Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Size: px
Start display at page:

Download "Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science"

Transcription

1 Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

2 Network Layer Features Basic model Node identification Node aggregation End-to-end Packet delivery Broadcast Multicast Failure isolation and Failure recovery Connecting heterogeneous datalinks Information Network 1 / 2013

3 OSI 7 Layer Reference Model ES (End System) Application Presentation Session Transport Network Data Link Physical Upper Layer Protocol IS (Intermediate System) ES (End System) NFS XDR Sun RPC TCP IP IEEE802.3 Ethernet Coax Physical connection Physical connection Information Network 1 /

4 Connecting Heterogeneous Data Link Network Gateway The gateway forwards IP packets as an intermediate system according to the routing structure. Connecting directory with datalink in same network. Information Network 1 / 2013

5 TCP/IP as a Layered Protocol Architecture Application TCP Application TCP IP Network Interface Physical IP Network Interface Physical IP Network Interface Physical IP realizes the end-to-end communication Information Network 1 / 2013

6 TCP/IP as a Layered Protocol Architecture (1) Service relationship is defined by service provider. (2) The layer upper to the IP protocol defines the service. Thereby, it does not matter what comes below the data link layer. Information Network 1 / 2013

7 IPv4 Information Network 1 /

8 Node Identification Globally unique address space Address space and delegation of authority Network identification and host identification Address class Address class Address space that delegates authority to the layers Ex. IPv4 address xA3 0xDD 0x4A 0x7F Identifying network Identifying host Network area is 24 bits /24 Prefix length Information Network 1 /

9 Node Aggregation / / /21... Prefix length = Binary tree level Simple expression Fast and memory-saving Especially in relay node... Information Network 1 /

10 Address Aggregation Aggregating contiguous network blocks 24 C Network Number 00 Host C Network Number 01 Host C Network Number 10 Host C Network Number 11 Host 22 4C Prefix Information Network 1 /

11 Address Aggregation Information Network 1 /

12 End-to-End Packet Delivery Network Layer Network Layer Cloud Hosts are present at the cloud edge Identified uniquely by IPv4 address Information Network 1 /

13 Graph Representation of Networks Information Network 1 /

14 Hierarchy Perspective: who carries the ladder? From data link layer to network layer: Network Layer Native to data link layer Ex: LLC/SNAP, NLPID From network layer to datalink layer: Native to network layer ( IPv4 ) Ex) ARP ND (IPv6) Data Link Layer Data Link Layer Information Network 1 /

15 Network to Data Link (1) ARP Address Resolution Protocol (ARP) RFC 826 A B: M a all stations: where is B b a: B is at b a b: A B: M A B C Network layer a b c Data-link layer Information Network 1 /

16 Network to Data Link (2) ARP The case of routed networks A C: M a all stations: where is R r a: R is at r a r: A C: M r all stations: where is C c r: C is at c r c: A C: M R r A a B b Network layer Data-link layer C c D d Information Network 1 /

17 Network to Data Link (3) ARP The case of bridged networks A C: M a all stations: where is C c a: C is at a a c: A C: M T t A a B b Network layer Data-link layer C c D d Information Network 1 /

18 Data Link to Network Several network layer protocols are multiplexed to a single data link layer. Multiplexing, de-multiplexing IPv4 IPv6... IPv4 IPv6... Network? Ethernet Ethernet Datalink Information Network 1 /

19 Ethernet: IEEE802.3, 802.2LLC, Ethernet Dst addr Src addr Type DATA (variable) FCS 4 IEEE802.3 (Length < 0x05DC) Length DATA (variable) FCS IEEE802.3 Raw Length (0xFFFF DATA (variable) FCS IEEE802.2 LLC DSAP SSAP CTL DATA (variable) FCS SNAP 3 2 Protocol ID Type DATA (variable) FCS Information Network 1 /

20 Data Link to Network De-multiplexing with LLC I/G = Individual or group address C/R = Command or response frame SAP address examples: 06 IP packet E0 Novell IPX FE OSI packet AA SubNetwork Access protocol (SNAP) 1 byte 1 1 or 2 bytes Destination SAP Address Source SAP Address Control Information Destination SAP Address Source SAP Address I/G C/R 1 7 bits 1 7 bits Information Network 1 /

21 De-multiplexing with LLC/SNAP ORG Type 3 2 SNAP PDU SNAP Header Information LLC PDU AA AA MAC Header FCS Information Network 1 /

22 Implementing the Communication Model Unicast Peer to Peer communication Source and destination address allocation Example p.16, 17, 18 is Unicast Broadcast Multicast Information Network 1 /

23 Broadcast Sending to all hosts running in the same transmission medium (data link). Broadcast communication availability depends on the datalink. Many data links do not support broadcast communication. Does not guarantee a perfect broadcast. Passive hosts will not receive the broadcast. Processing received data depends on the processes run by receiving hosts. IP broadcast Link-layer broadcast Information Network 1 /

24 Bootstrapping with Broadcast Broadcast communication in multi-access network It is absolutely necessary to resolve address from network layer to data link layer. Automatic configuration is absolutely necessary. Bootstrap A: a all stations: who is router r a: router R is at r R r A B C Network layer a b c Data-link layer Information Network 1 /

25 Selective Broadcasting Multicast Multi-point to Multi-point communication Selective broadcasting Membership If host is not a member, it won t be able to listen to communications within the group. Membership management Group Management IP multicast Link-layer multicast Information Network 1 /

26 What if...? Application Presentation Session Transport Network Data Link Physical Application Presentation Session Transport Network Data Link Physical physical connection Failure isolation and Failure recovery Information Network 1 /

27 Failure Isolation: ICMP (1) RFC792 Failure occurs below the data link layer Dropping a Packet In the case a packet did not reach its destination Destination Unreachable Returning to the source address. ICMP Destination Unreachable failure Information Network 1 /

28 Failure Isolation: ICMP (2) End-to-end reachability verification, faulty section judgment Echo Request, Echo Reply Application Presentation Session Transport Network Data Link Physical Application Presentation Session Transport Network Data Link Physical Information Network 1 /

29 Connecting Heterogeneous Data Links (1) Because of heterogeneity... Address architecture is different Resolving with ARP. Multiplexing method is different Resolving with LLC/SNAP Transmission speed is different Resolving with buffer Maximum Transmission Unit (MTU) size is different Fragmentation Information Network 1 /

30 Connecting Heterogeneous Data Links (2) Fragmentation and reassembly Fragmentation Fragmenting a packet and keeping fragments within a maximum frame length. Reassembly Reconstructing the fragmented packet at the destination node. MTU = 9128 MTU = 1520 Information Network 1 /

31 Fragmentation and Reassembly IPv4 header Flags = {0, MF, DF} Fragment offset: 13 bits Ver. IHL Type of Service ( Octet Total Length (in Identification Flags Fragment Offset Time to Live Protocol Header Checksum Source Address Destination Address ( any Option (if Information Network 1 /

32 IPv6 Information Network 1 /

33 The End of IPv4 50 Billion individual elements on the Internet in 2014 Information Network 1 /

34 IPv4 Address Allocation Report Date: 27-Apr Information Network 1 /

35 Internet Protocol version 6 (IPv6) Developed in early 90s Deployed since late 90s early 2000 Designed to overcome limitations in IPv4 First issue was to deal with addressing From 2 32 to (4.3 x 10 9 to 3.4 x ) Enhance the security IPsec is built in to IPv6 from the start IPv6 global addressing enables you to minimize devices, minimize delay, and simplify development Headers allow development of new quality and streaming services Information Network 1 /

36 IPv4 vs IPv6 (1) Address architecture Hierarchic structure Introduction of the concept of scope Clear definition of address classes Multicast Standardization Discontinuation of broadcast Able to deal with high-speed networks Simplified header format Suppression of unused fields Static length Discontinuation of checksums Discontinuation of IP header options Discontinuation of en-route packet fragmentation Information Network 1 /

37 IPv4 vs IPv6 (2) Link layer and network layer address resolution ( Protocol ARP -> NDP (Neighbor Discovery Unreachability detection Security IPsec as a standard Flexibility IP extension header MobileIPv6 IPsec Information Network 1 /

38 IPv6 Address Format Information Network 1 /

39 IPv6 Address (1) IPv4 address: 32 Bits (4 Bytes) 4 decimal numbers separated by a dot IPv6 address: 128 Bits (16 Bytes) 8 Groups separated by colons ( : ) Each group represent 4 Hexadecimal digits 2001:0db8:85a3:0000:0000:8a2e:0370:7334 Allowing to remove leading zeros and skip consecutive zero sequence 2001:0db8:85a3:0000:0000:8a2e:0370: :db8:85a3:0:0:8a2e:370: :db8:85a3::8a2e:370:7334 Information Network 1 /

40 IPv6 Address (2) IPv4 compatibility address ::IPv4 address :: Address used for auto-tunneling IPv4-mapped address ::ffff:ipv4 address ::ffff: Address expression to show a node implements IPv4 only Information Network 1 /

41 Scope (1) Link-Local To be used for auto-address configuration neighbor discovery Valid in the scope of the given link, not routable fe80::/ 10 prefix Global Global/Universal address Routable Connect to any global scope address anywhere Information Network 1 /

42 Scope (2) Organization Global HOST HOST Organization Link-local Router Link-local HOST Information Network 1 /

43 IPv4 Header Total length: 20 bytes + options Fields in red are suppressed or renamed in IPv6 bit version HL ToS Total Length Iden4fica4on Flag Fragment Offset TTL Protocol Header Checksum Source address (32 bits) Des4na4on address (32 bits) Op4ons Padding Information Network 1 /

44 IPv6 Header Fixed length: 40 bytes All optional/additional info is encoded in Extension Header It isn t protected by checksum bit version Traffic class Flow label Payload length Next header Hop limit Source address (128 bits) Des4na4on address (128 bits) Information Network 1 /

45 Address Structure (1) Separating network prefix and interface ID ( bits Network prefix (Upper 64 Interface ID (Lower 64 :( bits MAC address (EUI-64) E.g. 00:e0:18:98:93:6d (MAC address) 2001:200:16a:e320:2e0:18ff:fe98:936d 64 bits 64 bits Network Prefix Interface ID global routing prefix subnet id interface id IANA RIR RIR LIR /48 block for end user Information Network 1 /

46 Address Structure (2) Address assignment following the network topology RFC FP TLA ID RE NLA ID SLA ID Interface ID RFC FP TLA ID RE NLA ID SLA ID Interface ID sub-tla FP Format Prefix RE Reserved TLA ID Top-Level Aggregation Identifier NLA ID Next-Level Aggregation Identifier SLA ID Site-Level Aggregation Identifier Information Network 1 /

47 Address Assignment APNIC 2001:200::/ :200::/ :3f8::/29 TLA ID WIDE sub-tla NAIST USM NLA ID 2001:200:16a::/ :200:703::/48 Information Network 1 /

48 Top Level Aggregator (TLA) Assigned from RIRs (ARIN, RIPE, APNIC) /29 address space FP TLA ID RE NLA ID Previous assignment FP TLA ID SubTLA ID NLA ID Current assignment Information Network 1 /

49 Next Level Aggregator (NLA) ISPs and organizations acquire addresses from TLA Enabling to set a subnet From /35 to /48 address spaces FP TLA ID RE NLA ID Previous assignment FP TLA ID SubTLA ID NLA ID Current assignment Information Network 1 /

50 Site Level Aggregator (SLA) Organizations acquire addresses from NLA. From /49 to /64 address spaces FP TLA ID SubTLA ID NLA ID SLA ID Information Network 1 /

51 Unicast Address Unicast Address Assigned to a single interface Address valid at the link scope fe80::2e0:18ff:fe98:936d 10 bits 56 bits 64 bits interface Id Information Network 1 /

52 Multicast Address Multicast Address Assigned to several interfaces and delivered to all these interfaces 8 bits bits flags scope group ID 0 reserved 1 node-local scope 2 link-local scope 5 site-local scope 8 organization-local scope E global scope F reserved 0000 permanent(defined)address 0001 temporary address Information Network 1 /

53 Format Prefix (1) Usage Prefix Occupation Reserved /256 Unassigned /256 Reserved for NSAP Allocation /128 Reserved for IPX Allocation /128 Unassigned /128 Unassigned /32 Unassigned /16 Aggregatable Global Unicast Address 001 1/8 Unassigned 010 1/8 Unassigned 011 1/8 Unassigned 100 1/8 Unassigned 101 1/8 Information Network 1 /

54 Format Prefix (2) Usage Prefix Occupation Unassigned 110 1/8 Unassigned /16 Unassigned /32 Unassigned /64 Unassigned /128 Unassigned /512 Link-Local Unicast Address /1024 Multicast Address /256 Unassigned is dealt with as Unicast from now on. Information Network 1 /

55 Defined Multicast Address FF00:0:0:0:0:0:0:0 reserved FF01:0:0:0:0:0:0:0 reserved : FF0F:0:0:0:0:0:0:0 reserved FF01:0:0:0:0:0:0:1 All IPv6 nodes address (node-local) FF02:0:0:0:0:0:0:1 All IPv6 nodes address (link-local) FF01:0:0:0:0:0:0:2 All IPv6 routers address (node-local) FF02:0:0:0:0:0:0:2 All IPv6 routers address (link-local) FF02:0:0:0:0:0:0:C DHCP servers / relay agents FF02:0:0:0:0:1:x:x Solicited-Node address Information Network 1 /

56 IPv6 Important Features ICMPv6 NDP IPsec Dual Stack operation & transition to IPv6 Information Network 1 /

57 IPv6 Advantages More efficient address space allocation End-to-end addressing; no NAT anymore Fragmentation only by the source host Routers don t calculate header checksum (speed up) Multicasting instead of broadcasting Built-in security mechanisms Single control protocol (ICMPv6) Auto-configuration etc. Information Network 1 /

58 Hands-on: Network Information Network I 58

59 Overview Obtaining an IP address o Dynamic Host Configuration Protocol (DHCP) How Domain Name System works? Network tools o o o o o ipconfig / ifconfig nslookup <domain_name> tracert / traceroute Speed test Traffic monitoring tool: Ntop Network intrusion: Smurf attack 59

60 To See IP Address Windows command: ipconfig all Mac command: ifconfig -a IP address version 6 IP address version 4 60

61 To See DHCP Server's IP Address in Windows Windows command: ipconfig -all Automatic Addressing by DHCP Server 61

62 For Mac Mac command: ifconfig -a Mac command: ipconfig getpacket <interface_name> IP address version 6 IP address version 4 DHCP server's I

63 How DHCP Works? (Dynamic Host Configuration Protocol) DHCP Client 00:a0:24:71:e4:44 DHCP Server DHCPRELEASE DHCP Server 63

64 To Capture DHCP traffic with Wireshark 1. Start a Wireshark (For window, please run as administrator) Start capturing 2 1 Select a interface 64

65 Capturing DHCP traffic with Wireshark (cont.) 2. Open a command prompt or a terminal 3. For Windows: o o type ipconfig /release and press Enter type ipconfig /renew and press Enter For Mac: o o type sudo ifconfig set <your_interface_name> BOOTP type sudo ifconfig set <your_interface_name> DHCP 4. Stop the Wireshark capture 65

66 Capturing DHCP traffic with Wireshark (cont.) 4. Filter: bootp 66

67 Domain Name Server (DNS) Windows command: ipconfig -all Mac command: ipconfig getpacket <interface_name> Domain Name Server IP address DNS IP DHCP Addresses server's address 67

68 How Domain Name System Works? 68

69 Domain Name <-> IP Address Command: nslookup <domain_name> Command: nslookup <ip_address> Reverse nslookup 69

70 Default Gateway Windows command: ipconfig -all Mac command: ipconfig getpacket <interface_name> Default Gateway's IP DNS IP DHCP Addresses server's address

71 See the Path of the Packets Window command: tracert <domain_name> Mac command: traceroute <domain_name> First hop is your gateway IP address 71

72 See the Path of the Packets (cont.) Window command: tracert <domain_name> Mac command: traceroute <domain_name> The packet is dropped 72

73 Visual Traceroute 73

74 Speed Test 74

75 Network Traffic Monitoring Tool: NTOP 1. Run Ubuntu machine in Virtual Box Password: network Open Terminal 3. Check your interface name by this command: ifconfig 4. Install NTOP by this command: sudo apt-get install ntop 5. Run the NTOP program by this command: sudo /etc/init.d/ntop start 75

76 6. Open a browser and go to: 76

77 Keep playing the Internet!!! 77

78 78

79 Network Intrusion: Distributed-DenialOf-Service Attacks Smurf Attack 79

80 Network Intrusion Prevention Anti-virus software Intrusion Prevention System Network Intrusion Detection System (NIDS) 80

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Network Layer Protocol & Internet Protocol (IP) Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Reading Assignment Information Network 1 / 2012 2 Network Layer

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

IPv6 : Internet Protocol Version 6

IPv6 : Internet Protocol Version 6 IPv6 : Internet Protocol Version 6 History Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s)

History. IPv6 : Internet Protocol Version 6. IPv4 Year-Wise Allocation (/8s) History IPv6 : Internet Protocol Version 6 Internet growth was faster than anticipated In early 1990 s, it was realized that we may run out of IPv4 addresses somewhere between 2000 and 2010 Also, experiences

More information

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land

IPv6 Protocols and Networks Hadassah College Spring 2018 Wireless Dr. Martin Land IPv6 1 IPv4 & IPv6 Header Comparison IPv4 Header IPv6 Header Ver IHL Type of Service Total Length Ver Traffic Class Flow Label Identification Flags Fragment Offset Payload Length Next Header Hop Limit

More information

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables IPv6 Concepts Tópicos Avançados de Redes 2016/2017 Why IPv6? 2 Lack of IPv4 addresses Imply NAT, or other solutions; Realm Specific IP (RFC3102) Improve router performance Simplify IP header Align to 64

More information

Rocky Mountain IPv6 Summit April 9, 2008

Rocky Mountain IPv6 Summit April 9, 2008 Rocky Mountain IPv6 Summit April 9, 2008 Introduction to the IPv6 Protocol Scott Hogg GTRI - Director of Advanced Technology Services CCIE #5133, CISSP 1 IPv6 Header IPv4 Header 20 bytes IPv6 Header, 40

More information

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local

IPv6. IPv4 & IPv6 Header Comparison. Types of IPv6 Addresses. IPv6 Address Scope. IPv6 Header. IPv4 Header. Link-Local 1 v4 & v6 Header Comparison v6 Ver Time to Live v4 Header IHL Type of Service Identification Protocol Flags Source Address Destination Address Total Length Fragment Offset Header Checksum Ver Traffic Class

More information

Lecture Computer Networks

Lecture Computer Networks Prof. Dr. Hans Peter Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Lecture Computer Networks Internet Protocol

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Internet Protocol, Version 6

Internet Protocol, Version 6 Outline Protocol, Version 6 () Introduction to Header Format Addressing Model ICMPv6 Neighbor Discovery Transition from to vs. Taken from:chun-chuan Yang Basics: TCP/ Protocol Suite Protocol (IP) Features:

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

New IP Header. Why change IP. Address Notation. Changes. Information Sources. IP Version 6 ITL

New IP Header. Why change IP. Address Notation. Changes. Information Sources. IP Version 6 ITL Information Sources IP Version 6 ITL www.ipv6.org Christian Huitema, IPv6, The New Internet Protocol, Prentice Hall PTR, 1996. Lots of RFCs, 3513 describes the current address format Many others, see the

More information

Information Sources Hans Kruse & Shawn Ostermann, Ohio University

Information Sources Hans Kruse & Shawn Ostermann, Ohio University IP Version 6 ITL Information Sources www.ipv6.org Christian Huitema, IPv6, The New Internet Protocol, Prentice Hall PTR, 1996. Lots of RFCs, 3513 describes the current address format Many others, see the

More information

Introduction to IPv6

Introduction to IPv6 Introduction to IPv6 1 What is IPv6? IP (Internet Protocol) The most common protocol over the Internet defines how packets are sent over the internet Addressing and routing Current versions IPv4 & IPv6

More information

IPv6. (Internet Protocol version 6)

IPv6. (Internet Protocol version 6) IPv6 Réseaux 1 IPv6 (Internet Protocol version 6) 2 IPv6 IP version 6 is the new version of the Internet Protocol (IP) The standardization process started in the 90s The main elements of IPv4 are still

More information

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL IPv6 Protocol & Structure npnog3 9-11 Dec, 2017 Chitwan, NEPAL Protocol Header Comparison IPv4 contains 10 basic header fields, while IPv6 has 6 basic header fields IPv6 header size is 40 octets compared

More information

Configuring IPv6 for Gigabit Ethernet Interfaces

Configuring IPv6 for Gigabit Ethernet Interfaces CHAPTER 46 IP version 6 (IPv6) provides extended addressing capability beyond those provided in IP version 4 (IPv4) in Cisco MDS SAN-OS. The architecture of IPv6 has been designed to allow existing IPv4

More information

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network

Subnet Masks. Address Boundaries. Address Assignment. Host. Net. Host. Subnet Mask. Non-contiguous masks. To Administrator. Outside the network Subnet Masks RFCs 917 922 925 (1984) 932 936 940 950 (1985) First major change to IP after RFC791 Net Host Subnet Mask 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Net Bits set indicate net number Bits clear indicate

More information

IPv6 Protocol Architecture

IPv6 Protocol Architecture IPv6 Protocol Architecture v4/v6 Header Comparison Not kept in IPv6 Renamed in IPv6 Same name and function New in IPv6 2 New Functional Improvement Address Space Increase from 32-bit to 128-bit address

More information

Athanassios Liakopoulos

Athanassios Liakopoulos Introduction to IPv6 (Part B) Athanassios Liakopoulos (aliako@grnet.gr) Greek IPv6 Training, Athens, May 2010 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The

More information

Information Sources Hans Kruse & Shawn Ostermann, Ohio University

Information Sources Hans Kruse & Shawn Ostermann, Ohio University IP Version 6 ITL Information Sources www.ipv6.org Christian Huitema, IPv6, The New Internet Protocol, Prentice Hall PTR, 1996. Lots of RFCs, 3513 describes the current address format Many others, see the

More information

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER

Configuring IPv6. Information About IPv6. Send document comments to CHAPTER CHAPTER 3 This chapter describes how to configure Internet Protocol version 6 (IPv6), which includes addressing, Neighbor Discovery Protocol (ND), and Internet Control Message Protocol version 6 (ICMPv6),

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly

The Internet Protocol. IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly The Internet Protocol IP Addresses Address Resolution Protocol: IP datagram format and forwarding: IP fragmentation and reassembly IP Addresses IP Addresses are 32 bit. Written in dotted decimal format:

More information

IPv6 Basics. APNIC Training Bali, Indonesia February, Jordi Palet - 1

IPv6 Basics. APNIC Training Bali, Indonesia February, Jordi Palet - 1 IPv6 Basics APNIC Training Bali, Indonesia February, 2007 Jordi Palet (jordi.palet@consulintel.es) - 1 Why a New IP? Only compelling reason: more addresses! for billions of new devices, e.g., cell phones,

More information

ET4254 Communications and Networking 1

ET4254 Communications and Networking 1 Topic 9 Internet Protocols Aims:- basic protocol functions internetworking principles connectionless internetworking IP IPv6 IPSec 1 Protocol Functions have a small set of functions that form basis of

More information

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and INTERNET PROTOCOL VERSION 6 (IPv6) Introduction IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and addressing

More information

ETSF05/ETSF10 Internet Protocols Network Layer Protocols

ETSF05/ETSF10 Internet Protocols Network Layer Protocols ETSF05/ETSF10 Internet Protocols Network Layer Protocols 2016 Jens Andersson Agenda Internetworking IPv4/IPv6 Framentation/Reassembly ICMPv4/ICMPv6 IPv4 to IPv6 transition VPN/Ipsec NAT (Network Address

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT ISO 9001:2008 Pankaj Kumar Dir, TEC, DOT AWARENESS OBJECTIVES IPv6 Address Format & Basic Rules Understanding the IPv6 Address Components Understanding & Identifying Various Types of IPv6 Addresses 3/25/2012

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August 1964 The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (12 th Week) The Internet Protocol 12.Outline Principles of Internetworking Internet Protocol Operation Internet Protocol

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

CSCI-1680 Network Layer: IP & Forwarding John Jannotti

CSCI-1680 Network Layer: IP & Forwarding John Jannotti CSCI-1680 Network Layer: IP & Forwarding John Jannotti Based partly on lecture notes by David Mazières, Phil Levis, Rodrigo Fonseca Administrivia IP out today. Your job: Find partners, get setup with Github

More information

Module 13. IPv6 Addressing

Module 13. IPv6 Addressing Module 13 IPv6 Addressing Objectives 1. 2.3 Explain the Properties and characteristics of TCP/IP IPv6 2 INTRODUCTION TO IPV6 3 IPv4 Addresses: 32 Bits 4 1.IPv4 address: 192.168.1.10 A.Four bytes or octets

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia IP out today. Your job: Find partners and tell us Implement

More information

Workshop on Scientific Applications for the Internet of Things (IoT) March

Workshop on Scientific Applications for the Internet of Things (IoT) March Workshop on Scientific Applications for the Internet of Things (IoT) March 16-27 2015 IP Networks: From IPv4 to IPv6 Alvaro Vives - alvaro@nsrc.org Contents 1 Digital Data Transmission 2 Switched Packet

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Today Network layer: Internet Protocol (v4) Forwarding Next 2 classes:

More information

Asst. Prof. Chaiporn Jaikaeo, Ph.D.

Asst. Prof. Chaiporn Jaikaeo, Ph.D. IP Version 6 Asst. Prof. Chaiporn Jaikaeo, Ph.D. chaiporn.j@ku.ac.th http://www.cpe.ku.ac.th/~cpj Computer Engineering Department Kasetsart University, Bangkok, Thailand Adapted from the notes by Lami

More information

IP - The Internet Protocol

IP - The Internet Protocol IP - The Internet Protocol 1 Orientation IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network Layer ARP Network Access Link Layer Media 2 IP:

More information

Networking Fundamentals

Networking Fundamentals Networking Fundamentals Network Startup Resource Center www.nsrc.org These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

Network Layer Part A (IPv6) Network Layer 4-1

Network Layer Part A (IPv6) Network Layer 4-1 Network Layer Part A (IPv6) Network Layer 4-1 Chapter 4: outline 4.1 Overview of Network layer data plane control plane 4.2 What s inside a router 4.3 IP: Internet Protocol datagram format fragmentation

More information

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2014 1 Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

CSEP 561 Internetworking. David Wetherall

CSEP 561 Internetworking. David Wetherall CSEP 561 Internetworking David Wetherall djw@cs.washington.edu Internetworking t Focus: Joining multiple, different networks into one larger network Forwarding models Application Heterogeneity Transport

More information

Additional Material. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Information Network I/No.

Additional Material. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Information Network I/No. Additional Material Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science 2010 Information Network I/No.4 1 ! Protocol Suites for the Internet! Widely used from LANs

More information

IPv6 Next generation IP

IPv6 Next generation IP Seminar Presentation IPv6 Next generation IP N Ranjith Kumar 11/5/2004 IPv6 : Next generation IP 1 Network Problems Communication Problem Identification Problem Identification of Networks Logical Addressing

More information

Operation Manual IPv6 H3C S3610&S5510 Series Ethernet Switches Table of Contents. Table of Contents

Operation Manual IPv6 H3C S3610&S5510 Series Ethernet Switches Table of Contents. Table of Contents Operation Manual IPv6 Table of Contents Table of Contents Chapter 1 IPv6 Basics Configuration... 1-1 1.1 IPv6 Overview... 1-1 1.1.1 IPv6 Features... 1-2 1.1.2 Introduction to IPv6 Address... 1-3 1.1.3

More information

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011 IPv6 Associated Protocols Athanassios Liakopoulos (aliako@grnet.gr) 6DEPLOY IPv6 Training, Skopje, June 2011 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The Powerpoint

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

Internet Protocols (chapter 18)

Internet Protocols (chapter 18) Internet Protocols (chapter 18) CSE 3213 Fall 2011 Internetworking Terms 1 TCP/IP Concepts Connectionless Operation Internetworking involves connectionless operation at the level of the Internet Protocol

More information

The Internet. The Internet is an interconnected collection of netw orks.

The Internet. The Internet is an interconnected collection of netw orks. The Internet The Internet is an interconnected collection of netw orks. Internetw orking-1 Internetworking! Communications Network: A facility that provides a data transfer service among stations attached

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-6 Introduction to IPv6 DNS 1-8 Protocols

More information

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August

On Distributed Communications, Rand Report RM-3420-PR, Paul Baran, August The requirements for a future all-digital-data distributed network which provides common user service for a wide range of users having different requirements is considered. The use of a standard format

More information

IPv6 Technical Challenges

IPv6 Technical Challenges IPv6 Technical Challenges Peter Palúch, CCIE #23527, CCIP University of Zilina, Slovakia Academy Salute, April 15 th 16 th, Bucharest IPv6 technical challenges What challenges do I meet if I decide to

More information

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Finding Feature Information,

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

IPv6 Addressing. There are three types of IPV6 Addresses. Unicast:Multicast:Anycast

IPv6 Addressing. There are three types of IPV6 Addresses. Unicast:Multicast:Anycast IPv6 Addressing There are three types of IPV6 Addresses. Unicast:Multicast:Anycast Unicast IPv6 addresses A unicast address identifies a single interface within the scope of the type of unicast address.

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to IPv6 DNS 1-8 Protocols

More information

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang CS 356: Computer Network Architectures Lecture 10: IP Fragmentation, ARP, and ICMP Xiaowei Yang xwy@cs.duke.edu Overview Homework 2-dimension parity IP fragmentation ARP ICMP Fragmentation and Reassembly

More information

EE 610 Part 2: Encapsulation and network utilities

EE 610 Part 2: Encapsulation and network utilities EE 610 Part 2: Encapsulation and network utilities Objective: After this experiment, the students should be able to: i. Understand the format of standard frames and packet headers. Overview: The Open Systems

More information

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3

CS 356: Computer Network Architectures. Lecture 15: DHCP, NAT, and IPv6. [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 CS 356: Computer Network Architectures Lecture 15: DHCP, NAT, and IPv6 [PD] chapter 3.2.7, 3.2.9, 4.1.3, 4.3.3 Xiaowei Yang xwy@cs.duke.edu Dynamic Host Configuration Protocol (DHCP) Dynamic Assignment

More information

The Internet Protocol (IP)

The Internet Protocol (IP) The Internet Protocol (IP) The Blood of the Internet (C) Herbert Haas 2005/03/11 "Information Superhighway is really an acronym for 'Interactive Network For Organizing, Retrieving, Manipulating, Accessing

More information

IPv6 Feature Facts

IPv6 Feature Facts 12.1.2 IPv6 Feature Facts The current IP addressing standard, version 4, will eventually run out of unique addresses, so a new system is being developed. It is named IP version 6 or IPv6. You should know

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-2 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to ND Snooping 1-7 Introduction

More information

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet

Chapter 2 - Part 1. The TCP/IP Protocol: The Language of the Internet Chapter 2 - Part 1 The TCP/IP Protocol: The Language of the Internet Protocols A protocol is a language or set of rules that two or more computers use to communicate 2 Protocol Analogy: Phone Call Parties

More information

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis

CS-435 spring semester Network Technology & Programming Laboratory. Stefanos Papadakis & Manolis Spanakis CS-435 spring semester 2016 Network Technology & Programming Laboratory University of Crete Computer Science Department Stefanos Papadakis & Manolis Spanakis CS-435 Lecture #4 preview ICMP ARP DHCP NAT

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

OSI Network Layer. Network Fundamentals Chapter 5. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1 OSI Network Layer Network Fundamentals Chapter 5 Version 4.0 1 Objectives Identify the role of the Network Layer, as it describes communication from one end device to another end device. Examine the most

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter 5 Network Layer Network Layer IPv4 2 IP Header Application Header + data 3 IP IP IP IP 4 Focus on Transport Layer IP IP 5 Network Layer The Network layer (Layer 3) provides services to exchange

More information

TK D Body Part No. X

TK D Body Part No. X PUBLISHED BY Microsoft Press A Division of Microsoft Corporation One Microsoft Way Redmond, Washington 98052-6399 Copyright 2003 by Microsoft Corporation All rights reserved. No part of the contents of

More information

Configuring IPv6 basics

Configuring IPv6 basics Contents Configuring IPv6 basics 1 IPv6 overview 1 IPv6 features 1 IPv6 addresses 2 IPv6 neighbor discovery protocol 5 IPv6 PMTU discovery 8 IPv6 transition technologies 8 Protocols and standards 9 IPv6

More information

C14a: Internetworks and The Internet

C14a: Internetworks and The Internet CISC 7332X T6 C14a: Internetworks and The Internet Hui Chen Department of Computer & Information Science CUNY Brooklyn College 11/27/2018 CUNY Brooklyn College 1 Acknowledgements Some pictures used in

More information

K2289: Using advanced tcpdump filters

K2289: Using advanced tcpdump filters K2289: Using advanced tcpdump filters Non-Diagnostic Original Publication Date: May 17, 2007 Update Date: Sep 21, 2017 Topic Introduction Filtering for packets using specific TCP flags headers Filtering

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment. Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture

Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment. Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture Avaya Networking IPv6 Using Fabric Connect to ease IPv6 Deployment Ed Koehler Director DSE Ron Senna SE Avaya Networking Solutions Architecture IAUG Newport RI, November 2013 Agenda IPv6, The fundamentals

More information

Introduction to IPv6 - II

Introduction to IPv6 - II Introduction to IPv6 - II Building your IPv6 network Alvaro Vives 27 June 2017 Workshop on Open Source Solutions for the IoT Contents IPv6 Protocols and Autoconfiguration - ICMPv6 - Path MTU Discovery

More information

Advanced Computer Networking. CYBR 230 Jeff Shafer University of the Pacific. IPv6

Advanced Computer Networking. CYBR 230 Jeff Shafer University of the Pacific. IPv6 CYBR 230 Jeff Shafer University of the Pacific IPv6 2 IP Versions Version Description 0-3 Unused: Development versions of IP 4 Current network-layer protocol 5 Unused: Experimental stream protocol ST 6

More information

Cisco CCNP Routing Study Guide v

Cisco CCNP Routing Study Guide v 1 Cisco CCNP Routing Study Guide v1.22 2012 Aaron Balchunas aaron@routeralley.com http://www.routeralley.com Foreword: This study guide is intended to provide those pursuing the CCNP certification with

More information

Internet Technology 3/23/2016

Internet Technology 3/23/2016 Internet Technology // Network Layer Transport Layer (Layer ) Application-to-application communication Internet Technology Network Layer (Layer ) Host-to-host communication. Network Layer Route Router

More information

IPv6: An Introduction

IPv6: An Introduction Outline IPv6: An Introduction Dheeraj Sanghi Department of Computer Science and Engineering Indian Institute of Technology Kanpur dheeraj@iitk.ac.in http://www.cse.iitk.ac.in/users/dheeraj Problems with

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

TCP /IP Fundamentals Mr. Cantu

TCP /IP Fundamentals Mr. Cantu TCP /IP Fundamentals Mr. Cantu OSI Model and TCP/IP Model Comparison TCP / IP Protocols (Application Layer) The TCP/IP subprotocols listed in this layer are services that support a number of network functions:

More information

CS118 Discussion 1A, Week 6. Zengwen Yuan Dodd Hall 78, Friday 10:00 10:50 a.m.

CS118 Discussion 1A, Week 6. Zengwen Yuan Dodd Hall 78, Friday 10:00 10:50 a.m. CS118 Discussion 1A, Week 6 Zengwen Yuan Dodd Hall 78, Friday 10:00 10:50 a.m. 1 Outline Network Layer Overview: data v.s. control plane IPv4/IPv6, DHCP, NAT Project 2 spec Midterm review 2 Network layer:

More information

Chapter 19 Network Layer: Logical Addressing 19.1

Chapter 19 Network Layer: Logical Addressing 19.1 Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 IPv4 IPv4 addresses are 32 bit length. IPv4 addresses are

More information

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms

Internetworking Terms. Internet Structure. Internet Structure. Chapter 15&16 Internetworking. Internetwork Structure & Terms Chapter 15&16 Internetworking Internetwork Structure & Terms Internetworking Architecture Features Connection/Connectionless Architecture Fragmentation & Reassembly Internet Protocol & Services Addressing

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Instructor: Nicholas DeMarinis Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Administrivia IP out today. Your job:

More information

7th Slide Set Computer Networks

7th Slide Set Computer Networks Prof. Dr. Christian Baun 7th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/49 7th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1

Interconnecting Networks with TCP/IP. 2000, Cisco Systems, Inc. 8-1 Interconnecting Networks with TCP/IP 2000, Cisco Systems, Inc. 8-1 Objectives Upon completion of this chapter you will be able to perform the following tasks: Identify the IP protocol stack, its protocol

More information