CCNA Exploration: Routing Protocols and Concepts Chapter 10 Case Study

Size: px
Start display at page:

Download "CCNA Exploration: Routing Protocols and Concepts Chapter 10 Case Study"

Transcription

1 Objectives: Use OSPF single area to illustrate basic Link State components and operation. Migrate from EIGRP to OSPF single area. Intro: Trevni Inc. decided to upgrade their routing protocol from EIGRP to link state and called you for help. Topology:

2 Scenario: Foreseeing a fast growth in the near future, Trevni decided to upgrade its routing protocol from EIGRP to a link state. Trevni asked you do study their topology and, based on it, choose the most suitable link state routing protocol. After analyzing their plans, you decided to implement OSPF. Since EIGRP is currently running on Trevni s network you define your strategy: keep EIGRP while you configure OSPF. This will ensure the smallest disruption of Trevni s operation. Step 1 Configuring OSPF on the routers As you can see on the topology shown above, network /24 uses Ethernet, which is a Broadcast Multi-access environment. When OSPF is configured to run on such environment, by default, OSPF routers on the broadcast multi-access segment elect a DR using OSPF hello packets. An OSPF DR is responsible for establish full adjacency with its OSPF neighbors and flood those neighbors with updated Link State Advertisements (LSAs) when necessary. Because of the DR s responsibilities, it is recommended that a router with more processing resources (memory and CPU power) become the DR of the segment. While studying Trevni s topology, you noticed R4 is the most resourceful router (it has a faster CPU and a reasonable amount of RAM memory). Because of this you decide to make R4 the OSPF Designated Router (DR) for the network 100 ( /24). Question 1: What happens if the DR fails? Does OSPF stop working? Answer: No. During the DR election, OSPF routers also elect a Backup Designated Router (BDR). If the DR goes down, the BDR automatically becomes the DR and a new BDR is elected. You connect the console cable to R4 and follow the proper steps to configure OSPF in it: Configure a loopback interface and assign an ip address to it, start OSPF process, define which networks will be part of it and assign them to OSPF area 0. The commands are documented bellow for future reference: R4(config)# int loopback 0 R4(config-if)# ip address R4(config)# router ospf 1 R4(config-router)# network area 0 R4(config-router)# network area 0 R1(config-router)# interface fa0/0 R1(config-if)# ip ospf priority 25 R4(config-if)# end

3 Question 2: Why is a loopback interface necessary? Answer: OSPF needs to define a unique router ID to run properly. Even though such ID could be manually configured, by default OSPF automatically borrows the highest looback interface address found on the router and sets it as the router s router ID. In the case no loopback interfaces are configured, the highest operational physical interface address is used. If no operational physical interfaces are present, no router ID is configured and OSPF doesn t start. Still in R4, you issue the sh ip ospf command to ensure OSPF configuration is correct. Everything looks good. You switch the console cable to R1 and, following the same basic steps, configure OSPF in it. The commands are also listed bellow for future reference. R1(config)# int loopback 0 R1(config-if)# ip address R1(config)# router ospf 1 R1(config-router)# network area 0 R1(config-router)# network area 0 R1(config-router)# end Question 3: Why was the interface ip ospf priority command necessary in R4? Answer: In order to elect a DR/BDR for the segment, OSPF routers compare their priority values. The router with highest priority becomes DR for that segment. Since all OSPF routers have priority value set 1 by default, R4 s priority was set to 25 to ensure R4 will become DR for network /24. Note: OSPF routers with priority=0 don t participate on the DR/BDR election. You issue the sh ip ospf command to ensure OSPF configuration is correct in R1. Since OSPF configuration is correct, you move on to R2. With the console cable now connected to R2, you configure OSPF into that router. Once more, the commands are listed below: R2(config)# int loopback 0 R2(config-if)# ip address R2(config)# router ospf 1 R2(config-router)# network area 0 R2(config-router)# network area 0 R2(config-router)# end You switch the console cable to R3 and configure OSPF in it too. The OSPF configuration in R3 is very similar to the configuration done in the other routers. The difference is R3 speaks OSPF with R4 via a serial link, which is a point-to-point link. Since only the two ends are allowed in a point-to-point link, by

4 default, Cisco routers running OSPF don t perform DR/BDR. Even though this is a relevant difference, from the basic configuration stand point, nothing changes. You finish configuring OSPF in R3 and check it to ensure everything is fine. Since it looks good, you decide it time to remove EIGRP. The OSPF commands issued into R3 are listed below: R3(config)# int loopback 0 R3(config-if)# ip address R3(config)# router ospf 1 R3(config-router)# network area 0 R3(config-router)# network area 0 R3(config-router)# end Question 4: Into all 4 routers (R1, R2, R4 and R4) OSPF was configured with process ID = 1 (router ospf 1 command). Is it necessary to match the process ID number as it is with EIGRP? Answer: No. OSPF process ID are only used to identify the OSPF instance running within the router and has no meaning out of it, in other words, OSPF process ID has local scope. Question 5: Is the mask defined in the network command used to route summarization process? Answer: No. The mask specified network command only defines which network range will be part of that OSPF instance. Step 2 Removing EIGRP Starting by R3, you issue the no router eigrp 200 command to remove EIGRP from it. 200 was the AS number previously configured on the routers. You connect to R1, R2 and R4 and do the same. Once EIGRP is removed, you issue the sh ip route command in the routers and verify the presence of all expected OSPF routes. Below is the output of the sh ip route command and sh ip ospf neighbor when issued into R4: sh ip route Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route Gateway of last resort is to network /30 is subnetted, 1 subnets

5 C is directly connected, Serial0/3/ /32 is subnetted, 1 subnets O [110/2] via , 03:52:55, Vlan /32 is subnetted, 1 subnets O [110/2] via , 03:52:55, Vlan20 C /24 is directly connected, Vlan /32 is subnetted, 1 subnets O [110/782] via , 00:00:11, Serial0/0 S* /0 [1/0] via sh ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface FULL/ - 00:00: Serial0/3/ FULL/DROTHER 00:00: Vlan FULL/BDR 00:00: Vlan20 The routing table on R4 shows OSPF routes to networks /24, /24 and /24, all learnt via OSPF. R4 s neighbor list shown by the sh ip ospf neighbor command reveals R4 formed adjacencies with R1 (router ID ), R2 (router ID ) and R3 (router ID ). It also shows the adjacency formed by R4 with R2, which is the BDR for the segment ( FULL/BDR), is in the full state. The adjacency between R4 and R1 is also in full state but since R1 has the lowest router ID, it is just a regular OSPF router ( FULL/DROTHER) Even though R4 formed full adjacency with R3 no DR/BDR were elected on that link because it is a pointto-point link. The signal show the absence of DR/BDR routers on that link. Since no DR shows up on R4 s neighbor list, R4 must be the DR on its segment. To confirm, you issue a sh ip ospf neighbor command in R1. Below is the output: R1#sh ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface FULL/BDR 00:00: FastEthernet0/ FULL/DR 00:00: FastEthernet0/ 0 R1# R1 s output makes it clear: R1 formed a full adjacency with R4 (router ID ) which is the DR of the segment (FULL/DR). R1 also formed a full adjacency with R2 (router ID ) which is the BDR of the segment (FULL/BDR) After a few successful pings to different points of Trevni network, you conclude everything is working fine.

CCNA Exploration: Routing Protocols and Concepts Chapter 11 Case Study

CCNA Exploration: Routing Protocols and Concepts Chapter 11 Case Study bjectives: Consolidate SPF knowledge. Describe the operation of SPF multi-area. Introduce the concept of route summarization with SPF. Introduce the concept of SPF optimization. Intro: Trevni Inc. needed

More information

The following questions are designed to test your understanding of this chapter s

The following questions are designed to test your understanding of this chapter s Review Questions The following questions are designed to test your understanding of this chapter s material. For more information on how to get additional questions, please see www.lammle.com/ccn a. You

More information

Chapter 3 Lab 3-1, Single-Area OSPF Link Costs and Interface Priorities

Chapter 3 Lab 3-1, Single-Area OSPF Link Costs and Interface Priorities NPv6 ROUTE hapter 3 Lab 3-1, Single-Area OSPF Link osts and Interface Priorities Topology Objectives onfigure single-area OSPF on a router. Advertise loopback interfaces into OSPF. Verify OSPF adjacencies.

More information

Adjust Administrative Distance for Route Selection in Cisco IOS Routers Configuration Example

Adjust Administrative Distance for Route Selection in Cisco IOS Routers Configuration Example Adjust Administrative Distance for Route Selection in Cisco IOS Routers Configuration Example Document ID: 113153 Contents Introduction Prerequisites Requirements Components Used Conventions Configure

More information

Lab 4: Routing using OSPF

Lab 4: Routing using OSPF Network Topology:- Lab 4: Routing using OSPF Device Interface IP Address Subnet Mask Gateway/Clock Description Rate Fa 0/0 172.16.1.17 255.255.255.240 ----- R1 LAN R1 Se 0/0/0 192.168.10.1 255.255.255.252

More information

Chapter 3 Lab 3-4, OSPF over Frame Relay

Chapter 3 Lab 3-4, OSPF over Frame Relay Chapter 3 Lab 3-4, OSPF over Frame Relay Topology Objectives Background Configure OSPF over Frame Relay. Use non-broadcast and point-to-multipoint OSPF network types. Modify default OSPF timers. You are

More information

Config. Router# show ip ospf

Config. Router# show ip ospf Config cc na c ookb ook.com R1(config)#router ospf 10 R1(config-router)#router-id 0.0.0.1 Do router-id first, before relationships are formed using it R3(config-router)#do clear ip ospf process Necessary

More information

Chapter 1 Lab 1-1, Single-Area OSPF Link Costs and Interface Priorities

Chapter 1 Lab 1-1, Single-Area OSPF Link Costs and Interface Priorities Chapter 1 Lab 1-1, Single-Area OSPF Link Costs and Interface Priorities Topology Objectives Configure single-area OSPF on a router. Advertise loopback interfaces into OSPF. Verify OSPF adjacencies. Verify

More information

CCNA Exploration: Routing Protocols and Concepts Chapter 8 Case Study

CCNA Exploration: Routing Protocols and Concepts Chapter 8 Case Study Objectives: Consolidate routing table reading skills. Introduce the idea of more than 1 routing protocol running into the same router. Explain the use of routes to Null0 interface. Intro: Connex Inc. is

More information

Configuration and Management of Networks

Configuration and Management of Networks onfiguration and Management of Networks Single Area SPF Link osts and Interface Priorities The lab is built on the topology: bjectives Background! onfigure single-area SPF on a r.! Advertise loopback interfaces

More information

Chapter 6 Reading Organizer

Chapter 6 Reading Organizer Name Date Chapter 6 Reading Organizer After completion of this chapter, you should be able to: Describe and plan a network using OSPF Design and configure a network using single-area OSPF Work with multi-protocol

More information

Lab- Configuring Basic Single-Area OSPFv2

Lab- Configuring Basic Single-Area OSPFv2 Lab- onfiguring Basic Single-Area OSPFv2 Topology G0/0 G0/0 2013 isco and/or its affiliates. All rights reserved. This document is isco Public. Page 1 of 29 Addressing Table Objectives Device Interface

More information

Configuring Redundant Routing on the VPN 3000 Concentrator

Configuring Redundant Routing on the VPN 3000 Concentrator Configuring Redundant Routing on the VPN 3000 Concentrator Document ID: 13354 Contents Introduction Prerequisites Requirements Components Used Conventions Configure Network Diagram Router Configurations

More information

Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two)

Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two) ICND1 OSPF Questions Question 1 Which of the following describe the process identifier that is used to run OSPF on a router? (Choose two) A. It is locally significant. B. It is globally significant. C.

More information

Initial Configurations for OSPF over a Point to Point Link

Initial Configurations for OSPF over a Point to Point Link Initial onfigurations for OSPF over a Point to Point Link Document ID: 13687 ontents Introduction Prerequisites Requirements omponents Used onventions OSPF over a Point to Point Link with IP Addresses

More information

TDC 363 Introduction to LANs

TDC 363 Introduction to LANs TDC 363 Introduction to LANs OSPF Greg Brewster DePaul University TDC 363 Greg Brewster, DePaul University 1 OSPF Link State Routing Algorithms Open Shortest Path First (OSPF) Message Types Operations

More information

Chapter 4 Lab 4-3, Manipulating Administrative Distances

Chapter 4 Lab 4-3, Manipulating Administrative Distances hapter 4 Lab 4-3, Manipulating Administrative Distances Topology bjectives Background onfigure RIP on a router. onfigure SPF on a router. Manipulate administrative distances. ompare routing protocol behavior.

More information

REDDIG II Computer Networking Training

REDDIG II Computer Networking Training REDDIG II Computer Networking Training JM SANCHEZ / PH RASSAT -20/06/2012 Invierno 2011 Capacitacion en fabrica - CORPAC Dynamic Routing Dynamic Routing Function(s) of Dynamic Routing Protocols: Dynamically

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF 1 OSPF Open Shortest Path First Link state or SPF technology Developed by OSPF working group of IETF (RFC 1247) OSPFv2 standard described in RFC2328 Designed for: TCP/IP environment

More information

LAB8: Named EIGRP IPv4

LAB8: Named EIGRP IPv4 Page1 AB8: Named EIGRP IPv4 isclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

TELECOMMUNICATION MANAGEMENT AND NETWORKS

TELECOMMUNICATION MANAGEMENT AND NETWORKS QUAID-E-AWAM UNIVERSITY OF ENGINEERING SCIENCE AND TECHNOLOGY, NAWABSHAH TELECOMMUNICATION MANAGEMENT AND NETWORKS LAB # 3 CONFIGURING INTERFACES OF ROUTER AND SWITCH Topology Diagram Addressing Table

More information

LAB11: EIGRP IPv4. EIGRP: Stub. Disclaimer

LAB11: EIGRP IPv4. EIGRP: Stub. Disclaimer Page1 AB11: EIGRP IPv4 isclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

KIM DONNERBORG / RTS. Cisco Lab Øvelse Af Kim Donnerborg / RTS. Side 0 af 8

KIM DONNERBORG / RTS. Cisco Lab Øvelse Af Kim Donnerborg / RTS. Side 0 af 8 KIM DONNERBORG / RTS Side 0 af 8 INDHOLDSFORTEGNELSE Lab: Basic Router Configuration... 2 Topology Diagram... 2 Addressing Table... 2 Learning Objectives... 2 Scenario... 2 Task 1: Cable the Network....

More information

CIS 83 LAB 2 - Single Area OSPF Rich Simms September 12, Objective. Scenario. Topology

CIS 83 LAB 2 - Single Area OSPF Rich Simms September 12, Objective. Scenario. Topology CIS 83 LAB 2 - Single Area OSPF Rich Simms September 12, 2006 Objective The objective of this lab is to become familiar setting up and configuring OSPF on three routers for a single area. OSPF is our first

More information

CCNA Questions/Answers Routing Protocols

CCNA Questions/Answers Routing Protocols Refer to the exhibit and configuration shown above. Routers R1 and R2 are properly configured with eigrp 976 protocol and are able to ping interfaces fa0/1 and fa0/2, respectively. Which commands are necessary

More information

CCNA Semester 2 labs. Part 2 of 2 Labs for chapters 8 11

CCNA Semester 2 labs. Part 2 of 2 Labs for chapters 8 11 CCNA Semester 2 labs Part 2 of 2 Labs for chapters 8 11 8.2.4.5 Lab - Configuring Basic Single-Area OSPFv2 8.3.3.6 Lab - Configuring Basic Single-Area OSPFv3 9.2.2.7 Lab - Configuring and Verifying Standard

More information

CIS 83 Midterm Spring 2004 Answer Sheet Name Score Grade Question Answer Question Answer

CIS 83 Midterm Spring 2004 Answer Sheet Name Score Grade Question Answer Question Answer CIS 83 Midterm Spring 2004 Answer Sheet Name: Score: Grade: Question Answer Question Answer 1 A B C D E F 51 A B C D E F 2 A B C D E F 52 A B C D E F 3 A B C D E F 53 A B C D E F 4 A B C D E F 54 A B C

More information

DMVPN Topology. Page1

DMVPN Topology. Page1 DMVPN DMVPN Topology Page1 LAB 2: Configure EIGRP over DMVPN: Task 1: Configure EIGRP over DMVPN Process Step 1 In the configuration mode of router configure EIGRP over DMVPN by following command: R1:

More information

INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB

INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB INTERNET TEACHING LAB: Interior Gateway Protocol (IGP) LAB Overview In this lab, we will explore some common interior gateway protocols - RIP version 1 (Routing Information Protocol) - OSPF (Open Shortest

More information

Lab - Configuring Basic Single-Area OSPFv2

Lab - Configuring Basic Single-Area OSPFv2 Lab - Configuring Basic Single-Area SPFv2 Topology Addressing Table Device Interface IP Address Subnet Mask Default Gateway G0/0 192.168.1.1 255.255.255.0 N/A R1 S0/0/0 (DCE) 192.168.12.1 255.255.255.252

More information

Routing Information Protocol Version 2.0

Routing Information Protocol Version 2.0 Routing Information Protocol Version 2.0 RIPv2 Objective: onfigure RIPv2 between R1 and R2 to obtain connectivity between Networks Directions onfigure R1's interface F0/0 with the IP address 10.1.0.1/16

More information

Shortcut Switching Enhancements for NHRP in DMVPN Networks

Shortcut Switching Enhancements for NHRP in DMVPN Networks Shortcut Switching Enhancements for NHRP in DMVPN Networks Routers in a Dynamic Multipoint VPN (DMVPN) Phase 3 network use Next Hop Resolution Protocol (NHRP) Shortcut Switching to discover shorter paths

More information

Two types of routing protocols are used in internetworks: interior gateway protocols (IGPs) and exterior gateway protocols (EGPs).

Two types of routing protocols are used in internetworks: interior gateway protocols (IGPs) and exterior gateway protocols (EGPs). Introduction Dynamic routing is when protocols are used to find networks and update routing tables on routers. True, this is easier than using static or default routing, but it ll cost you in terms of

More information

CCNA 3 (v v6.0) Chapter 8 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 8 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 8 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-8-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 8 Exam Answers

More information

Lab Configuring Static NAT

Lab Configuring Static NAT Lab 10.5.1 Configuring Static NAT Objective Configure Network Address Translation (NAT) static translation to provide reliable outside access to three shared company servers. Scenario Step 1 The International

More information

CCIE R&S Lab Workbook Volume I Version 5.0

CCIE R&S Lab Workbook Volume I Version 5.0 Copyright Information, Inc. All rights reserved. The following publication, CCIE R&S Lab Workbook Volume I Version 5.0, was developed by Internetwork Expert, Inc. All rights reserved. No part of this publication

More information

Module 2 OSPF Configuration for Training Lab Network

Module 2 OSPF Configuration for Training Lab Network APNIC IPv6/Routing Workshop Lab Module 2 OSPF Configuration for Training Lab Network Objective: All the workshop lab routers are configured with required basic & interface configuration according to the

More information

Contents. Introduction. Prerequisites. Requirements. Components Used

Contents. Introduction. Prerequisites. Requirements. Components Used Contents Introduction Prerequisites Requirements Components Used Configure Network Diagram Configurations OSPF EIGRP RIP Troubleshoot Introduction This document describes how to redistribute Internal Border

More information

Chapter 3 Lab 3-2, Multi-Area OSPF with Stub Areas and Authentication

Chapter 3 Lab 3-2, Multi-Area OSPF with Stub Areas and Authentication NPv6 ROUTE hapter 3 Lab 3-2, Multi-Area OSPF with Stub Areas and Authentication Topology Objectives Background onfigure multiple-area OSPF on a r. Verify multiple-area behavior. onfigure OSPF stub, totally

More information

CCNA 3 (v v6.0) Chapter 10 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 10 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 10 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-10-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 10 Exam Answers

More information

Part II. Chapter 3. Determining IP Routes

Part II. Chapter 3. Determining IP Routes Part II Chapter 3 Routers perform two main functions: switching and routing. The switching function is the process of moving packets from an inbound interface to an outbound interface. The switching function

More information

Lab- Troubleshooting Basic EIGRP for 1Pv4

Lab- Troubleshooting Basic EIGRP for 1Pv4 Lab- Troubleshooting Basic EIGRP for 1Pv4 Topology G0/0 G0/0 PC-A PC-C 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 27 Addressing Table efault Gateway

More information

Chapter 3 Lab 3-3, OSPF Virtual Links and Area Summarization

Chapter 3 Lab 3-3, OSPF Virtual Links and Area Summarization NPv6 RUTE hapter 3 Lab 3-3, SPF Virtual Links and Area Summarization Topology bjectives Background onfigure multi-area SPF on a r. Verify multi-area behavior. reate an SPF virtual link. Summarize an area.

More information

IP Routing Tecnologie e Protocolli per Internet II rev 1

IP Routing Tecnologie e Protocolli per Internet II rev 1 IP Routing Tecnologie e Protocolli per Internet II rev 1 Andrea Detti Electronic Engineering dept. E-mail: andrea.detti@uniroma2.it Some sources: Cisco CCNA Routing and Switching ICND1 and ICND2 Slide

More information

RealCiscoLAB.com. Chapter 2 Lab 2-2, EIGRP Load Balancing. Topology. Objectives. Background. CCNPv6 ROUTE

RealCiscoLAB.com. Chapter 2 Lab 2-2, EIGRP Load Balancing. Topology. Objectives. Background. CCNPv6 ROUTE RealCiscoLAB.com CCNPv6 ROUTE Chapter 2 Lab 2-2, EIGRP Load Balancing Topology Objectives Background Review a basic EIGRP configuration. Explore the EIGRP topology table. Identify successors, feasible

More information

Network Layer Week 5. Module : Computer Networks Lecturer: Lucy White Office : 324

Network Layer Week 5. Module : Computer Networks Lecturer: Lucy White Office : 324 Network Layer Week 5 Module : Computer Networks Lecturer: Lucy White lbwhite@wit.ie Office : 324 1 Network Layer Network Layer Protocols Common Network Layer Protocols Internet Protocol version 4 (IPv4)

More information

OSPF DR and BDR Elections

OSPF DR and BDR Elections OSPF DR and BDR Elections In Chapter 6, Enhanced IGRP (EIGRP) and Open Shortest Path First (OSPF), of the Sybex CCNA Study Guide Standard and CCNA Study Guide Deluxe Editions, I discussed EIGRP and OSPF

More information

LAB5: OSPF IPv4. OSPF: Stub. Disclaimer

LAB5: OSPF IPv4. OSPF: Stub. Disclaimer Page1 LAB5: SPF IPv4 Disclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters

Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters Chapter 6 Lab 6-4, BGP Route Reflectors and Route Filters Topology Objectives Background Configure IBGP routers to use a route reflector and a simple route filter. The International Travel Agency maintains

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 OSPF Dynamic Routing Protocol Link State technology Runs over IP, protocol 89 Designed by IETF for TCP/IP Supports VLSM

More information

RealCiscoLAB.com. Chapter 6 Lab 6-2, Using the AS_PATH Attribute. Topology. Objectives. Background. CCNPv6 ROUTE

RealCiscoLAB.com. Chapter 6 Lab 6-2, Using the AS_PATH Attribute. Topology. Objectives. Background. CCNPv6 ROUTE RealCiscoLAB.com CCNPv6 ROUTE Chapter 6 Lab 6-2, Using the AS_PATH Attribute Topology Objectives Background Use BGP commands to prevent private AS numbers from being advertised to the outside world. Use

More information

IT-Operation (2) OSPF. Who am I

IT-Operation (2) OSPF. Who am I IT-Operation (2) OSPF yasu@wide.ad.jp Who am I Name: Yasuhiro Ohara 3rd grade of doctoral course in KEIO Univ. Author of Zebra ospf6d One of WIDE 6Bone operators developer or researcher rather than operator

More information

Static VLAN Pools that will be used for the encapsulation VLAN between the external devices

Static VLAN Pools that will be used for the encapsulation VLAN between the external devices Contents Introduction Prerequisites Requirements Components Used Background Information Configure Network Diagram Configure Verify and Troubleshoot Introduction This document describes the configuration

More information

LAB15: EIGRP IPv4. LAB 15: Diagram. Disclaimer

LAB15: EIGRP IPv4. LAB 15: Diagram. Disclaimer AB15: EIGRP IPv4 isclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material is as

More information

STUDENT LAB GUIDE CCNA ( )

STUDENT LAB GUIDE CCNA ( ) STUDENT LAB GUIDE CCNA (640-802) Developed By, Router Infotech Career Academy LAB: 09 Static Route Configuration Objective: To configure & implement Static Route successfully on said devices and test its

More information

LAB16: Named EIGRP IPv4

LAB16: Named EIGRP IPv4 AB16: Named EIGRP IPv4 isclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

OSPF. OSPF processs can be enabled on 2 levels

OSPF. OSPF processs can be enabled on 2 levels OSPF UDP port 89 Metic cost Link state protocol Flood the link state information in the entire topology Builds the topology table Stores in LSDB Runs SPF(Djsktra algorithm) for best path to reach destination

More information

Lab 8a. OSPF. Set up OSPF in a single area so that all subnets are visible from all routers.

Lab 8a. OSPF. Set up OSPF in a single area so that all subnets are visible from all routers. Rev. 08.09 Lab 8a. OSPF c cnac o okbook.com G O A L Set up OSPF in a single area so that all subnets are visible from all routers. Gi 0/0 Gi 0/0 Lo 0. 0..0.0 /0. 0..0. / Topology You'll need routers of

More information

LAB8: OSPF IPv4. OSPF: Virtual Link. Disclaimer

LAB8: OSPF IPv4. OSPF: Virtual Link. Disclaimer Page1 AB8: OSPF IPv4 Disclaimer This onfiguration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

Configuration and Management of Networks

Configuration and Management of Networks Configuring BGP using the AS_PATH attribute Topology Objectives Background Use BGP commands to prevent private AS numbers from being advertised to the outside world. Use the AS_PATH attribute to filter

More information

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF

Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Chapter 4 Lab 4-2, Redistribution Between EIGRP and OSPF Topology Objectives Review EIGRP and OSPF configuration. Redistribute into EIGRP. Redistribute into OSPF. Summarize routes in EIGRP. Filter routes

More information

9.1. Routing Protocols

9.1. Routing Protocols 9.1. Routing Protocols Each organization that has been assigned a network address from an ISP is considered an autonomous system (AS). That organization is free to create one large network, or divide the

More information

Chapter 8 Configuring OSPF

Chapter 8 Configuring OSPF Chapter 8 Configuring OSPF This chapter describes how to configure OSPF on HP routing switches using the CLI and Web management interface. To display OSPF configuration information and statistics, see

More information

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1

debug ip ospf database external default-metric subnet area 0 stub distribute-list in Serial0/1 Which statement about stateless autoconfiguration is true? A host can autoconfigure itself by appending its MAC address to the local link prefix (64 bits). 2 Autoconfiguration allows devices to connect

More information

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 5 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-5-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 5 Exam Answers

More information

Introduction to IS-IS

Introduction to IS-IS Introduction to IS-IS ISP Workshops Last updated 28 November 2013 1 IS-IS p Intermediate System to Intermediate System p ISO 10589 specifies OSI IS-IS routing protocol for CLNS traffic n A Link State protocol

More information

CIS 83 LAB 3 - EIGRP Rich Simms September 23, Objective. Scenario. Topology

CIS 83 LAB 3 - EIGRP Rich Simms September 23, Objective. Scenario. Topology CIS 83 LAB 3 - EIGRP Rich Simms September 23, 2006 Objective The objective of this lab is to become familiar setting up and configuring EIGRP on three routers. EIGRP is a Cisco proprietary distance-vector

More information

CCNA 3 (v v6.0) Chapter 6 Exam Answers % Full

CCNA 3 (v v6.0) Chapter 6 Exam Answers % Full CCNA 3 (v5.0.3 + v6.0) Chapter 6 Exam Answers 2017 100% Full ccnav6.com /ccna-3-v5-0-3-v6-0-chapter-6-exam-answers-2017-100-full.html CCNA Exam Answers 2017 CCNA 3 (v5.0.3 + v6.0) Chapter 6 Exam Answers

More information

LAB1: BGP IPv4. BGP: Initial Config. Disclaimer

LAB1: BGP IPv4. BGP: Initial Config. Disclaimer Page1 LAB1: BGP IPv4 Disclaimer This Configuration Guide is designed to assist members to enhance their skills in respective technology area. While every effort has been made to ensure that all material

More information

Explanation: In order to verify proper route redistribution, use the "show ip route" command on all routers

Explanation: In order to verify proper route redistribution, use the show ip route command on all routers QUESTION 401 The 192.168.0.0/16 network is not being propagated throughout the network via BGP as expected. Observe the BGP configuration commands from the advertising router shown below. Router bgp 65111

More information

Lab Configuring OSPF Timers 2500 Series

Lab Configuring OSPF Timers 2500 Series Lab 2.3.5 Configuring OSPF Timers 2500 Series Objective Setup an IP addressing scheme for OSPF area. Configure and verify OSPF routing. Modify OSPF interface timers to adjust efficiency of network. Background/Preparation

More information

Configuration and Management of Networks

Configuration and Management of Networks onfiguration and Management of Networks SPF Virtual Links and Area Summarization The lab is built on the topology: bjectives Background! onfigure multi-area SPF on a r.! Verify multi-area behavior.! reate

More information

Exam : Cisco Title : Update : Demo. Cisco Certified Network Associate

Exam : Cisco Title : Update : Demo. Cisco Certified Network Associate Exam : Cisco 640-802 Title : Cisco Certified Network Associate Update : Demo 1. Refer to the exhibit. What could be possible causes for the "Serial0/0 is down" interface status? (Choose two.) A. A Layer

More information

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF

Chapter 4 Lab 4-1, Redistribution Between RIP and OSPF hapter 4 Lab 4-1, Redistribution Between RIP and OSPF Topology Objectives Review configuration and verification of RIP and OSPF. onfigure passive interfaces in both RIP and OSPF. Filter routing updates

More information

Ch. 5 Maintaining and Troubleshooting Routing Solutions. Net412- Network troubleshooting

Ch. 5 Maintaining and Troubleshooting Routing Solutions. Net412- Network troubleshooting Ch. 5 Maintaining and Troubleshooting Routing Solutions Net412- Network troubleshooting Troubleshooting Routing Network Layer Connectivity EIGRP OSPF 2 Network Connectivity Just like we did when we looked

More information

OSPF Support for Multi-VRF on CE Routers

OSPF Support for Multi-VRF on CE Routers OSPF Support for Multi-VRF on CE Routers Finding Feature Information OSPF Support for Multi-VRF on CE Routers Last Updated: June 24, 2011 The OSPF Support for Multi-VRF on CE Routers feature provides the

More information

ASA Has High CPU Usage Due to a Traffic Loop When VPN Clients Disconnect

ASA Has High CPU Usage Due to a Traffic Loop When VPN Clients Disconnect ASA Has High CPU Usage Due to a Traffic Loop When VPN Clients Disconnect Contents Introduction Prerequisites Requirements Components Used Background Information Problem: Packets Destined for a Disconnected

More information

Lab 5: Inter-VLANs Routing

Lab 5: Inter-VLANs Routing Lab 5: Inter-VLANs Routing Network Topology:- Device Interface IP Address Subnet Mask Gateway/Clock Rate Fa 0/0.10 10.5.0.1 255.255.255.192 ----- R1 Fa 0/0.20 10.6.0.1 255.255.255.192 ----- Fa 0/0.30 10.10.0.1

More information

Cabrillo College. Rick Graziani, Instructor

Cabrillo College. Rick Graziani, Instructor Cabrillo College CCNP Advanced Routing Ch. 5 - Multi-areas (Part I) Rick Graziani, Instructor Mar. 4, 2002 1 Multi-Area Part I Areas LSAs show ip ospf database (summary of link state database) show ip

More information

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area

Chapter 3 Lab 3-2, Multi-Area OSPFv2 and OSPFv3 with Stub Area Chapter 3 Topology Objectives Configure multi-area OSPFv2 for IPv4. Configure multi-area OSPFv3 for IPv6 Verify multi-area behavior. Configure stub and totally stubby areas for OSPFv2. Configure stub and

More information

RealCiscoLAB.com. Configure inter-vlan routing with HSRP to provide redundant, fault-tolerant routing to the internal network.

RealCiscoLAB.com. Configure inter-vlan routing with HSRP to provide redundant, fault-tolerant routing to the internal network. RealCiscoLAB.com CCNPv6 SWITCH Hot Standby Router Protocol Topology Objective Background Configure inter-vlan routing with HSRP to provide redundant, fault-tolerant routing to the internal network. Hot

More information

Easy Virtual Network Configuration Example

Easy Virtual Network Configuration Example Easy Virtual Network Configuration Example Document ID: 117974 Contributed by Fabrice Ducomble, Cisco TAC Engineer. Aug 04, 2014 Contents Introduction Prerequisites Requirements Components Used Background

More information

8. Refer to the exhibit. The ORL router is unable to form a neighbor relationship with the JAX router. What is a possible cause of this problem?

8. Refer to the exhibit. The ORL router is unable to form a neighbor relationship with the JAX router. What is a possible cause of this problem? 1. Refer to the exhibit. A new PC was deployed in the Sales network. It was given the host address of 192.168.10.31 with a default gateway of 192.168.10.17. The PC is not communicating with the network

More information

Link State. 1 Flooding of link-state information. 5 Routing Table. 3 SPF Algorithm. 2 Building a Topological Database. 4 SPF Tree

Link State. 1 Flooding of link-state information. 5 Routing Table. 3 SPF Algorithm. 2 Building a Topological Database. 4 SPF Tree Link State 1 Flooding of link-state information 5 Routing Table 2 Building a Topological Database 3 SPF Algorithm 4 SPF Tree OSPF Hello Protocol OSPF routers send Hellos on OSPF enabled interfaces: Default

More information

Chapter 4 Lab 4-2, Controlling Routing Updates. Topology. Objectives. CCNPv7 ROUTE

Chapter 4 Lab 4-2, Controlling Routing Updates. Topology. Objectives. CCNPv7 ROUTE Chapter 4 Lab 4-2, Controlling Routing Updates Topology Objectives Filter routes using a distribute list and ACL. Filter routes using a distribute list and prefix list. Filter redistributed routes using

More information

Exam Questions

Exam Questions Exam Questions 100-105 ICND1 Cisco Interconnecting Cisco Networking Devices Part 1 (ICND1 v3.0) https://www.2passeasy.com/dumps/100-105/ 1.Refer to the exhibit. Assume that all router interfaces are operational

More information

OSPF Commands. Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols IP2R-61

OSPF Commands. Cisco IOS IP Command Reference, Volume 2 of 3: Routing Protocols IP2R-61 OSPF Commands Use the commands in this chapter to configure and monitor the Open Shortest Path First (OSPF) routing protocol. For OSPF configuration information and examples, refer to the Configuring OSPF

More information

Introduction to OSPF

Introduction to OSPF Introduction to OSPF ISP/IXP Workshops ISP/IXP Workshops 1999, Cisco Systems, Inc. 1 Agenda OSPF Primer OSPF in Service Provider Networks OSPF BCP - Adding Networks OSPF Command Summary 2 OSPF Primer 3

More information

4A Alcatel-Lucent. Alcatel-Lucent Interior Routing Protocols and High Availability

4A Alcatel-Lucent. Alcatel-Lucent Interior Routing Protocols and High Availability Alcatel-Lucent 4A0-101 Alcatel-Lucent Interior Routing Protocols and High Availability Download Full Version : http://killexams.com/pass4sure/exam-detail/4a0-101 QUESTION: 297 Click on the exhibit. In

More information

Lab 5-1 Hot Standby Router Protocol

Lab 5-1 Hot Standby Router Protocol Lab 5-1 Hot Standby Router Protocol Topology Diagram Objective Configure inter-vlan routing with HSRP to provide redundant, fault tolerant routing to the internal network. Scenario Step 1 HSRP provides

More information

Cisco CISCO Interconnecting Cisco Networking Devices Exam (ICND) Practice Test. Version

Cisco CISCO Interconnecting Cisco Networking Devices Exam (ICND) Practice Test. Version Cisco 640-811 CISCO 640-811 Interconnecting Cisco Networking Devices Exam (ICND) Practice Test Version 1.3 QUESTION NO: 1 Cisco 640-811: Practice Exam What is the purpose of the OSPF router ID in a DR/BDR

More information

Lab 8.4.2: Show IP Route Challenge Lab

Lab 8.4.2: Show IP Route Challenge Lab Addressing Table Device Interface IP Address Subnet Mask R1 R2 R3 R4 R5 Learning Objectives Upon completion of this lab, you will be able to: Determine network topology based on the outputs from the show

More information

Lab10- Configuring EIGRP

Lab10- Configuring EIGRP Lab10- Configuring EIGRP Topology Lab10- Configuring EIGRP Page 1 Learning Objectives Upon completion of this lab, you will be able to: Cable a network according to the Topology Diagram. Erase the startup

More information

Lab - Configuring Multi-area OSPFv3 Topology

Lab - Configuring Multi-area OSPFv3 Topology Topology 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 1 of 8 Addressing Table Device Interface IPv6 Address R1 R2 R3 S0/0/0 (DCE) Lo0 Lo1 Lo2 Lo3 S0/0/0 S0/0/1

More information

Adapted from the Synchronization example in g/case/studies/icsbgp4.html

Adapted from the Synchronization example in   g/case/studies/icsbgp4.html Adapted from the Synchronization example in http://www.cisco.com/en/us/docs/internetworkin g/case/studies/icsbgp4.html When an AS provides transit service to other ASs when there are non-bgp routers in

More information

RR> RR> RR>en RR# RR# RR# RR# *Oct 2 04:57:03.684: %AMDP2_FE-6-EXCESSCOLL: Ethernet0/2 TDR=0, TRC=0 RR#

RR> RR> RR>en RR# RR# RR# RR# *Oct 2 04:57:03.684: %AMDP2_FE-6-EXCESSCOLL: Ethernet0/2 TDR=0, TRC=0 RR# RR> RR> RR>en *Oct 2 04:57:03.684: %AMDP2_FE-6-EXCESSCOLL: Ethernet0/2 TDR=0, TRC=0 term len 0 show run Building configuration... Current configuration : 2568 bytes version 15.4 service timestamps debug

More information

OSPFv2 deep dive. Михайловский Василий Cisco TAC Poland Ноябрь 17, 2015

OSPFv2 deep dive. Михайловский Василий Cisco TAC Poland Ноябрь 17, 2015 OSPFv2 deep dive Михайловский Василий vamikhai@cisco.com Cisco TAC Poland Ноябрь 17, 2015 Содержание TBD OSPFv2 transport Using IP-multicast 224.0.0.5 and 224.0.0.6; Protocol number 89; Unicast for immediate

More information

Layer3 VPN with OSPF Protocol between CE-PE

Layer3 VPN with OSPF Protocol between CE-PE MPLS Layer3 VPN with OSPF Protocol between CE-PE Disclaimer This Configuration Guide is designed to assist members to enhance their skills in particular technology area. While every effort has been made

More information

DOiT-200v6 VOLUME II I2 R2 4 N1. DOiT-200v6 Lab 16 Multi-Topic CCIE-Level Scenario. For CCIE Candidates

DOiT-200v6 VOLUME II I2 R2 4 N1. DOiT-200v6 Lab 16 Multi-Topic CCIE-Level Scenario. For CCIE Candidates Revision 7.0 (10/26/2005) DOiT-200v6-SCENARIO 16 Page 1 NETMASTERCLASS ROUTING AND SWITCHING CCIE TRACK DOiT-200v6 VOLUME II 4 I2 R2 3 3 R5 I5 3 3 R6 R1 4 N1 4 4 2 2 1 4 I3 R3 3 1 R4 3 N2 N1 I4 1 R7 DOiT-200v6

More information

Case Study 2: Frame Relay and OSPF Solution

Case Study 2: Frame Relay and OSPF Solution Case Study 2: Frame Relay and OSPF Solution Objective In this case study, you troubleshoot a complex scenario involving Frame Relay and Open Shortest Path First (OSPF). Figure 2-1 shows the topology for

More information