking 04 IGD 10 5

6 NAT traversal problem solution 3: relaying (used in Skype) NATed client establishes connection to relay external client connects to relay relay bridges packets between to connections client 2. connection to relay initiated by client 3. relaying established 1. connection to relay initiated by NATed host NAT router Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP 4.5 routing algorithms link state distance vector hierarchical routing 4.6 routing in the Internet RIP OSPF BGP 4.7 broadcast and multicast routing 12 6

7 ICMP: internet control message protocol used by hosts & routers to communicate networklevel information error reporting: unreachable host, network, port, protocol echo request/reply (used by ping) network layer above IP: ICMP msgs carried in IP datagrams ICMP message: type, code plus first 8 bytes of IP datagram causing error Type Code description 0 0 echo reply (ping) 3 0 dest. network unreachable 3 1 dest host unreachable 3 2 dest protocol unreachable 3 3 dest port unreachable 3 6 dest network unknown 3 7 dest host unknown 4 0 source quench (congestion control - not used) 8 0 echo request (ping) 9 0 route advertisement 10 0 router discovery 11 0 TTL expired 12 0 bad IP header 13 Traceroute and ICMP source sends series of UDP segments to dest first set has TTL =1 second set has TTL=2, etc. unlikely port number when nth set of datagrams arrives to nth router: router discards datagrams and sends source ICMP messages (type 11, code 0) ICMP messages includes name of router & IP address 3 probes 3 probes when ICMP messages arrives, source records RTTs stopping criteria: UDP segment eventually arrives at destination host destination returns ICMP port unreachable message (type 3, code 3) source stops 3 probes 14 7

8 Chapter 4: Network Layer 4. 1 Introduction 4.2 Virtual circuit and datagram networks 4.3 What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing ICMP 4.5 Routing algorithms Link state Distance Vector Hierarchical routing 4.6 Routing in the Internet RIP OSPF BGP 4.7 Broadcast and multicast routing 15 More than 4 billion devices already share addresses Uwjt32NvVA is essential to the continued health and growth of the Internet and that by allowing all devices to talk to each other directly, enables new innovative services

9 : motivation initial motivation: 32 bit address space soon to be completely allocated. additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS datagram format: fixed length 40 byte header no fragmentation allowed 17 datagram format priority: identify priority among datagrams in flow flow Label: identify datagrams in same flow. (concept of flow not well defined). next header: identify upper layer protocol for data ver 32 bits pri flow label payload len next hdr hop limit source address (128 bits) destination address (128 bits) ver 16 bit identifier time to live head. len type of service upper layer IPv4 32 bits flgs 32 bit source IP address length header checksum 32 bit destination IP address fragment offset data Options (if any) data (variable length,,typically a TCP or UDP segment) 18 9

10 The Internet Protocol History History of the Internet Protocol Internet Protocol version 4 (IPv4) Developed for the original Internet (ARPANET) in billion addresses Deployed globally & well entrenched Allocated based on documented need Internet Protocol version 6 () Design began in 1993 when IETF forecasts showed IPv4 depletion between 2010 and undecillion addresses Completed, tested, and available since 1999 Used and managed similar to IPv IPv4 and IPv5 Comparison

11 Other changes from IPv4 checksum: removed entirely to reduce processing time at each hop options: allowed, but outside of header, indicated by Next Header field ICMPv6: new version of ICMP additional message types, e.g. Packet Too Big multicast group management functions 21 addresses RFC4291 Full format x:x:x:x:x:x:x:x, where the 'x's are one to four hexadecimal digits of the eight 16 bit pieces of the address. Examples: ABCD:EF01:2345:6789:ABCD:EF01:2345: :DB8:0:0:8:800:200C:417A 22 11

12 addresses RFC4291 Compressed format Examples: 2001:DB8:0:0:8:800:200C:417A a unicast address Compressed 2001:DB8::8:800:200C:417A FF01:0:0:0:0:0:0:101 a multicast address Compressed FF01::101 0:0:0:0:0:0:0:1 the loopback address Compressed ::1 0:0:0:0:0:0:0:0 the unspecified address Compressed :: 23 addresses RFC4291 Alternative format Examples: 0:0:0:0:0:0: :0:0:0:0:FFFF: or in compressed form: :: ::FFFF:

13 addresses RFC4291 Prefix representation (like CIDR for IPv4) Example: 60 bit prefix 20010DB80000CD3 (hexadecimal): 2001:0DB8:0000:CD30:0000:0000:0000:0000/ :0DB8::CD30:0:0:0:0/ :0DB8:0:CD30::/60 25 How to obtain an address? defines both a stateful and stateless address autoconfiguration mechanism. Stateless auto configuration requires no manual configuration of hosts, minimal (if any) configuration of routers, and no additional servers. The stateless mechanism allows a host to generate its own addresses using a combination of locally available information and information advertised by routers. Routers advertise prefixes that identify the subnet(s) associated with a link, while hosts generate an "interface identifier" that uniquely identifies an interface on a subnet. An address is formed by combining the two. In the absence of routers, a host can only generate link local addresses. However, link local addresses are sufficient for allowing communication among nodes attached to the same link. RFC 2462, December In Stateful auto configuration (DHCPv6), hosts obtain interface addresses and/or configuration information and parameters from a server. Servers maintain a database that keeps track of which addresses have been assigned to which hosts. The stateful auto configuration protocol allows hosts to obtain addresses, other configuration information or both from a server. Stateless and stateful auto configuration complement each other. For example, a host can use stateless auto configuration to configure its own addresses, but use stateful auto configuration to obtain other information. RFC 3315, July

14 Transition from IPv4 to not all routers can be upgraded simultaneously no flag days how will network operate with mixed IPv4 and routers? tunneling: datagram carried as payload in IPv4 datagram among IPv4 routers IPv4 header fields IPv4 source, dest addr header fields source dest addr UDP/TCP payload IPv4 payload datagram IPv4 datagram 27 Tunneling logical view: A B IPv4 tunnel connecting routers E F physical view: A B C D E F IPv4 IPv

15 Tunneling logical view: physical view: A A B B IPv4 tunnel connecting routers C D E E F F IPv4 IPv4 flow: X src: A dest: F data src:b dest: E Flow: X Src: A Dest: F src:b dest: E Flow: X Src: A Dest: F flow: X src: A dest: F data data data A-to-B: B-to-C: inside IPv4 B-to-C: inside IPv4 E-to-F: 29 Adoption Three drivers of growth (Akamai) 1) Content availability. More of our customers are opting in to have their sites, content, and applications permanently available "dual stacked" (i.e., available over both and IPv4). 2) Availability of from access network providers. Over the past year, some of the largest growth ia coming from major ISPs within the U.S., as they roll out production support to their end users, including Verizon Wireless, AT&T, and Comcast. This is on top of some ISPs in Europe and Asia that have had deployed in production for a few years, as well as a long tail of thousands of network providers, universities, and research labs around the globe. More growth will come as these networks extend their deployments and as other networks join them. 3) End user device support. While most recent desktop and laptop operating systems and client software supports, many home routers and gateways didn't have support until very recently. Many embedded devices and consumer electronics are also slow to gain support, with the notable exception of many 4G LTE smart phones. This has been one of the limiting factors to users whose network providers have rolled out capabilities, and as users upgrade devices over the next few years, this should cause a significant increase in usage. data driven view of ipv6 adoption.html 30 15

16 adoption The U.S. Government has put in place an mandate that requires all government agencies to have their public facing websites and services available over by September 30 th, Over 1,800 U.S Government websites are expected to be on by the mandate deadline. governmentpaves the way to ipv6 with mandate compliance.html Planning Guide/Roadmap Toward Adoption within the U.S. Government, Strategy and Planning Committee Federal Chief Information Officers Council, while is small today, it's imperative that the technology is rolled out now, Akamai, September 28, 2012, government paves the way to ipv6 withmandate compliance.html A 2014 US Government mandate will require that the internal enterprise infrastructures of U.S. Government agencies are running. 31 Adoption

17 Adoption data driven view of ipv6 adoption.html 33 connectivity for Google users Enabled Web browsers

18 Percentage of ASs announcing prefixes Adoption Launch Day June 6, a data driven view of ipv6 adoption.html 36 18

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP

Chapter 4: outline. 4.5 routing algorithms link state distance vector hierarchical routing. 4.6 routing in the Internet RIP OSPF BGP Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what s inside a router 4.4 IP: Internet Protocol datagram format IPv4 addressing ICMP 4.5 routing algorithms link state

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13 CMPE 50/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 3 Lab3 online Due March 4 th. Introduction -2 IP addresses: how to get one? Q: how does network

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction

Subnets. IP datagram format. The Internet Network layer. IP Fragmentation and Reassembly. IP Fragmentation & Reassembly. IP Addressing: introduction The Network layer Host, network layer functions: Network layer Routing protocols path selection R, OSPF, BGP Transport layer: TCP, forwarding table Link layer physical layer protocol addressing conventions

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 17 CMPE 80N Spring'10 1 Announcements Next class: Presentation of fun projects

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2015 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

Lecture 3. The Network Layer (cont d) Network Layer 1-1

Lecture 3. The Network Layer (cont d) Network Layer 1-1 Lecture 3 The Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router? Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer CPSC 335 Data Communication Systems Readings: 4.4.3, 4.4.4, 4.5, 4.5.1 David Nguyen Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March

More information

Lecture 8. Network Layer (cont d) Network Layer 1-1

Lecture 8. Network Layer (cont d) Network Layer 1-1 Lecture 8 Network Layer (cont d) Network Layer 1-1 Agenda The Network Layer (cont d) What is inside a router Internet Protocol (IP) IPv4 fragmentation and addressing IP Address Classes and Subnets Network

More information

Chapter 4 Network Layer. Network Layer 4-1

Chapter 4 Network Layer. Network Layer 4-1 Chapter 4 Network Layer Network Layer 4- Chapter 4: Network Layer 4. Introduction 4. Virtual circuit and datagram networks 4. What s inside a router 4.4 IP: Internet Protocol Datagram format IPv4 addressing

More information

Master Course Computer Networks IN2097

Master Course Computer Networks IN2097 Chair for Network Architectures and Services Prof. Carle Department for Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Chair for

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

TDTS06: computer Networks

TDTS06: computer Networks TDTS06: computer Networks Lecturer: Johannes Schmidt The slides are taken from the book s companion Web site with few modifications: Computer Networking: A Top Down Approach 5 th edition. Jim Kurose, Keith

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

Network Layer: DHCP, ICMP, NAT, IPv6

Network Layer: DHCP, ICMP, NAT, IPv6 Network Layer:, ICMP, NAT, IPv6 CS 352, Lecture 11 http://www.cs.rutgers.edu/~sn624/352-s19 Srinivas Narayana (heavily adapted from slides by Prof. Badri Nath and the textbook authors) 1 IP addresses:

More information

CSCE 463/612 Networks and Distributed Processing Spring 2017

CSCE 463/612 Networks and Distributed Processing Spring 2017 CSCE 46/6 Networks and Distributed Processing Spring 07 Network Layer III Dmitri Loguinov Texas A&M University April, 07 Original slides copyright 996-004 J.F Kurose and K.W. Ross Homework #4 Grading Default

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking A Top-Down Approach These slides are based on the slides made available by Kurose and Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

RSC Part II: Network Layer 3. IP addressing (2nd part)

RSC Part II: Network Layer 3. IP addressing (2nd part) RSC Part II: Network Layer 3. IP addressing (2nd part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking:

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer These slides are adapted from the original slides provided by J.Kurose and K.W Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking:

More information

Chapter 4: network layer

Chapter 4: network layer Chapter 4: network layer chapter goals: understand principles behind network layer services: network layer service models forwarding versus routing how a router works routing (path selection) broadcast,

More information

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis

Computer Network Fundamentals Spring Week 4 Network Layer Andreas Terzis Computer Network Fundamentals Spring 2008 Week 4 Network Layer Andreas Terzis Outline Internet Protocol Service Model Addressing Original addressing scheme Subnetting CIDR Fragmentation ICMP Address Shortage

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

Lecture 19: Network Layer Routing in the Internet

Lecture 19: Network Layer Routing in the Internet Lecture 19: Network Layer Routing in the Internet COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition: 1996-2016, J.F

More information

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communication & Networks G Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communication & Networks G22.2262-001 Session 7 - Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner

Communication Networks ( ) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University. Allon Wagner Communication Networks (0368-3030) / Fall 2013 The Blavatnik School of Computer Science, Tel-Aviv University Allon Wagner Kurose & Ross, Chapter 4 (5 th ed.) Many slides adapted from: J. Kurose & K. Ross

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1 Brian Harrington University of Toronto Scarborough February 13, 2018 ADMIN Assignments Midterm after reading week (Feb 27) In class Covering everything

More information

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview

Chapter 4: network layer. Network service model. Two key network-layer functions. Network layer. Input port functions. Router architecture overview Chapter 4: chapter goals: understand principles behind services service models forwarding versus routing how a router works generalized forwarding instantiation, implementation in the Internet 4- Network

More information

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane

Introduction to Computer Networking. Guy Leduc. Chapter 4 Network Layer: The Data Plane. Chapter 4: Network Layer Data Plane Introduction to Computer Networking Guy Leduc Chapter 4 Network Layer: The Data Plane Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016. From Computer

More information

HY 335 Φροντιστήριο 8 ο

HY 335 Φροντιστήριο 8 ο HY 335 Φροντιστήριο 8 ο Χειμερινό Εξάμηνο 2009-2010 Παπακωνσταντίνου Άρτεμις artpap@csd.uoc.gr 4/12/2009 Roadmap IP: The Internet Protocol IPv4 Addressing Datagram Format Transporting a datagram from source

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Network Layer: Internet Protocol

Network Layer: Internet Protocol Network Layer: Internet Protocol Motivation Heterogeneity Scale Intering IP is the glue that connects heterogeneous s giving the illusion of a homogenous one. Salient Features Each host is identified by

More information

Network Layer: ICMP and Network Management

Network Layer: ICMP and Network Management Network Layer: ICMP and Network Management EECS3214 18-03-15 4-1 Chapter 5: outline 5.1 introduction 5.2 routing protocols link state distance vector 5.3 intra-as routing in the Internet: OSPF 5.4 routing

More information

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy

Hierarchical Routing. Our routing study thus far - idealization all routers identical network flat no true in practice. administrative autonomy Hierarchical Routing Our routing study thus far - idealization all routers identical network flat no true in practice scale: with 50 million destinations: can t store all dest s in routing tables! routing

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer

Data Communications & Networks. Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Data Communications & Networks Session 7 Main Theme Networks: Part I Circuit Switching, Packet Switching, The Network Layer Dr. Jean-Claude Franchitti New York University Computer Science Department Courant

More information

Lecture 17: Network Layer Addressing, Control Plane, and Routing

Lecture 17: Network Layer Addressing, Control Plane, and Routing Lecture 17: Network Layer Addressing, Control Plane, and Routing COMP 332, Spring 2018 Victoria Manfredi Acknowledgements: materials adapted from Computer Networking: A Top Down Approach 7 th edition:

More information

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 4 The Network Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 4 The Network Layer Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane Lu Su Assistant Professor Department of Computer Science and Engineering State University of New York at Buffalo Adapted from the slides of the book s authors Computer

More information

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation:

Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: IPv6 Initial motivation: 32-bit address space soon to be completely allocated. Additional motivation: header format helps speed processing/forwarding header changes to facilitate QoS IPv6 datagram format:

More information

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting

Quiz. Segment structure and fields Flow control (rwnd) Timeout interval. Phases transition ssthresh setting Cwnd setting Quiz v 10/30/2013 (Wednesday), 20 mins v Midterm question (available on website) v TCP basics Segment structure and fields Flow control (rwnd) Timeout interval v TCP Congestion control Phases transition

More information

COMP211 Chapter 4 Network Layer: The Data Plane

COMP211 Chapter 4 Network Layer: The Data Plane COMP211 Chapter 4 Network Layer: The Data Plane All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross

More information

CSCI-1680 Network Layer:

CSCI-1680 Network Layer: CSCI-1680 Network Layer: Wrapup Rodrigo Fonseca Based partly on lecture notes by Jennifer Rexford, Rob Sherwood, David Mazières, Phil Levis, John JannoA Administrivia Homework 2 is due tomorrow So we can

More information

Network Layer: Data Plane 4-2

Network Layer: Data Plane 4-2 Network Layer: Data Plane EECS3214 18-02-25 4-1 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and

More information

Networking Potpourri: Plug-n-Play, Next Gen

Networking Potpourri: Plug-n-Play, Next Gen Networking Potpourri: Plug-n-Play, Next Gen 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia

More information

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων

Δίκτυα Υπολογιστών ΙΙ. Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Δίκτυα Υπολογιστών ΙΙ Κώστας Μαγκούτης Επίκουρος Καθηγητής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων Course information introductory course in computer networking course materials: text:

More information

NETWORK LAYER DATA PLANE

NETWORK LAYER DATA PLANE NETWORK LAYER DATA PLANE 1 GOALS Understand principles behind network layer services, focusing on the data plane: Network layer service models Forwarding versus routing How a router works Generalized forwarding

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Network layer Network Layer 4-1

Network layer Network Layer 4-1 Network layer 1 Network layer transport segment from sending to receiving host on sending side puts segments into datagrams on rcving side, delivers segments to transport layer network layer protocols

More information

Internet Network Protocols IPv4/ IPv6

Internet Network Protocols IPv4/ IPv6 Internet Network Protocols IPv4/ IPv6 Prof. Anja Feldmann, Ph.D. anja@inet.tu-berlin.de TCP/IP Illustrated, Volume 1, W. Richard Stevens http://www.kohala.com/start 1 IP Interfaces IP address: identifier

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Lecture 5 The Network Layer part II. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it Lecture 5 The Network Layer part II Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it IP datagram format IP protocol version number header length (bytes) type of data max number remaining

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation IPv4

More information

CSEP 561 Internetworking. David Wetherall

CSEP 561 Internetworking. David Wetherall CSEP 561 Internetworking David Wetherall djw@cs.washington.edu Internetworking t Focus: Joining multiple, different networks into one larger network Forwarding models Application Heterogeneity Transport

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

CSCI Computer Networks Fall 2016

CSCI Computer Networks Fall 2016 source: computer-s-webdesign.com CSCI 4760 - Computer Networks Fall 2016 Instructor: Prof. Roberto Perdisci perdisci@cs.uga.edu These slides are adapted from the textbook slides by J.F. Kurose and K.W.

More information

Network Technology 1 5th - Network Layer. Mario Lombardo -

Network Technology 1 5th - Network Layer. Mario Lombardo - Network Technology 1 5th - Network Layer Mario Lombardo - lombardo@informatik.dhbw-stuttgart.de 1 NETWORK LAYER transport segment from sending to receiving host on sending side encapsulates segments into

More information

Different Layers Lecture 20

Different Layers Lecture 20 Different Layers Lecture 20 10/15/2003 Jian Ren 1 The Network Layer 10/15/2003 Jian Ren 2 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every host,

More information

IPv6 Protocol Architecture

IPv6 Protocol Architecture IPv6 Protocol Architecture v4/v6 Header Comparison Not kept in IPv6 Renamed in IPv6 Same name and function New in IPv6 2 New Functional Improvement Address Space Increase from 32-bit to 128-bit address

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2014/2015 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local 1 v4 & v6 Header Comparison v6 Ver Time to Live v4 Header IHL Type of Service Identification Protocol Flags Source Address Destination Address Total Length Fragment Offset Header Checksum Ver Traffic Class

More information

Internetworking With TCP/IP

Internetworking With TCP/IP Internetworking With TCP/IP Application Layer Telnet Gopher NFS FTP X Win TFTP SMTP SNMP REXEC DNS RPC Transport Layer TCP UDP Network Layer ICMP IP IGMP ARP RARP Parviz Kermani NYU:Poly Link Interface

More information

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 CS 356: Computer Network Architectures Lecture 15: DHCP, NAT, and IPv6 [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 Xiaowei Yang xwy@cs.duke.edu Dynamic Host Configuration Protocol (DHCP) Dynamic Assignment

More information

CSF645 Mobile Computing 行動計算. IPv6. (Internetworking With TCP/IP vol Part 31) 吳俊興國立高雄大學資訊工程學系

CSF645 Mobile Computing 行動計算. IPv6. (Internetworking With TCP/IP vol Part 31) 吳俊興國立高雄大學資訊工程學系 CSF645 Mobile Computing 行動計算 IPv6 (Internetworking With TCP/IP vol. 1 -- Part 31) 吳俊興國立高雄大學資訊工程學系 IPv6: Motivation Initial motivation: 32-bit address space soon to be completely allocated Additional motivation:

More information

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved

CSC358 Week 6. Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright J.F Kurose and K.W. Ross, All Rights Reserved CSC358 Week 6 Adapted from slides by J.F. Kurose and K. W. Ross. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Logistics Assignment 2 posted, due Feb 24, 10pm Next week

More information

Chapter IV: Network Layer

Chapter IV: Network Layer Chapter IV: Network Laer UG3 Computer Communications & Networks (COMN) Mungjin Lee mungjin.lee@ed.ac.uk Slides copright of Kurose and Ross IP addresses: how to get one? Q: How does a host get IP address?

More information

IPv6 Next generation IP

IPv6 Next generation IP Seminar Presentation IPv6 Next generation IP N Ranjith Kumar 11/5/2004 IPv6 : Next generation IP 1 Network Problems Communication Problem Identification Problem Identification of Networks Logical Addressing

More information

Network Layer PREPARED BY AHMED ABDEL-RAOUF

Network Layer PREPARED BY AHMED ABDEL-RAOUF Network Layer PREPARED BY AHMED ABDEL-RAOUF Network layer transport segment from sending to receiving host on sending side encapsulates segments into datagrams on receiving side, delivers segments to transport

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL IPv6 Protocol & Structure npnog3 9-11 Dec, 2017 Chitwan, NEPAL Protocol Header Comparison IPv4 contains 10 basic header fields, while IPv6 has 6 basic header fields IPv6 header size is 40 octets compared

More information

Network Layer Part A (IPv6) Network Layer 4-1

Network Layer Part A (IPv6) Network Layer 4-1 Network Layer Part A (IPv6) Network Layer 4-1 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation

More information

IPv6 : Internet Protocol Version 6

IPv6 : Internet Protocol Version 6 IPv6 : Internet Protocol Version 6 History Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s) History IPv6 : Internet Protocol Version 6 Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

Internet Protocol, Version 6

Internet Protocol, Version 6 Outline Protocol, Version 6 () Introduction to Header Format Addressing Model ICMPv6 Neighbor Discovery Transition from to vs. Taken from:chun-chuan Yang Basics: TCP/ Protocol Suite Protocol (IP) Features:

More information

Internet Multicast Routing

Internet Multicast Routing Internet Multicast Routing. group addressing class D IP addresses 1110 Multicast Group ID. link layer multicast 28 bits. two protocol functions group management IGMP route establishment DVMRP, MOSPF, CBT,

More information

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS 1. General (5p) a) The so-called hourglass model (sometimes referred to as a wine-glass ) has been used

More information

CS 457 Lecture 11 More IP Networking. Fall 2011

CS 457 Lecture 11 More IP Networking. Fall 2011 CS 457 Lecture 11 More IP Networking Fall 2011 IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer II Dmitri Loguinov Texas A&M University April 3, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter 4:

More information

Internet Technology 3/23/2016

Internet Technology 3/23/2016 Internet Technology // Network Layer Transport Layer (Layer ) Application-to-application communication Internet Technology Network Layer (Layer ) Host-to-host communication. Network Layer Route Router

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information