CSC 8560 Computer Networks: Security Protocols

Size: px
Start display at page:

Download "CSC 8560 Computer Networks: Security Protocols"

Transcription

1 CSC 8560 Computer Networks: Security Protocols Professor Henry Carter Fall 2017

2 CATS Reports Now available online! Go to MyNova -> Blackboard Learn -> Course Evaluations Take 10 minutes Will not be visible to me until after grades are submitted Help me improve the course!

3 Last Time Trying to prove who you are simply by saying your name is an example of...? How are MACs and Digital Signatures Different? What algorithms used to implement them? Diffie-Hellman key exchanges are vulnerable to what kind of attack? 3

4 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication 8.5 Securing 8.6 Securing TCP connections: SSL 8.7 Network layer security: IPsec 8.8 Securing wireless LANs 8.9 Operational security: firewalls and IDS 4

5 Security Transmission is often not the only place crypto needs to be used to protect your . Some system administrators, service providers and (if you re unlucky) law enforcement agencies read your when it sits on the server. e.g., GMail Advertisements How can you protect the confidentiality and integrity of your communications? 5

6 Secure Alice wants to send confidential , m, to Bob. K S m. K S ( ) K S (m ) K S (m ). K S ( ) m + - Internet K S K S K +. B ( ) + K B (K S ) + K B (K S ) -. K B ( ) K B + K B - Alice: generates random symmetric private key, K S. encrypts message with K S (for efficiency) also encrypts K S with Bob s public key. sends both K S (m) and K B (K S ) to Bob. 6

7 Secure Alice wants to send confidential , m, to Bob. K S m. K S ( ) K S (m ) K S (m ). K S ( ) m + - Internet K S K S K +. B ( ) + K B (K S ) + K B (K S ) -. K B ( ) K B + K B - Bob: uses his private key to decrypt and recover K S uses K S to decrypt K S (m) to recover m 7

8 Secure (continued) Alice wants to provide sender authentication message integrity. K Ā K A + m. - H( ) K A (. ) - K A (H(m)) - K A (H(m)) +. K A ( ) H(m ) + - Internet compare m m. H( ) H(m ) Alice digitally signs message. sends both message (in the clear) and digital signature. 8

9 Secure (continued) Alice wants to provide secrecy, sender authentication, message integrity. K Ā m H( ). -. K A ( ) - K A (H(m)) K S +. K S ( ) m + Internet K S +. K B ( ) K B + + K B (K S ) Alice uses three keys: her private key, Bob s public key, newly created symmetric key 9

10 Pretty good privacy (PGP) Internet encryption scheme, de-facto standard. uses symmetric key cryptography, public key cryptography, hash function, and digital signature as described. provides secrecy, sender authentication, integrity. inventor, Phil Zimmerman, was target of 3-year federal investigation. A PGP signed message: ---BEGIN PGP SIGNED MESSAGE--- Hash: SHA1 Bob:My husband is out of town tonight.passionately yours, Alice ---BEGIN PGP SIGNATURE--- Version: PGP 5.0 Charset: noconv yhhjrhhgjghgg/12epj+lo8ge4vb3mqjhfevz P9t6n7G6m5Gw2 ---END PGP SIGNATURE--- pgp.mit.edu 10

11 PGP: A Web of Trust Instead of relying on a CA, PGP uses social relationships to verify a key. If you know a friend of mine and they signed my key (and you can verify their signature), you are more likely to believe the key belongs to me. 11

12 Using PGP For Mac users, download MacGPG. Windows users should get GPG4win. Linux users can download GPG. These are all free versions of PGP based on RFC4880. From the command-line: gpg -c filename.txt (encrypt a file using a symmetric key generated from a passphrase) gpg -e filename.txt (encrypt a file using the public key of the intended reader). 12

13 Public Key 13

14 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication 8.5 Securing 8.6 Securing TCP connections: SSL 8.7 Network layer security: IPsec 8.8 Securing wireless LANs 8.9 Operational security: firewalls and IDS 14

15 How do we get secure communications? We now have an idea of how cryptographic algorithms work (and what they try to guarantee). We also know how to ensure integrity of our communications. How do we actually use this stuff? Are we using it on a daily basis? 15

16 Secure Sockets Layer (SSL) Provides transport layer security to any TCP-based application using SSL services. e.g., between Web browsers, servers for e-commerce (https) security services: server authentication, data encryption, client authentication (optional) TCP socket Application TCP IP Application SSL sublayer TCP IP SSL socket TCP API TCP enhanced with SSL 16

17 SSL: Three Phases 1. Handshake: Bob establishes TCP connection to Alice authenticates Alice via CA signed certificate creates, encrypts (using Alice s public key), sends master secret key to Alice nonce exchange not shown create Master Secret (MS) decrypt using K A - to get MS 17

18 SSL: Three Phases 2. Key Derivation: Alice, Bob use shared secret (MS) to generate 4 keys: EB: Bob->Alice data encryption key EA: Alice->Bob data encryption key MB: Bob->Alice MAC key MA: Alice->Bob MAC key encryption and MAC algorithms negotiable between Bob, Alice why 4 keys? 18

19 SSL: Three Phases 3. Data Transfer TCP byte stream b 1 b 2 b 3 b n block n bytes together d. H( ) M B compute MAC d d H(d) H(d). H( ) E B SSL seq. # encrypt d, MAC, SSL seq. # SSL record format Type Ver Len d H(d) unencrypted encrypted using E B 19

20 What does that little lock mean? What does this lock actually mean? Are you secure? It really depends... Some websites used negotiate the use of the null cipher. So even with the lock icon, no crypto was being used. Attackers can launch SSL downgrade attacks against older browsers. Commonly misspelled websites might make you think you are connected securely to the right page. 20

21 Steve Bellovin Long time researcher at AT&T Research/Bell Labs. Member of the National Academy of Engineering Professor at Columbia University Credited as one of the Fathers of the firewall One of the originators of USENET The precursor to World Wide Web, allowed people to view and exchange content in newsgroups. 21

22 Security Problems in the TCP/IP Protocol Suite This is one of the classics of Network Security literature. Although written in 1989, many of the protocols discussed here are still widely used today. This is a nice overview of why security research is necessary. It is hard to build secure systems when the infrastructure supporting them was never designed to consider security. Attacks on specific implementations not discussed. Three general attack categories: TCP/IP Attacks, Routing Attacks, and Abusing Common Protocols. 22

23 TCP/IP Sequence Number Guessing TCP connects are established by the 3-way handshake: What do the three messages look like? Each client keeps a unique sequence number to order packets and prevent against loss. An attacker can spoof an IP address, but attempting to carry out a conversation when you don t know the correct responses is hard. If you can guess the response, you can establish a connection. 23

24 How This Attack Works C SYN, ACK, ACK, SYN, SeqA+1, SeqA+1, SeqB+1 SeqB S C A SYN, ACK, SeqA+1, SeqB ACK, SeqA+1, SeqB+1 SYN, SeqA S 24

25 What Can You Do With This? On Christmas Day 1994, Kevin Mitnick used this attack to break into Tsuomo Shimamura s machine. Claimed to be from a trusted IP address, added himself to rhosts file, gained full access. Unfortunately for Mitnick, Tsutomu Shimomura caught him in the act (saw the logs). Ultimately, this incident helped the FBI track down and arrest Mitnick in Raleigh, NC. 25

26 Defense Against SNG Attack Make the initial sequence number hard to guess. Most systems now use a PRNG, but they re not great. Most implementations of TCP will accept RST packets with a sequence number anywhere within their window. For a 32Kb window, 2 17 attempts is enough to get it right. Actively monitor your logs. But you need to be on top of this as an attacker is likely to delete or modify them once they get access. 26

27 Real-World Routing Attacks AS7007 (1997) YouTube hijacked by Pakistan (2008) 27

28 ICMP Attacks Examples ICMP Redirect ICMP Destination Unreachable ICMP Time to Live Exceeded Defense Filtering 28

29 Other Protocols Finger Directory-like service. Can this help with identity theft? Password cracking? Electronic Mail We have already shown how to spoof . Until recently, even retrieving mail from your server used cleartext passwords. 29

30 Other Protocols (2) DNS Sequence number guessing and response spoofing thought to be potentially serious attacks in These are major issues today... why? ARP A local attacker could similarly siphon off all your traffic. 30

31 General Defenses Authentication Authentication by assertion repeatedly gets us into trouble. Why do we still do it? Encryption End-to-End Link-layer 31

32 Conclusions IP addresses are meaningless as an authentication token. Use random numbers whenever knowledge of that number may open your system to attack. The core of the network is based on algorithms that fall over pretty easily, making the Internet very fragile. 32

33 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication 8.5 Securing 8.6 Securing TCP connections: SSL 8.7 Network layer security: IPsec 8.8 Securing wireless LANs 8.9 Operational security: firewalls and IDS 33

34 What is network-layer confidentiality? between two network entities: sending entity encrypts datagram payload, payload could be: TCP or UDP segment, ICMP message, OSPF message. all data sent from one entity to other would be hidden: web pages, , P2P file transfers, TCP SYN packets blanket coverage 34

35 Virtual Private Networks (VPNs) motivation: institutions often want private networks for security. costly: separate routers, links, DNS infrastructure. VPN: institution s inter-office traffic is sent over public Internet instead encrypted before entering public Internet logically separate from other traffic 35

36 Virtual Private Networks (VPNs) public Internet laptop w/ IPsec salesperson in hotel router w/ IPv4 and IPsec router w/ IPv4 and IPsec headquarters branch office 36

37 IPsec services data integrity origin authentication replay attack prevention confidentiality two protocols providing different service models: AH ESP 37

38 Two IPsec protocols Authentication Header (AH) protocol provides source authentication & data integrity but not confidentiality Encapsulation Security Protocol (ESP) provides source authentication, data integrity, and confidentiality more widely used than AH 38

39 Security associations (SAs) before sending data, security association (SA) established from sending to receiving entity SAs are simplex: for only one direction ending, receiving entitles maintain state information about SA recall: TCP endpoints also maintain state info IP is connectionless; IPsec is connection-oriented! how many SAs in VPN w/ headquarters, branch office, and n traveling salespeople? 39

40 Example SA from R1 to R2 R1 Stores: 32-bit SA identifier: Security Parameter Index (SPI) origin SA interface ( ) destination SA interface ( ) type of encryption used (e.g., 3DES with CBC) encryption key type of integrity check used (e.g., HMAC with MD5) authentication key headquarters Internet branch office /24 R1 security association R /24 40

41 IPsec datagram focus for now on tunnel mode with ESP 41

42 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication 8.5 Securing 8.6 Securing TCP connections: SSL 8.7 Network layer security: IPsec 8.8 Securing wireless LANs 8.9 Operational security: firewalls and IDS 42

43 IEEE Security war-driving: drive around Bay area, see what networks available? More than 9000 accessible from public roadways 85% use no encryption/authentication packet-sniffing and various attacks easy! securing encryption, authentication first attempt at security: Wired Equivalent Privacy (WEP): a failure current attempt: i 43

44 Wired Equivalent Privacy (WEP) authentication as in protocol ap4.0 host requests authentication from access point access point sends 128 bit nonce host encrypts nonce using shared symmetric key access point decrypts nonce, authenticates host no key distribution mechanism authentication: knowing the shared key is enough 44

45 WEP Encryption Sender-side WEP encryption 45

46 Breaking WEP security hole: 24-bit IV, one IV per frame, -> IV s eventually reused IV transmitted in plaintext -> IV reuse detected attack: Trudy causes Alice to encrypt known plaintext d 1 d 2 d 3 d 4 IV Trudy sees: c i = d i XOR k i IV Trudy knows c i d i, so can compute k i IV IV IV Trudy knows encrypting key sequence k 1 k 2 k 3 Next time IV is used, Trudy can decrypt! 46

47 802.11i: Improved Security numerous (stronger) forms of encryption possible provides key distribution uses authentication server separate from access point Common implementation: WPA2 47

48 Four phases 48

49 EAP: extensible authentication protocol EAP: end-end client (mobile) to authentication server protocol EAP sent over separate links mobile-to-ap (EAP over LAN) AP to authentication server (RADIUS over UDP) EAP TLS EAP EAP over LAN (EAPoL) IEEE RADIUS UDP/IP 49

50 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication 8.5 Securing 8.6 Securing TCP connections: SSL 8.7 Network layer security: IPsec 8.8 Securing wireless LANs 8.9 Operational security: firewalls and IDS 50

51 Firewalls firewall isolates organization s internal net from larger Internet, allowing some packets to pass, blocking others. 51

52 Firewalls: why prevent denial of service attacks: SYN flooding: attacker establishes many bogus TCP connections, no resources left for real connections prevent illegal modification/access of internal data e.g., attacker replaces CIA s homepage with something else allow only authorized access to inside network set of authenticated users/hosts three types of firewalls: stateless packet filters, stateful packet filters, application gateways 52

53 Stateless Packet Filtering internal network connected to Internet via router firewall router filters packet-by-packet, decision to forward/drop packet based on: source IP address, destination IP address TCP/UDP source and destination port numbers ICMP message type TCP SYN and ACK bits 53

54 Stateless Packet Filtering: Example example 1: block incoming and outgoing datagrams with IP Protocol field = 17 and with either source or dest port = 23. result: all incoming, outgoing UDP flows and telnet connections are blocked. example 2: Block inbound TCP segments with ACK=0. result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside. 54

55 Stateless packet filtering: more examples 55

56 Access Control Lists ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs: looks like OpenFlow forwarding (Ch. 4)! action source address dest address protocol source port dest port flag bit allow /16 outside of /16 TCP > any allow outside of / /16 TCP 80 > 1023 ACK allow /16 outside of /16 UDP > allow outside of / /16 UDP 53 > deny all all all all all all 56

57 Stateful Packet Filtering stateless packet filter: heavy handed tool admits packets that make no sense, e.g., dest port = 80, ACK bit set, even though no TCP connection established: action source address dest address protocol source port dest port flag bit allow outside of / /16 TCP 80 > 1023 ACK stateful packet filter: track status of every TCP connection track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets makes sense timeout inactive connections at firewall: no longer admit packets 57

58 Stateful Packet Filtering ACL augmented to indicate need to check connection state table before admitting packet action source address dest address proto source port dest port flag bit check conxion allow /16 outside of /16 TCP > any allow outside of / /16 TCP 80 > 1023 ACK x allow /16 outside of /16 UDP > allow outside of / /16 UDP 53 > x deny all all all all all all 58

59 Application gateways filter packets on application data as well as on IP/TCP/UDP fields. host-to-gateway telnet session application gateway example: allow select internal users to telnet outside router and filter gateway-to-remote host telnet session 1. require all telnet users to telnet through gateway. 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections 3. router filter blocks all telnet connections not originating from gateway. 59

60 Limitations of Firewalls and Gateways IP spoofing: router can t know if data really comes from claimed source if multiple apps need special treatment, each has own app gateway client software must know how to contact gateway. e.g., must set IP address of proxy in Web browser filters often use all or nothing policy for UDP tradeoff: degree of communication with outside world, level of security many highly protected sites still suffer from attacks 60

61 Intrusion Detection Systems packet filtering: operates on TCP/IP headers only no correlation check among sessions IDS: intrusion detection system deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings) examine correlation among multiple packets port scanning network mapping DoS attack 61

62 Intrusion Detection Systems multiple IDSs: different types of checking at different locations 62

63 Network Security Summary Basic techniques... cryptography (symmetric and public) message integrity end-point authentication. used in many different security scenarios secure secure transport (SSL) IP sec Operational Security: firewalls and IDS 63

64 Next Time... Textbook Chapter Remember, you need to read it BEFORE you come to class! Homework: Project 4 presentations NEXT WEEK! 64

CSC 4900 Computer Networks: Security Protocols (2)

CSC 4900 Computer Networks: Security Protocols (2) CSC 4900 Computer Networks: Security Protocols (2) Professor Henry Carter Fall 2017 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message Integrity 8.4 End point Authentication

More information

Chapter 8 roadmap. Network Security

Chapter 8 roadmap. Network Security Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e-mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7 Securing

More information

Chapter 8 Network Security

Chapter 8 Network Security Chapter 8 Network Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

COSC4377. Chapter 8 roadmap

COSC4377. Chapter 8 roadmap Lecture 28 Chapter 8 roadmap 8.1 What is network security? 8.2 Principles of cryptography 8.3 Message integrity 8.4 Securing e mail 8.5 Securing TCP connections: SSL 8.6 Network layer security: IPsec 8.7

More information

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005

Lecture 33. Firewalls. Firewall Locations in the Network. Castle and Moat Analogy. Firewall Types. Firewall: Illustration. Security April 15, 2005 Firewalls Lecture 33 Security April 15, 2005 Idea: separate local network from the Internet Trusted hosts and networks Intranet Firewall DMZ Router Demilitarized Zone: publicly accessible servers and networks

More information

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ

Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

More information

14. Internet Security (J. Kurose)

14. Internet Security (J. Kurose) 14. Internet Security (J. Kurose) 1 Network security Foundations: what is security? cryptography authentication message integrity key distribution and certification Security in practice: application layer:

More information

Chapter 8 Security. Computer Networking: A Top Down Approach. Andrei Gurtov. 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 8 Security. Computer Networking: A Top Down Approach. Andrei Gurtov. 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016 Chapter 8 Andrei Gurtov All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved Computer Networking: A Top Down Approach 7 th edition Jim Kurose, Keith Ross Pearson/Addison Wesley

More information

Computer Networks. Wenzhong Li. Nanjing University

Computer Networks. Wenzhong Li. Nanjing University Computer Networks Wenzhong Li Nanjing University 1 Chapter 7. Network Security Network Attacks Cryptographic Technologies Message Integrity and Authentication Key Distribution Firewalls Transport Layer

More information

FIREWALLS. Firewall: isolates organization s internal net from larger Internet, allowing some packets to pass, blocking others

FIREWALLS. Firewall: isolates organization s internal net from larger Internet, allowing some packets to pass, blocking others FIREWALLS 1 FIREWALLS Firewall: isolates organization s internal net from larger Internet, allowing some packets to pass, blocking others FIREWALLS: WHY Prevent denial of service attacks: SYN ooding: attacker

More information

Network Security. Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002.

Network Security. Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2002. Network Security Computer Networking: A Top Down Approach Featuring the Internet, 1. What is network security 2. Principles of cryptography 3. Authentication 4. Integrity 5. Key Distribution and certification

More information

Computer Networking. What is network security? Chapter 7: Network security. Symmetric key cryptography. The language of cryptography

Computer Networking. What is network security? Chapter 7: Network security. Symmetric key cryptography. The language of cryptography Chapter 7: Network security 15-441 Computer Networking Network Security: Cryptography, Authentication, Integrity Foundations: what is security? cryptography authentication message integrity key distribution

More information

Computer Communication Networks Network Security

Computer Communication Networks Network Security Computer Communication Networks Network Security ICEN/ICSI 416 Fall 2016 Prof. Dola Saha 1 Network Security Goals: understand principles of network security: cryptography and its many uses beyond confidentiality

More information

Chapter 8. Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004.

Chapter 8. Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Chapter 8 Network Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 8 Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add,

More information

Internet and Intranet Protocols and Applications

Internet and Intranet Protocols and Applications Internet and Intranet Protocols and Applications Lecture 10: Internet and Network Security April 9, 2003 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu What is network

More information

Lecture 9: Network Level Security IPSec

Lecture 9: Network Level Security IPSec Lecture 9: Network Level Security IPSec CS 336/536: Computer Network Security Fall 2015 Nitesh Saxena Adopted from previous lecture by Keith Ross, and Tony Barnard HW3 being graded Course Admin HW4 will

More information

CS Computer Networks 1: Authentication

CS Computer Networks 1: Authentication CS 3251- Computer Networks 1: Authentication Professor Patrick Traynor 4/14/11 Lecture 25 Announcements Homework 3 is due next class. Submit via T-Square or in person. Project 3 has been graded. Scores

More information

Int ernet w orking. Internet Security. Literature: Forouzan: TCP/IP Protocol Suite : Ch 28

Int ernet w orking. Internet Security. Literature: Forouzan: TCP/IP Protocol Suite : Ch 28 Int ernet w orking Internet Security Literature: Forouzan: TCP/IP Protocol Suite : Ch 28 Internet Security Internet security is difficult Internet protocols were not originally designed for security The

More information

IPSec. Slides by Vitaly Shmatikov UT Austin. slide 1

IPSec. Slides by Vitaly Shmatikov UT Austin. slide 1 IPSec Slides by Vitaly Shmatikov UT Austin slide 1 TCP/IP Example slide 2 IP Security Issues Eavesdropping Modification of packets in transit Identity spoofing (forged source IP addresses) Denial of service

More information

Chapter 8 Security. Computer Networking: A Top Down Approach

Chapter 8 Security. Computer Networking: A Top Down Approach Chapter 8 A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add,

More information

Network Security. Thierry Sans

Network Security. Thierry Sans Network Security Thierry Sans HTTP SMTP DNS BGP The Protocol Stack Application TCP UDP Transport IPv4 IPv6 ICMP Network ARP Link Ethernet WiFi The attacker is capable of confidentiality integrity availability

More information

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Chapter 8 Security. Computer Networking: A Top Down Approach. 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Chapter 8 Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see the animations; and can add,

More information

Security: Focus of Control. Authentication

Security: Focus of Control. Authentication Security: Focus of Control Three approaches for protection against security threats a) Protection against invalid operations b) Protection against unauthorized invocations c) Protection against unauthorized

More information

Chapter 8 Network Security. Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.

Chapter 8 Network Security. Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 8 Network Security Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009. Chapter 8: Network Security Chapter goals: understand principles of

More information

Chapter 8 Network Security

Chapter 8 Network Security Chapter 8 Network Security A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and

More information

Networking Security SPRING 2018: GANG WANG

Networking Security SPRING 2018: GANG WANG Networking Security SPRING 2018: GANG WANG About the Midterm Close book; Close notes; Close computer/phone/calculator; No cheat sheet. You are NOT allowed to leave the room during the exam There are 6

More information

Lecture 30. Cryptography. Symmetric Key Cryptography. Key Exchange. Advanced Encryption Standard (AES) DES. Security April 11, 2005

Lecture 30. Cryptography. Symmetric Key Cryptography. Key Exchange. Advanced Encryption Standard (AES) DES. Security April 11, 2005 Lecture 30 Security April 11, 2005 Cryptography K A ciphertext Figure 7.3 goes here K B symmetric-key crypto: sender, receiver keys identical public-key crypto: encrypt key public, decrypt key secret Symmetric

More information

Chapter 5: Network Layer Security

Chapter 5: Network Layer Security Managing and Securing Computer Networks Guy Leduc Mainly based on Network Security - PRIVATE Communication in a PUBLIC World C. Kaufman, R. Pearlman, M. Speciner Pearson Education, 2002. (chapters 17 and

More information

Firewalls, Tunnels, and Network Intrusion Detection

Firewalls, Tunnels, and Network Intrusion Detection Firewalls, Tunnels, and Network Intrusion Detection 1 Firewalls A firewall is an integrated collection of security measures designed to prevent unauthorized electronic access to a networked computer system.

More information

Firewalls. Firewall. means of protecting a local system or network of systems from network-based security threats creates a perimeter of defense

Firewalls. Firewall. means of protecting a local system or network of systems from network-based security threats creates a perimeter of defense FIREWALLS 3 Firewalls Firewall means of protecting a local system or network of systems from network-based security threats creates a perimeter of defense administered network public Internet firewall

More information

Chapter 32 Security in the Internet: IPSec, SSL/TLS, PGP,

Chapter 32 Security in the Internet: IPSec, SSL/TLS, PGP, Chapter 32 Security in the Internet: IPSec, SSL/TLS, PGP, VPN, and Firewalls 32.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 32.2 Figure 32.1 Common structure

More information

Cryptography and Network Security

Cryptography and Network Security Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown Chapter 15 Electronic Mail Security Despite the refusal of VADM Poindexter and LtCol North to appear,

More information

Managing and Securing Computer Networks. Guy Leduc. Chapter 7: Securing LANs. Chapter goals: security in practice: Security in the data link layer

Managing and Securing Computer Networks. Guy Leduc. Chapter 7: Securing LANs. Chapter goals: security in practice: Security in the data link layer Managing and Securing Computer Networks Guy Leduc Chapter 7: Securing LANs Computer Networking: A Top Down Approach, 7 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2016. (section 8.8) Also

More information

Security: Focus of Control

Security: Focus of Control Security: Focus of Control Three approaches for protection against security threats a) Protection against invalid operations b) Protection against unauthorized invocations c) Protection against unauthorized

More information

Lecture 13 Page 1. Lecture 13 Page 3

Lecture 13 Page 1. Lecture 13 Page 3 IPsec Network Security: IPsec CS 239 Computer Software March 2, 2005 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

Network Encryption 3 4/20/17

Network Encryption 3 4/20/17 The Network Layer Network Encryption 3 CSC362, Information Security most of the security mechanisms we have surveyed were developed for application- specific needs electronic mail: PGP, S/MIME client/server

More information

Chapter 4: Securing TCP connections

Chapter 4: Securing TCP connections Managing and Securing Computer Networks Guy Leduc Chapter 5: Securing TCP connections Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross Addison-Wesley, March 2012. (section

More information

EEC-682/782 Computer Networks I

EEC-682/782 Computer Networks I EEC-682/782 Computer Networks I Lecture 24 Wenbing Zhao wenbingz@gmail.com http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB

More information

Internet security and privacy

Internet security and privacy Internet security and privacy IPsec 1 Layer 3 App. TCP/UDP IP L2 L1 2 Operating system layers App. TCP/UDP IP L2 L1 User process Kernel process Interface specific Socket API Device driver 3 IPsec Create

More information

Junos Security. Chapter 8: IPsec VPNs Juniper Networks, Inc. All rights reserved. Worldwide Education Services

Junos Security. Chapter 8: IPsec VPNs Juniper Networks, Inc. All rights reserved.  Worldwide Education Services Junos Security Chapter 8: IPsec VPNs 2012 Juniper Networks, Inc. All rights reserved. www.juniper.net Worldwide Education Services Chapter Objectives After successfully completing this chapter, you will

More information

Chapter 8 Network Security

Chapter 8 Network Security Advanced Computer Networking Graduate Course from Electrical Engineering School A. Beheshti Communication Group Iran University of Science and Technology Chapter 8 Text Book: Computer Networking: A Top

More information

Virtual Private Network

Virtual Private Network VPN and IPsec Virtual Private Network Creates a secure tunnel over a public network Client to firewall Router to router Firewall to firewall Uses the Internet as the public backbone to access a secure

More information

Cryptography and Network Security Chapter 16. Fourth Edition by William Stallings

Cryptography and Network Security Chapter 16. Fourth Edition by William Stallings Cryptography and Network Security Chapter 16 Fourth Edition by William Stallings Chapter 16 IP Security If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death,

More information

8. Network Layer Contents

8. Network Layer Contents Contents 1 / 43 * Earlier Work * IETF IP sec Working Group * IP Security Protocol * Security Associations * Authentication Header * Encapsulation Security Payload * Internet Key Management Protocol * Modular

More information

IP Security IK2218/EP2120

IP Security IK2218/EP2120 IP Security IK2218/EP2120 Markus Hidell, mahidell@kth.se KTH School of ICT Based partly on material by Vitaly Shmatikov, Univ. of Texas Acknowledgements The presentation builds upon material from - Previous

More information

Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE i, IEEE 802.1X P2.

Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE i, IEEE 802.1X P2. P2 Protocols, Technologies and Standards Secure network protocols for the OSI stack P2.1 WLAN Security WPA, WPA2, IEEE 802.11i, IEEE 802.1X P2.2 IP Security IPsec transport mode (host-to-host), ESP and

More information

Lecture Nov. 21 st 2006 Dan Wendlandt ISP D ISP B ISP C ISP A. Bob. Alice. Denial-of-Service. Password Cracking. Traffic.

Lecture Nov. 21 st 2006 Dan Wendlandt ISP D ISP B ISP C ISP A. Bob. Alice. Denial-of-Service. Password Cracking. Traffic. 15-441 Lecture Nov. 21 st 2006 Dan Wendlandt Worms & Viruses Phishing End-host impersonation Denial-of-Service Route Hijacks Traffic modification Spyware Trojan Horse Password Cracking IP Spoofing DNS

More information

CS 356 Internet Security Protocols. Fall 2013

CS 356 Internet Security Protocols. Fall 2013 CS 356 Internet Security Protocols Fall 2013 Review Chapter 1: Basic Concepts and Terminology Chapter 2: Basic Cryptographic Tools Chapter 3 User Authentication Chapter 4 Access Control Lists Chapter 5

More information

Distributed Systems. 27. Firewalls and Virtual Private Networks Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 27. Firewalls and Virtual Private Networks Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 27. Firewalls and Virtual Private Networks Paul Krzyzanowski Rutgers University Fall 2013 November 25, 2013 2013 Paul Krzyzanowski 1 Network Security Goals Confidentiality: sensitive

More information

CSE543 Computer and Network Security Module: Network Security

CSE543 Computer and Network Security Module: Network Security CSE543 Computer and Network Security Module: Network Security Professor Trent Jaeger CSE543 - Introduction to Computer and Network Security 1 2 Communication Security Want to establish a secure channel

More information

Lecture 12 Page 1. Lecture 12 Page 3

Lecture 12 Page 1. Lecture 12 Page 3 IPsec Network Security: IPsec CS 239 Computer Software February 26, 2003 Until recently, the IP protocol had no standards for how to apply security Encryption and authentication layered on top Or provided

More information

Protocol Architecture (2) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Protocol Architecture (2) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Protocol Architecture (2) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science History of computer network protocol development in 20 th century. Development of hierarchical

More information

Computer Security 3e. Dieter Gollmann. Security.di.unimi.it/sicurezza1415/ Chapter 16: 1

Computer Security 3e. Dieter Gollmann. Security.di.unimi.it/sicurezza1415/ Chapter 16: 1 Computer Security 3e Dieter Gollmann Security.di.unimi.it/sicurezza1415/ Chapter 16: 1 Chapter 16: Communications Security Chapter 16: 2 Agenda Threat model Secure tunnels Protocol design principles IPsec

More information

SonicWALL Addendum. A Supplement to the SonicWALL Internet Security Appliance User's Guide

SonicWALL Addendum. A Supplement to the SonicWALL Internet Security Appliance User's Guide SonicWALL 6.2.0.0 Addendum A Supplement to the SonicWALL Internet Security Appliance User's Guide Contents SonicWALL Addendum 6.2.0.0... 3 New Network Features... 3 NAT with L2TP Client... 3 New Tools

More information

Network Security - ISA 656 IPsec IPsec Key Management (IKE)

Network Security - ISA 656 IPsec IPsec Key Management (IKE) Network Security - ISA 656 IPsec IPsec (IKE) Angelos Stavrou September 28, 2008 What is IPsec, and Why? What is IPsec, and Why? History IPsec Structure Packet Layout Header (AH) AH Layout Encapsulating

More information

IPSec. Overview. Overview. Levente Buttyán

IPSec. Overview. Overview. Levente Buttyán IPSec - brief overview - security associations (SAs) - Authentication Header (AH) protocol - Encapsulated Security Payload () protocol - combining SAs (examples) Overview Overview IPSec is an Internet

More information

IP Security. Have a range of application specific security mechanisms

IP Security. Have a range of application specific security mechanisms IP Security IP Security Have a range of application specific security mechanisms eg. S/MIME, PGP, Kerberos, SSL/HTTPS However there are security concerns that cut across protocol layers Would like security

More information

CSC 6575: Internet Security Fall 2017

CSC 6575: Internet Security Fall 2017 CSC 6575: Internet Security Fall 2017 Network Security Devices IP Security Mohammad Ashiqur Rahman Department of Computer Science College of Engineering Tennessee Tech University 2 IPSec Agenda Architecture

More information

Security Engineering. Lecture 16 Network Security Fabio Massacci (with the courtesy of W. Stallings)

Security Engineering. Lecture 16 Network Security Fabio Massacci (with the courtesy of W. Stallings) Security Lecture 16 Network Security Fabio Massacci (with the courtesy of W. Stallings) Lecture Outline Network Attacks Attive Attacks Passive Attacks TCP Attacks Contermeasures IPSec SSL/TLS Firewalls

More information

CSC 574 Computer and Network Security. TCP/IP Security

CSC 574 Computer and Network Security. TCP/IP Security CSC 574 Computer and Network Security TCP/IP Security Alexandros Kapravelos kapravelos@ncsu.edu (Derived from slides by Will Enck and Micah Sherr) Network Stack, yet again Application Transport Network

More information

Network Security Chapter 8

Network Security Chapter 8 Network Security Chapter 8 Cryptography Symmetric-Key Algorithms Public-Key Algorithms Digital Signatures Management of Public Keys Communication Security Authentication Protocols Email Security Web Security

More information

L13. Reviews. Rocky K. C. Chang, April 10, 2015

L13. Reviews. Rocky K. C. Chang, April 10, 2015 L13. Reviews Rocky K. C. Chang, April 10, 2015 1 Foci of this course Understand the 3 fundamental cryptographic functions and how they are used in network security. Understand the main elements in securing

More information

CSCE 715: Network Systems Security

CSCE 715: Network Systems Security CSCE 715: Network Systems Security Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Security in Network Layer Implementing security in application layer provides flexibility in security

More information

CSC 8560 Computer Networks: Network Security

CSC 8560 Computer Networks: Network Security CSC 8560 Computer Networks: Network Security Professor Henry Carter Fall 2017 Last Time We talked about mobility as a matter of context: How is mobility handled as you move around a room? Between rooms

More information

Internet Protocol and Transmission Control Protocol

Internet Protocol and Transmission Control Protocol Internet Protocol and Transmission Control Protocol CMSC 414 November 13, 2017 Internet Protcol Recall: 4-bit version 4-bit hdr len 8-bit type of service 16-bit total length (bytes) 8-bit TTL 16-bit identification

More information

HP Instant Support Enterprise Edition (ISEE) Security overview

HP Instant Support Enterprise Edition (ISEE) Security overview HP Instant Support Enterprise Edition (ISEE) Security overview Advanced Configuration A.03.50 Mike Brandon Interex 03 / 30, 2004 2003 Hewlett-Packard Development Company, L.P. The information contained

More information

HW/Lab 4: IPSec and Wireless Security. CS 336/536: Computer Network Security DUE 11 am on 12/01/2014 (Monday)

HW/Lab 4: IPSec and Wireless Security. CS 336/536: Computer Network Security DUE 11 am on 12/01/2014 (Monday) HW/Lab 4: IPSec and Wireless Security CS 336/536: Computer Network Security DUE 11 am on 12/01/2014 (Monday) This HW/Lab assignment covers Lectures 8 (IPSec) and 10 (Wireless Security). Please review these

More information

Introduction and Overview. Why CSCI 454/554?

Introduction and Overview. Why CSCI 454/554? Introduction and Overview CSCI 454/554 Why CSCI 454/554? Get Credits and Graduate Security is important More job opportunities More research funds 1 Workload Five homework assignments Two exams (open book

More information

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link.

Internet Layers. Physical Layer. Application. Application. Transport. Transport. Network. Network. Network. Network. Link. Link. Link. Internet Layers Application Application Transport Transport Network Network Network Network Link Link Link Link Ethernet Fiber Optics Physical Layer Wi-Fi ARP requests and responses IP: 192.168.1.1 MAC:

More information

Sample excerpt. Virtual Private Networks. Contents

Sample excerpt. Virtual Private Networks. Contents Contents Overview...................................................... 7-3.................................................... 7-5 Overview of...................................... 7-5 IPsec Headers...........................................

More information

Computer Security 3e. Dieter Gollmann. Security.di.unimi.it/sicurezza1516/ Chapter 16: 1

Computer Security 3e. Dieter Gollmann. Security.di.unimi.it/sicurezza1516/ Chapter 16: 1 Computer Security 3e Dieter Gollmann Security.di.unimi.it/sicurezza1516/ Chapter 16: 1 Chapter 16: Communications Security Chapter 16: 2 Agenda Threat model Secure tunnels Protocol design principles IPsec

More information

Chapter 8. Network Security. Cryptography. Need for Security. An Introduction to Cryptography 10/7/2010

Chapter 8. Network Security. Cryptography. Need for Security. An Introduction to Cryptography 10/7/2010 Cryptography Chapter 8 Network Security Introduction to Cryptography Substitution Ciphers Transposition Ciphers One-Time Pads Two Fundamental Cryptographic Principles Need for Security An Introduction

More information

VPN and IPsec. Network Administration Using Linux. Virtual Private Network and IPSec 04/2009

VPN and IPsec. Network Administration Using Linux. Virtual Private Network and IPSec 04/2009 VPN and IPsec Network Administration Using Linux Virtual Private Network and IPSec 04/2009 What is VPN? VPN is an emulation of a private Wide Area Network (WAN) using shared or public IP facilities. A

More information

Network Security and Cryptography. December Sample Exam Marking Scheme

Network Security and Cryptography. December Sample Exam Marking Scheme Network Security and Cryptography December 2015 Sample Exam Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers

More information

The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME,

The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME, 1 The Internet community has developed application-specific security mechanisms in a number of application areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web access (Secure Sockets

More information

Lecture 9a: Secure Sockets Layer (SSL) March, 2004

Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Internet and Intranet Protocols and Applications Lecture 9a: Secure Sockets Layer (SSL) March, 2004 Arthur Goldberg Computer Science Department New York University artg@cs.nyu.edu Security Achieved by

More information

Security+ SY0-501 Study Guide Table of Contents

Security+ SY0-501 Study Guide Table of Contents Security+ SY0-501 Study Guide Table of Contents Course Introduction Table of Contents About This Course About CompTIA Certifications Module 1 / Threats, Attacks, and Vulnerabilities Module 1 / Unit 1 Indicators

More information

Internet Technology. Security

Internet Technology. Security Uni Innsbruck Informatik - 1 Internet Technology Security Michael Welzl michael.welzl@uibk.ac.at DPS NSG Team http://dps.uibk.ac.at dps.uibk.ac.at/nsg Institute of Computer Science University of Innsbruck,

More information

On the Internet, nobody knows you re a dog.

On the Internet, nobody knows you re a dog. On the Internet, nobody knows you re a dog. THREATS TO DISTRIBUTED APPLICATIONS 1 Jane Q. Public Big Bank client s How do I know I am connecting to my bank? server s Maybe an attacker...... sends you phishing

More information

Introduction to Computer Security

Introduction to Computer Security Introduction to Computer Security Instructor: Mahadevan Gomathisankaran mgomathi@unt.edu CSCE 4550/5550, Fall 2009 Lecture 9 1 Announcements Assignment 1 Graded (out of 100) Max: 95 Min: 50 Mean: 77.33

More information

IP Security Part 1 04/02/06. Hofstra University Network Security Course, CSC290A

IP Security Part 1 04/02/06. Hofstra University Network Security Course, CSC290A Network Security IP Security Part 1 1 IP Security Overview 1994 RFC1636, Security in the Internet Architecture Identified key needs: Secure network infrastructure from unauthorized monitoring Control network

More information

Virtual Private Networks

Virtual Private Networks EN-2000 Reference Manual Document 8 Virtual Private Networks O ne of the principal features of routers is their support of virtual private networks (VPNs). This document discusses transmission security,

More information

CSc 466/566. Computer Security. 18 : Network Security Introduction

CSc 466/566. Computer Security. 18 : Network Security Introduction 1/81 CSc 466/566 Computer Security 18 : Network Security Introduction Version: 2012/05/03 13:57:28 Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2012 Christian Collberg

More information

Security issues: Encryption algorithms. Threats Methods of attack. Secret-key Public-key Hybrid protocols. CS550: Distributed OS.

Security issues: Encryption algorithms. Threats Methods of attack. Secret-key Public-key Hybrid protocols. CS550: Distributed OS. Security issues: Threats Methods of attack Encryption algorithms Secret-key Public-key Hybrid protocols Lecture 15 Page 2 1965-75 1975-89 1990-99 Current Platforms Multi-user timesharing computers Distributed

More information

20-CS Cyber Defense Overview Fall, Network Basics

20-CS Cyber Defense Overview Fall, Network Basics 20-CS-5155 6055 Cyber Defense Overview Fall, 2017 Network Basics Who Are The Attackers? Hackers: do it for fun or to alert a sysadmin Criminals: do it for monetary gain Malicious insiders: ignores perimeter

More information

Distributed Systems. 25. Authentication Paul Krzyzanowski. Rutgers University. Fall 2018

Distributed Systems. 25. Authentication Paul Krzyzanowski. Rutgers University. Fall 2018 Distributed Systems 25. Authentication Paul Krzyzanowski Rutgers University Fall 2018 2018 Paul Krzyzanowski 1 Authentication For a user (or process): Establish & verify identity Then decide whether to

More information

Application Note. Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder )

Application Note. Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder ) Application Note Providing Secure Remote Access to Industrial Control Systems Using McAfee Firewall Enterprise (Sidewinder ) This document describes how to configure McAfee Firewall Enterprise to provide

More information

The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to

The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to 1 The World Wide Web is widely used by businesses, government agencies, and many individuals. But the Internet and the Web are extremely vulnerable to compromises of various sorts, with a range of threats

More information

INTERNET PROTOCOL SECURITY (IPSEC) GUIDE.

INTERNET PROTOCOL SECURITY (IPSEC) GUIDE. INTERNET PROTOCOL SECURITY (IPSEC) GUIDE www.insidesecure.com INTRODUCING IPSEC NETWORK LAYER PACKET SECURITY With the explosive growth of the Internet, more and more enterprises are looking towards building

More information

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Security Architecture. Lecture 13: Prof. Shervin Shirmohammadi CEG

Prof. Shervin Shirmohammadi SITE, University of Ottawa. Security Architecture. Lecture 13: Prof. Shervin Shirmohammadi CEG Lecture 13: Security Architecture Prof. Shervin Shirmohammadi SITE, University of Ottawa Prof. Shervin Shirmohammadi CEG 4185 13-1 Network Assets and Security Threats Assets: Hardware (PC, workstation,

More information

key distribution requirements for public key algorithms asymmetric (or public) key algorithms

key distribution requirements for public key algorithms asymmetric (or public) key algorithms topics: cis3.2 electronic commerce 24 april 2006 lecture # 22 internet security (part 2) finish from last time: symmetric (single key) and asymmetric (public key) methods different cryptographic systems

More information

Chapter 6. IP Security. Dr. BHARGAVI H. GOSWAMI Department of Computer Science Christ University

Chapter 6. IP Security. Dr. BHARGAVI H. GOSWAMI Department of Computer Science Christ University Chapter 6 IP Security Dr. BHARGAVI H. GOSWAMI Department of Computer Science Christ University +91 9426669020 bhargavigoswami@gmail.com Topic List 1. IP Security Overview 2. IP Security Architecture 3.

More information

R (2) Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing.

R (2) Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing. R (2) N (5) Oral (3) Total (10) Dated Sign Experiment No: 1 Problem Definition: Implementation of following spoofing assignments using C++ multi-core Programming a) IP Spoofing b) Web spoofing. 1.1 Prerequisite:

More information

ELEC5616 COMPUTER & NETWORK SECURITY

ELEC5616 COMPUTER & NETWORK SECURITY ELEC5616 COMPUTER & NETWORK SECURITY Lecture 17: Network Protocols I IP The Internet Protocol (IP) is a stateless protocol that is used to send packets from one machine to another using 32- bit addresses

More information

Cryptography and Network Security. Sixth Edition by William Stallings

Cryptography and Network Security. Sixth Edition by William Stallings Cryptography and Network Security Sixth Edition by William Stallings Chapter 20 IP Security If a secret piece of news is divulged by a spy before the time is ripe, he must be put to death, together with

More information

Kurose & Ross, Chapters (5 th ed.)

Kurose & Ross, Chapters (5 th ed.) Kurose & Ross, Chapters 8.2-8.3 (5 th ed.) Slides adapted from: J. Kurose & K. Ross \ Computer Networking: A Top Down Approach (5 th ed.) Addison-Wesley, April 2009. Copyright 1996-2010, J.F Kurose and

More information

Chapter 6/8. IP Security

Chapter 6/8. IP Security Chapter 6/8 IP Security Prof. Bhargavi H Goswami Department of MCA, Sunshine Group of Institutes, Rajkot, Gujarat, India. Mob: +918140099018. Email: bhargavigoswami@gmail.com Topic List 1. IP Security

More information

CONTENTS. vii. Chapter 1 TCP/IP Overview 1. Chapter 2 Symmetric-Key Cryptography 33. Acknowledgements

CONTENTS. vii. Chapter 1 TCP/IP Overview 1. Chapter 2 Symmetric-Key Cryptography 33. Acknowledgements CONTENTS Preface Acknowledgements xiii xvii Chapter 1 TCP/IP Overview 1 1.1 Some History 2 1.2 TCP/IP Protocol Architecture 4 1.2.1 Data-link Layer 4 1.2.2 Network Layer 5 1.2.2.1 Internet Protocol 5 IPv4

More information

Network Security and Cryptography. 2 September Marking Scheme

Network Security and Cryptography. 2 September Marking Scheme Network Security and Cryptography 2 September 2015 Marking Scheme This marking scheme has been prepared as a guide only to markers. This is not a set of model answers, or the exclusive answers to the questions,

More information