Preview Test: HW3. Test Information Description Due:Nov. 3

Size: px
Start display at page:

Download "Preview Test: HW3. Test Information Description Due:Nov. 3"

Transcription

1 Preview Test: HW3 Test Information Description Due:Nov. 3 Instructions Multiple Attempts Not allowed. This test can only be taken once. Force Completion This test can be saved and resumed later. Question Completion Status: Save and Submit QUESTION 1 UDP and TCP use 1s complement for their checksums. Suppose you have the following three 8- bit bytes: , , What is the 1s complement of the sum of these 8- bit bytes? QUESTION 2 Suppose Host A sends one segment with sequence number 38 and 4 bytes of data over a TCP connection to Host B. In this same segment the acknowledgment number is necessarily 42. QUESTION 3 In TCP, the acknowledgement number that a host puts in a segment is the sequence number of the next byte the host is expecting from the sender. QUESTION 4 The size of the TCP rwnd never changes throughout the duration of the connection. QUESTION 5 The TCP segment has a field in its header for rwnd.

2 QUESTION 6 Suppose Host A sends two TCP segments back to back to Host B over a TCP connection. The first segment has sequence number 90; the second has sequence number 110. a. How much data is in the first segment? b. Suppose that the first segment is lost but the second segment arrives at B. In the acknowledgment that Host B sends to Host A, what will be the acknowledgment number? Write your answer with the above order. QUESTION 7 Pipelining requires which of the following transmitting many packets before receiving acknowledgements unique sequence numbers for each in-transit packet sender-side buffering of unacknowledged packets all of the above QUESTION 8 UDP has which of the following characteristics: three-way hand shake for connection establishment regulated send rate connection state at the server none of the above QUESTION 9 Given GBN protocol scenario in below diagram, describe what would happen for each of the numbered time ((10 through (5)) instants. Assume the sender s window size may hold 5 packets

3 10 points QUESTION 10 Given Selective-Repeat protocol scenario in below diagram, describe what would happen at each numbered ((1) through (6))time instants. Also, describe the contents of sender and receiver s windows at each of these time instants. When you describe the contents of the sender window s contents, identify the packets which are acknowledged. When you describe the contents of the receiver window s contents, identify the packets which are buffered but can t be delivered to the application. Assume the sender s and receiver s windows may hold 6 packets each.

4 QUESTION 11 The MSS is the maximum size of a TCP segment including headers. 12 points QUESTION 12 Suppose Host A is sending Host B a large file over a TCP connection. The number of unacknowledged bytes that A sends cannot exceed the size of the receive buffer. QUESTION 13 Over a TCP connection, suppose host A sends two segments to host B, host B sends an acknowledgement for each segment, the first acknowledgement is lost, but the second acknowledgement arrives before the timer for the first segment expires. Host A will retransmit the first segment Host A will retransmit the second segment

5 Host A will retransmit neither segments Host A will retransmit both segments QUESTION 14 Describe about threeway handshaking QUESTION 15 When a UDP segment arrives to a host, in order to direct the segment to the appropriate socket, the OS uses the source port number the destination port number the source IP address all of the above QUESTION 16 Consider the following diagram for connection oriented demultiplexing process. Fill out 4 numbered fields ((1) through (4)) with proper port numbers. QUESTION 17 TCP applies fast retransmit to a segment when 8 points the segment's timer expires when it receives three ACKs for an earlier segment

6 it estimates unusually large RTTs none of the above

COMPUTER NETWORK. Homework #2. Due Date: April 12, 2017 in class

COMPUTER NETWORK. Homework #2. Due Date: April 12, 2017 in class Computer Network Homework#2 COMPUTER NETWORK Homework #2 Due Date: April 12, 2017 in class Question 1 Suppose a process in Host C has a UDP socket with port number 6789. Suppose both Host A and Host B

More information

PROBLEMSAND EXERCISES

PROBLEMSAND EXERCISES Departamento de Tecnología Electrónica Computer Networking Unit 3: Transport layer PROBLEMSAND EXERCISES Transport Layer 95 Pr1: port numbers Suppose that the client A initiates a TCP connection to a Web

More information

c. If the sum contains a zero, the receiver knows there has been an error.

c. If the sum contains a zero, the receiver knows there has been an error. ENSC-37 Fall 27 Assignment#3 Due Date 6 Oct. 27 Problem-:[4] UDP and TCP use s complement for their checksums. Suppose you have the following three 8-bit bytes:,, and. a. [6] What is the s complement of

More information

Computer Networks. Homework #4: No Grading

Computer Networks. Homework #4: No Grading Computer Networks Homework #4: No Grading Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a. What is the range of port numbers you would

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY 23.2 The transport

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E

MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E MIDTERM EXAMINATION #2 OPERATING SYSTEM CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Intersession 2008 Last Name: First Name: Student ID: PLEASE

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

Networking Technologies and Applications

Networking Technologies and Applications Networking Technologies and Applications Rolland Vida BME TMIT Transport Protocols UDP User Datagram Protocol TCP Transport Control Protocol and many others UDP One of the core transport protocols Used

More information

Chapter 3 Review Questions

Chapter 3 Review Questions Chapter 3 Review Questions. 2. 3. Source port number 6 and destination port number 37. 4. TCP s congestion control can throttle an application s sending rate at times of congestion. Designers of applications

More information

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24

Lecture 20 Overview. Last Lecture. This Lecture. Next Lecture. Transport Control Protocol (1) Transport Control Protocol (2) Source: chapters 23, 24 Lecture 20 Overview Last Lecture Transport Control Protocol (1) This Lecture Transport Control Protocol (2) Source: chapters 23, 24 Next Lecture Internet Applications Source: chapter 26 COSC244 & TELE202

More information

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H...

file:///c:/users/hpguo/dropbox/website/teaching/fall 2017/CS4470/H... 1 of 9 11/26/2017, 11:28 AM Homework 3 solutions 1. A window holds bytes 2001 to 5000. The next byte to be sent is 3001. Draw a figure to show the situation of the window after the following two events:

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - B COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - A COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

CS164 Final Exam Winter 2013

CS164 Final Exam Winter 2013 CS164 Final Exam Winter 2013 Name: Last 4 digits of Student ID: Problem 1. State whether each of the following statements is true or false. (Two points for each correct answer, 1 point for each incorrect

More information

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22

23-3 TCP. Topics discussed in this section: TCP Services TCP Features Segment A TCP Connection Flow Control Error Control 23.22 23-3 TCP 23.22 TCP is a connection-oriented protocol; it creates a virtual connection between two TCPs to send data. In addition, TCP uses flow and error control mechanisms at the transport level. Topics

More information

ECE697AA Lecture 3. Today s lecture

ECE697AA Lecture 3. Today s lecture ECE697AA Lecture 3 Transport Layer: TCP and UDP Tilman Wolf Department of Electrical and Computer Engineering 09/09/08 Today s lecture Transport layer User datagram protocol (UDP) Reliable data transfer

More information

The Transport Layer: TCP & Reliable Data Transfer

The Transport Layer: TCP & Reliable Data Transfer The Transport Layer: TCP & Reliable Data Transfer Smith College, CSC 249 February 15, 2018 1 Chapter 3: Transport Layer q TCP Transport layer services: v Multiplexing/demultiplexing v Connection management

More information

Chapter 24. Transport-Layer Protocols

Chapter 24. Transport-Layer Protocols Chapter 24. Transport-Layer Protocols 23.1 Introduction 23.2 User Datagram Protocol 23.3 Transmission Control Protocol 23.4 SCTP Computer Networks 24-1 Position of Transport-Layer Protocols UDP is an unreliable

More information

CSC 4900 Computer Networks: TCP

CSC 4900 Computer Networks: TCP CSC 4900 Computer Networks: TCP Professor Henry Carter Fall 2017 Project 2: mymusic You will be building an application that allows you to synchronize your music across machines. The details of which are

More information

COM-208: Computer Networks - Homework 3

COM-208: Computer Networks - Homework 3 COM-208: Computer Networks - Homework 3 1 Application Layer 1. (P22) Consider distributing a file of F = 15 Gbits to N peers. The server has an upload rate of u s = 30 Mbps, and each peer has a download

More information

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols

Chapter 3: Transport Layer. Chapter 3 Transport Layer. Chapter 3 outline. Transport services and protocols Chapter 3 Transport Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete

More information

05 Transmission Control Protocol (TCP)

05 Transmission Control Protocol (TCP) SE 4C03 Winter 2003 05 Transmission Control Protocol (TCP) Instructor: W. M. Farmer Revised: 06 February 2003 1 Interprocess Communication Problem: How can a process on one host access a service provided

More information

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections

ICS 451: Today's plan. Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections ICS 451: Today's plan Sliding Window Reliable Transmission Acknowledgements Windows and Bandwidth-Delay Product Retransmission Timers Connections Alternating Bit Protocol: throughput tied to latency with

More information

Answers to Sample Questions on Transport Layer

Answers to Sample Questions on Transport Layer Answers to Sample Questions on Transport Layer 1) Which protocol Go-Back-N or Selective-Repeat - makes more efficient use of network bandwidth? Why? Answer: Selective repeat makes more efficient use of

More information

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture

TCP and Congestion Control (Day 1) Yoshifumi Nishida Sony Computer Science Labs, Inc. Today's Lecture TCP and Congestion Control (Day 1) Yoshifumi Nishida nishida@csl.sony.co.jp Sony Computer Science Labs, Inc 1 Today's Lecture Part1: TCP concept Part2: TCP detailed mechanisms Part3: Tools for TCP 2 1

More information

Practice Problems: P22, 23, P24, P25, P26, P27, P28, P29, P30, P32, P44 and P45. Hand-in the following: P27, P28, P32, P37, P44

Practice Problems: P22, 23, P24, P25, P26, P27, P28, P29, P30, P32, P44 and P45. Hand-in the following: P27, P28, P32, P37, P44 Practice Problems: P, 3, P4, P5, P6, P7, P8, P9, P30, P3, P44 and P45. Hand-in the following: P7, P8, P3, P37, P44 Chapter-3 Assigned/ Practice - Problems Problem a) Here we have a window size of N=3.

More information

CSE 123: Computer Networks

CSE 123: Computer Networks Student Name: PID: UCSD email: CSE 123: Computer Networks Homework 1 Solution (Due 10/12 in class) Total Points: 30 Instructions: Turn in a physical copy at the beginning of the class on 10/10. Problems:

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

Lecture 3: The Transport Layer: UDP and TCP

Lecture 3: The Transport Layer: UDP and TCP Lecture 3: The Transport Layer: UDP and TCP Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4395 3-1 The Transport Layer Provides efficient and robust end-to-end

More information

Introduction to the Transport Layer

Introduction to the Transport Layer Introduction to the Transport Layer CSC 249 Feb 13, 2018 1 Transport Layer Overview q Tasks performed by the layer v Services provided to the layer v Services expected from the layer q Multiplexing and

More information

Computer Networks. Homework #3: Due 11 November 2015 (Wednesday) Just before Midterm#2!

Computer Networks. Homework #3: Due 11 November 2015 (Wednesday) Just before Midterm#2! Computer Networks Homework #3: Due 11 November 2015 (Wednesday) Just before Midterm#2! Problem #1. Assume you need to write and test a client-server application program on two hosts you have at home. a.

More information

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control

Chapter 6. What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control Chapter 6 What happens at the Transport Layer? Services provided Transport protocols UDP TCP Flow control Congestion control OSI Model Hybrid Model Software outside the operating system Software inside

More information

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer

IS370 Data Communications and Computer Networks. Chapter 5 : Transport Layer IS370 Data Communications and Computer Networks Chapter 5 : Transport Layer Instructor : Mr Mourad Benchikh Introduction Transport layer is responsible on process-to-process delivery of the entire message.

More information

Communication Networks

Communication Networks Communication Networks Prof. Laurent Vanbever Exercises week 4 Reliable Transport Reliable versus Unreliable Transport In the lecture, you have learned how a reliable transport protocol can be built on

More information

TCP/IP-2. Transmission control protocol:

TCP/IP-2. Transmission control protocol: TCP/IP-2 Transmission control protocol: TCP and IP are the workhorses in the Internet. In this section we first discuss how TCP provides reliable, connectionoriented stream service over IP. To do so, TCP

More information

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections

Transport Layer. Application / Transport Interface. Transport Layer Services. Transport Layer Connections Application / Transport Interface Application requests service from transport layer Transport Layer Application Layer Prepare Transport service requirements Data for transport Local endpoint node address

More information

TCP : Fundamentals of Computer Networks Bill Nace

TCP : Fundamentals of Computer Networks Bill Nace TCP 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia Lab #1 due now! Reminder: Paper Review

More information

RSC Part III: Transport Layer 3. TCP

RSC Part III: Transport Layer 3. TCP RSC Part III: Transport Layer 3. TCP Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking: A Top Down

More information

ECE 610: Homework 4 Problems are taken from Kurose and Ross.

ECE 610: Homework 4 Problems are taken from Kurose and Ross. ECE 610: Homework 4 Problems are taken from Kurose and Ross. Problem 1: Host A and B are communicating over a TCP connection, and Host B has already received from A all bytes up through byte 248. Suppose

More information

Q U E S T I O N 3 In the current version of IP (IPv4), the use of TCP and UDP headers differ in which of the following ways?

Q U E S T I O N 3 In the current version of IP (IPv4), the use of TCP and UDP headers differ in which of the following ways? Preview Test: HW 2 Test Information Description Chapter 2 Instructions Due:Oct. 17 5 PM Multiple Attempts Not allowed. This test can only be taken once. Force Completion This test can be saved and resumed

More information

Chapter 3: Transport Layer Part A

Chapter 3: Transport Layer Part A Chapter 3: Transport Layer Part A Course on Computer Communication and Networks, CTH/GU The slides are adaptation of the slides made available by the authors of the course s main textbook 3: Transport

More information

TCP: Flow and Error Control

TCP: Flow and Error Control 1 TCP: Flow and Error Control Required reading: Kurose 3.5.3, 3.5.4, 3.5.5 CSE 4213, Fall 2006 Instructor: N. Vlajic TCP Stream Delivery 2 TCP Stream Delivery unlike UDP, TCP is a stream-oriented protocol

More information

Transport Layer (TCP/UDP)

Transport Layer (TCP/UDP) Transport Layer (TCP/UDP) Where we are in the Course Moving on up to the Transport Layer! Application Transport Network Link Physical CSE 461 University of Washington 2 Recall Transport layer provides

More information

Unit 2.

Unit 2. Unit 2 Unit 2 Topics Covered: 1. PROCESS-TO-PROCESS DELIVERY 1. Client-Server 2. Addressing 2. IANA Ranges 3. Socket Addresses 4. Multiplexing and Demultiplexing 5. Connectionless Versus Connection-Oriented

More information

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades

Announcements Computer Networking. Outline. Transport Protocols. Transport introduction. Error recovery & flow control. Mid-semester grades Announcements 15-441 Computer Networking Lecture 16 Transport Protocols Mid-semester grades Based on project1 + midterm + HW1 + HW2 42.5% of class If you got a D+,D, D- or F! must meet with Dave or me

More information

ETSF05/ETSF10 Internet Protocols Transport Layer Protocols

ETSF05/ETSF10 Internet Protocols Transport Layer Protocols ETSF05/ETSF10 Internet Protocols Transport Layer Protocols 2016 Jens Andersson Transport Layer Communication between applications Process-to-process delivery Client/server concept Local host Normally initialiser

More information

Application. Transport. Network. Link. Physical

Application. Transport. Network. Link. Physical Transport Layer ELEC1200 Principles behind transport layer services Multiplexing and demultiplexing UDP TCP Reliable Data Transfer TCP Congestion Control TCP Fairness *The slides are adapted from ppt slides

More information

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16

Guide To TCP/IP, Second Edition UDP Header Source Port Number (16 bits) IP HEADER Protocol Field = 17 Destination Port Number (16 bit) 15 16 Guide To TCP/IP, Second Edition Chapter 5 Transport Layer TCP/IP Protocols Objectives Understand the key features and functions of the User Datagram Protocol (UDP) Explain the mechanisms that drive segmentation,

More information

User Datagram Protocol

User Datagram Protocol Topics Transport Layer TCP s three-way handshake TCP s connection termination sequence TCP s TIME_WAIT state TCP and UDP buffering by the socket layer 2 Introduction UDP is a simple, unreliable datagram

More information

The GBN sender must respond to three types of events:

The GBN sender must respond to three types of events: Go-Back-N (GBN) In a Go-Back-N (GBN) protocol, the sender is allowed to transmit several packets (when available) without waiting for an acknowledgment, but is constrained to have no more than some maximum

More information

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management

Chapter 3 outline. 3.5 connection-oriented transport: TCP segment structure reliable data transfer flow control connection management Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3 connectionless transport: UDP 3.4 principles of reliable data transfer 3.5 connection-oriented transport: TCP segment

More information

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length)

32 bits. source port # dest port # sequence number acknowledgement number not used. checksum. Options (variable length) Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connectionoriented transport: TCP segment

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Transport Layer Connection Oriented Transport: TCP Sec 3.5 Prof. Lina Battestilli Fall 2017 Transport Layer Chapter 3 Outline 3.1 Transport-layer Services

More information

I TCP 1/2. Internet TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) TCP Connection-oriented

I TCP 1/2. Internet TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) TCP Connection-oriented I TCP 1/2 TA: Connection-oriented (virtual circuit) Connectionless (datagram) (flow control) (congestion control) Internet TCP Connection-oriented UDP Connectionless IP + TCP (connection-oriented) (byte

More information

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network?

Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? CS368: Exercise 5 Q23-5 In a network, the size of the receive window is 1 packet. Which of the follow-ing protocols is being used by the network? a) Stop_and_Wait b) Go-Back-N c) Selective-Repeat Q23-6.

More information

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine Computer Science Department 1 / 33 1 COS 140: Foundations

More information

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented

Internet transport-layer protocols. Transport services and protocols. Sending and receiving. Connection-oriented (TCP) Connection-oriented Transport services and protocols Internet -layer protocols logical communication between processes protocols run in end systems send side: breaks app messages into segments, passes to layer rcv side: reassembles

More information

a) Adding the two bytes gives Taking the one s complement gives

a) Adding the two bytes gives Taking the one s complement gives EE33- solutions for homework #3 (3 problems) Problem 3 Note, wrap around if overflow One's complement = To detect errors, the receiver adds the four words (the three original words and the checksum) If

More information

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 33 COS 140:

More information

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP

Outline. Connecting to the access network: DHCP and mobile IP, LTE. Transport layer: UDP and TCP Outline Connecting to the access network: DHCP and mobile IP, LTE Transport layer: UDP and TCP IETF TCP/IP protocol suite User application, e.g., http with Mozilla Communication for each process on computer

More information

UNIT IV TRANSPORT LAYER

UNIT IV TRANSPORT LAYER Transport Layer UNIT IV TRANSPORT LAYER Congestion Control and Quality of Service Ref: Data Communication & Networking, 4 th edition, Forouzan IV-1 DATA TRAFFIC The main focus of congestion control and

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING ECE361 Computer Networks Midterm March 06, 2017, 6:15PM DURATION: 80 minutes Calculator Type: 2 (non-programmable calculators) Examiner:

More information

Lecture 5. Transport Layer. Transport Layer 1-1

Lecture 5. Transport Layer. Transport Layer 1-1 Lecture 5 Transport Layer Transport Layer 1-1 Agenda The Transport Layer (TL) Introduction to TL Protocols and Services Connectionless and Connection-oriented Processes in TL Unreliable Data Transfer User

More information

CS457 Transport Protocols. CS 457 Fall 2014

CS457 Transport Protocols. CS 457 Fall 2014 CS457 Transport Protocols CS 457 Fall 2014 Topics Principles underlying transport-layer services Demultiplexing Detecting corruption Reliable delivery Flow control Transport-layer protocols User Datagram

More information

NWEN 243. Networked Applications. Layer 4 TCP and UDP

NWEN 243. Networked Applications. Layer 4 TCP and UDP NWEN 243 Networked Applications Layer 4 TCP and UDP 1 About the second lecturer Aaron Chen Office: AM405 Phone: 463 5114 Email: aaron.chen@ecs.vuw.ac.nz Transport layer and application layer protocols

More information

TCP/IP Protocol Suite 1

TCP/IP Protocol Suite 1 TCP/IP Protocol Suite 1 Stream Control Transmission Protocol (SCTP) TCP/IP Protocol Suite 2 OBJECTIVES: To introduce SCTP as a new transport-layer protocol. To discuss SCTP services and compare them with

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START MIDTERM EXAMINATION #2 NETWORKING CONCEPTS 03-60-367-01 U N I V E R S I T Y O F W I N D S O R - S c h o o l o f C o m p u t e r S c i e n c e Fall 2011 Question Paper NOTE: Students may take this question

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.11 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

TCP reliable data transfer. Chapter 3 outline. TCP sender events: TCP sender (simplified) TCP: retransmission scenarios. TCP: retransmission scenarios

TCP reliable data transfer. Chapter 3 outline. TCP sender events: TCP sender (simplified) TCP: retransmission scenarios. TCP: retransmission scenarios Chapter 3 outline TCP reliable 3.2 principles of reliable 3.3 connection-oriented flow 3.4 principles of congestion 3.5 TCP congestion TCP creates rdt service on top of IP s unreliable service pipelined

More information

Solution to Question 1: ``Quickies'' (25 points, 15 minutes)

Solution to Question 1: ``Quickies'' (25 points, 15 minutes) Solution to Question : ``Quickies'' (25 points, 5 minutes) What is meant by the term statistical multiplexing? Answer: In statistical multiplexing, data from multiple users (senders) is sent over a link.

More information

Internet Networking recitation #10 TCP New Reno Vs. Reno

Internet Networking recitation #10 TCP New Reno Vs. Reno recitation #0 TCP New Reno Vs. Reno Spring Semester 200, Dept. of Computer Science, Technion 2 Introduction Packet Loss Management TCP Reno (RFC 258) can manage a loss of at most one packet from a single

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 9 1 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and demultiplexing 3.3

More information

Transport Layer. Gursharan Singh Tatla. Upendra Sharma. 1

Transport Layer. Gursharan Singh Tatla.   Upendra Sharma. 1 Transport Layer Gursharan Singh Tatla mailme@gursharansingh.in Upendra Sharma 1 Introduction The transport layer is the fourth layer from the bottom in the OSI reference model. It is responsible for message

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.10 Chapter 3 outline 3.1 transport-layer services 3.2 multiplexing and

More information

Network Technology 1 5th - Transport Protocol. Mario Lombardo -

Network Technology 1 5th - Transport Protocol. Mario Lombardo - Network Technology 1 5th - Transport Protocol Mario Lombardo - lombardo@informatik.dhbw-stuttgart.de 1 overview Transport Protocol Layer realizes process to process communication data unit is called a

More information

TSIN02 - Internetworking

TSIN02 - Internetworking TSIN02 - Internetworking Literature: Lecture 4: Transport Layer Forouzan: ch 11-12 Transport layer responsibilities UDP TCP 2004 Image Coding Group, Linköpings Universitet 2 Transport layer in OSI model

More information

CS321: Computer Networks Error and Flow Control in TCP

CS321: Computer Networks Error and Flow Control in TCP CS321: Computer Networks Error and Flow Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in SEQ and ACK numbers in TCP TCP views data as an unstructured,

More information

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure

Correcting mistakes. TCP: Overview RFCs: 793, 1122, 1323, 2018, TCP seq. # s and ACKs. GBN in action. TCP segment structure Correcting mistakes Go-back-N: big picture: sender can have up to N unacked packets in pipeline rcvr only sends cumulative acks doesn t ack packet if there s a gap sender has r for oldest unacked packet

More information

Programming Assignment 3: Transmission Control Protocol

Programming Assignment 3: Transmission Control Protocol CS 640 Introduction to Computer Networks Spring 2005 http://www.cs.wisc.edu/ suman/courses/640/s05 Programming Assignment 3: Transmission Control Protocol Assigned: March 28,2005 Due: April 15, 2005, 11:59pm

More information

User Datagram Protocol (UDP):

User Datagram Protocol (UDP): SFWR 4C03: Computer Networks and Computer Security Feb 2-5 2004 Lecturer: Kartik Krishnan Lectures 13-15 User Datagram Protocol (UDP): UDP is a connectionless transport layer protocol: each output operation

More information

CS 640 Introduction to Computer Networks Spring 2009

CS 640 Introduction to Computer Networks Spring 2009 CS 640 Introduction to Computer Networks Spring 2009 http://pages.cs.wisc.edu/~suman/courses/wiki/doku.php?id=640-spring2009 Programming Assignment 3: Transmission Control Protocol Assigned: March 26,

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page:

Suprakash Datta. Office: CSEB 3043 Phone: ext Course page: CSE 3214: Computer Networks Protocols and Applications Suprakash Datta datta@cse.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/3214 These slides are

More information

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP

Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP Chapter 23 Process-to-Process Delivery: UDP, TCP, and SCTP 23.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-1 PROCESS-TO-PROCESS DELIVERY The transport

More information

10 minutes survey (anonymous)

10 minutes survey (anonymous) 10 minutes survey (anonymous) v Comments/Suggestions to my lecture/lab/ homework/exam v If you like this course, which part do you like? v If you don t like it, which part do you not like? Thanks! Transport

More information

OSI Transport Layer. objectives

OSI Transport Layer. objectives LECTURE 5 OSI Transport Layer objectives 1. Roles of the Transport Layer 1. segmentation of data 2. error detection 3. Multiplexing of upper layer application using port numbers 2. The TCP protocol Communicating

More information

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing

Transport services and protocols. Chapter 3 outline. Internet transport-layer protocols Chapter 3 outline. Multiplexing/demultiplexing Chapter 3 outline 3.1 Transport-layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless : UDP 3.4 Principles of reliable data transfer 3.5 Connection-oriented : TCP segment structure reliable

More information

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology

Transport Over IP. CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP CSCI 690 Michael Hutt New York Institute of Technology Transport Over IP What is a transport protocol? Choosing to use a transport protocol Ports and Addresses Datagrams UDP What is a

More information

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay

CS 716: Introduction to communication networks th class; 7 th Oct Instructor: Sridhar Iyer IIT Bombay CS 716: Introduction to communication networks - 18 th class; 7 th Oct 2011 Instructor: Sridhar Iyer IIT Bombay Reliable Transport We have already designed a reliable communication protocol for an analogy

More information

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain ERROR AND FLOW CONTROL Lecture: 10 Instructor Mazhar Hussain 1 FLOW CONTROL Flow control coordinates the amount of data that can be sent before receiving acknowledgement It is one of the most important

More information

CSCI Topics: Internet Programming Fall 2008

CSCI Topics: Internet Programming Fall 2008 CSCI 491-01 Topics: Internet Programming Fall 2008 Transport Layer Derek Leonard Hendrix College October 15, 2008 Original slides copyright 1996-2007 J.F Kurose and K.W. Ross 1 Chapter 3: Roadmap 3.1 Transport-layer

More information

NT1210 Introduction to Networking. Unit 10

NT1210 Introduction to Networking. Unit 10 NT1210 Introduction to Networking Unit 10 Chapter 10, TCP/IP Transport Objectives Identify the major needs and stakeholders for computer networks and network applications. Compare and contrast the OSI

More information

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa

Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa NET 331 Computer Networks Lecture 08: The Transport Layer (Part 2) The Transport Layer Protocol (TCP) Dr. Anis Koubaa Reformatted slides from textbook Computer Networking a top-down appraoch, Fifth Edition

More information

Chapter 3: Transport Layer

Chapter 3: Transport Layer Chapter 3: Transport Layer Chapter goals: understand principles behind transport layer services: multiplexing/demultiplex ing reliable data transfer flow control congestion control instantiation and implementation

More information

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols

TCP/IP. Chapter 5: Transport Layer TCP/IP Protocols TCP/IP Chapter 5: Transport Layer TCP/IP Protocols 1 Objectives Understand the key features and functions of the User Datagram Protocol Explain the mechanisms that drive segmentation, reassembly, and retransmission

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 4: Transport Layer Literature: Forouzan: ch 11-12 2004 Image Coding Group, Linköpings Universitet Lecture 4: Outline Transport layer responsibilities UDP TCP 2 Transport layer in OSI model Figure

More information

CSE 4213: Computer Networks II

CSE 4213: Computer Networks II Next CSE 4213: Computer Networks II The layer Suprakash Datta datta@cs.yorku.ca Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cs.yorku.ca/course/4213 These slides are adapted

More information