The Netwok Layer IPv4 and IPv6 Part 1

Size: px
Start display at page:

Download "The Netwok Layer IPv4 and IPv6 Part 1"

Transcription

1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 1 Jean Yves Le Boudec Contents 1. The Two Principles of IP Unicast 2. IPv4 addresses 3. IPv6 addresses 4. Subnets and Masks 5. NATs 6. ARP Textbook Chapter 5: The Network Layer 2

2 IP Principle #1 = Structured addresses + Longest prefix match Recall goal of Internet Protocol (IP) = interconnect all systems in the world Principle #1: every interface has an IP address IP address is structured to reflect where the system is in the world every packet contains IP address of destination every system has a forwarding table ( = routing table) and performs longest prefix match on address destination 3 Lisa A.H1 Forwarding table to output B.* 2 A.* 0 1 Forwarding table to output A.* 1 B.D.* 2 B.* router R1 to: B.D.H2 router R2 router R3 2 Forwarding table to output A.* 1 B.D.* 1 B.C.* 0 Homer B.C.H2 to output A.* 1 B.* 2 1 router R4 2 Bart B.D.H2 Forwarding table 4

3 IP Principle #2 = Don t use routers inside a LAN B WiFi base station P W E Ethernet concentrator B E and W P should not go through router W E goes through router Terminology: LAN = subnet IP principle 2 says: between subnets use routers, inside subnet don t 5 We observe a packet from W to P at 1. Which IP destination address do we see? 1. The IP address of P 1 25% 25% 25% 25% 2. The IP address of an Ethernet interface of the Ethernet concentrator 3. There is no destination IP address in the packet since communication is inside the subnet and does not go through a router 4. I don t know The IP address of P dress of an Ethernet... no destination IP a... I don t know 6

4 The Internet Protocol (IP) Communication between IP hosts requires knowledge of IP addresses An IP address is unique across the whole network (= the world in general) An IP address is the address of an interface There are two versions: IPv4 (current version) and IPv6 (next version) There are two network layers: Internet4 and Internet6 Terminology: packet = IP data unit intermediate system = system that forwards data units to another system; an IP intermediate system is called a router an IP system that does not forward is called a host 7 2. IPv4 addresses IPv4 address Uniquely identifies one interface in the world (in principle) An IPv4 address is 32 bits, usually noted in dotted decimal notation dotted decimal: 4 integers (one integer = 8 bits) example 1: example 2: hexadecimal: 8 hexa digits (one hexa digit = 4 bits) example 1: x80 bf example 2: x81 c binary: 32 bits example 1: b example 2: b

5 Binary, Decimal and Hexadecimal Given an integer B the basis : any integer can be represented in base B by means of an alphabet of B symbols Usual cases are decimal: 234 binary: hexadecimal: ea Mapping binary < > hexa is simple: one hexa digit is 4 binary digits e = 1110 a = 1010 ea = b Mapping binary < > decimal is best done by a calculator = = 234 Special Cases to remember f = 1111 = 15 ff = = lrcsuns :00:20:71:0D:D4 lrcpc :00:C0:B8:C2:8D Example Modem + PPP sic500cs in-inr :00:0C:02:78:36 LRC ed2-in DI ETHZ-Backbone ezci7-ethz-switch sw-zu-03 Switch x.x sw-la ed0-ext EPFL-Backbone ed0-swi stisun in-inj :00:0C:17:32:96 disun lrcmac4 08:00:20:20:46:2E Ring SIDI SUN 08:00:07:01:a2:a5 ezci7-ethz-switch ed2-el Komsys LEMA lrcmac :00:07:01:a2:a5 10

6 Network Prefix Network prefixes are used in routing tables /24 is the prefix length in bits Extract from routing table at sw-la Destination Next hop / / Extract from routing table at ed0-swi Destination Next hop / / / Special Addresses absence of address /24 this host (loopback address) for example /8, /12, /16 private networks (e.g in IEW) cannot be used on the public Internet /16 link local address (can be used only between systems on same LAN) 224/4 multicast 240/5 reserved /32 link local broadcast 12

7 IPv4 Packet Format Higher layer protocol 1= ICMP, 6 = TCP, 17 = UDP) Header 20 bytes (+ options, if any) payload We will see the functions of the fields other than the addresses in a following module IPv6 Addresses The current IP is IPv4. IPv6 is the next version of IP Why a new version? IPv4 address space is too small (32 bits 4 10 addresses ) What does IPv6 do? Redefine packet format with a larger address: 128 bits ( 3 10 addresses) Otherwise essentially the same as IPv4 IPv6 is incompatible with IPv4; routers and hosts must handle both separately A can talk to W, B can talk to W, A and B cannot communicate Web browser W Application IPv6 TCP MAC IPv4 Dual Stack Local router IPv6 MAC IPv4 B HTTP TCP IPv6 A HTTP TCP IPv4 14

8 Routing Tables at ed0 swi IP address of next hop lrcsuns :00:20:71:0D:D4 Destination Next hop 2001:620:618:1a4/64 fe80::1%1 2001:620:618/48 fe80::4%2 ::/0 fe80::1% sw-la :620:618:10a::1 fe80::1 %1 stisun1 ed0-ext ed0-swi % :620:618:10b::1 2001:620:618:1a6:1:80b2:f66:1 fe80:: ed2-in :620:618:1ac::3 2001:620:618:1ac:: in-inr in-inj 2001:620:618:1ac:: DI :620:618:1ad::1 2001:620:618:1ab::1 00:00:0C:02:78:36 00:00:0C:17:32:96 LRC interface number :620:618:10b::4 fe80::4 ed2-el :620: 618:1a4::1 lrcpc :00:C0:B8:C2:8D lrcmac4 2001:620:618:1ad:0a00:20ff:fe78:30f9 08:00:20:78:30:F9 15 IPv6 addresses are 128 bit long and are written using hexadecimal digits an EPFL public address: 2001:620:618:1a6:0a00:20ff:fe78:30f9 an EPFL private address: fd24:ec43:12ca:1a6:0a00:20ff:fe78:30f9 This is a private address EPFL private 16

9 Compression Rules for IPv6 Addresses 1 piece = 16 bits = [0 4 ]hexa digits; leading zeroes in one piece are omitted ; prefer lower case pieces separated by : (colon) one IPv6 address uncompressed = 8 pieces :: replaces any number of 0s in more than one piece; appears only once in address uncompressed 2002:0000:0000:0000:0000:ffff:80b2:0c :0620:0618:01a6:0000:20ff:fe78:30f9 compressed 2002::ffff:80b2:c :620:618:1a6:0:20ff:fe78:30f9 17 A Few IPv6 Global Unicast Addresses The block 2000/3 (i.e. 2xxx and 3xxx) is allocated for global unicast addresses 2001:620::/32 Switch 2001:620:618::/48 EPFL 2001:620:8::/48 ETHZ 2a02:1200::/27 Swisscom 2001:678::/29 provider independent address 2001::/32 Teredo 2002::/16 6to4 18

10 Examples of Special Addresses EPFL Private fc00::/7 (i.e. fcxx: and fdxx:) For example fd24:ec43:12ca:1a6:a00: 20ff:fe78:30f9 fe80::/10 ::/128 absence of address ::1/128 this host (loopback address) Unique local addresses = private networks (e.g in IEW) cannot be used on the public Internet link local address (can be used only between systems on same LAN) ff00::/8 multicast ff02::1:ff00:0/104 Solicited node multicast ff02::1/128 ff02::2/128 link local broadcast all link local routers 19 IPv6 Packet Format e.g. Higher layer protocol 1= ICMP, 6 = TCP, 17 = UDP) 16 bytes Header 40 bytes (+ options, if any) We will see the functions of the fields other than the addresses in a following module payload 20

11 The dotted decimal notation for 80 1: is I don t know 33% 33% 33% I don t know 21 The hexadecimal notation «2001::bad:babe» denotes a string of bits bits bits bits bits 6. None of the above 7. I don t know 14% 14% 14% 14% 14% 14% 14% 32 bits 44 bits 48 bits 64 bits 128 bits None of the above I don t know 22

12 4. Subnets and Masks Recall the IP principles: longest prefix match + routers between subnets only An IP system needs to know (in its forwarding table) which addresses are in same LAN as self ( = on link ) ed2 in has an IPv4 packet to destination address : packet is sent directly to : packet is sent to in inr This is done using the subnet mask dest next-hop interface /24 On-link eth /24 On-link eth /24 On-link eth / eth / eth1 23 One IP subnet must correspond to one network part An IP address is usually interpreted a network part a host part :620:618:1a6:0a00:20ff:fe78:30f9 Network part identifies subnet One subnet = one LAN All hosts in same LAN must have same network part The size of the network part may vary EPFL IPv4 network part is 24 bits ETHZ IPv4 network part 26 bits IPv6 network part is very often 64 bits 24

13 A system computes its network part from its IP address using the subnet mask, configured with the address = string of bits equal to 1 in network part, to 0 in host part network == IP address && mask At EPFL, IPv4 mask = and are on same subnet because && = && = IPv6 mask is very often 64 bits i.e. = ffff:ffff:ffff:ffff:: The notation /<length of network part> is also used Subnet Mask We could use the notation /24 instead of Same as saying Mask = ffff:ffff:ffff:ffff:: 26

14 Reserved Addresses with IPv4 0 and «all 1» are often avoided as host part Example: and are avoided (to prevent confusions with broadcast) 27 IPv4 address classes Long ago, IPv4 addresses had a class subnet mask was not necessary This is now obsolete but many people continue to use it class A 0 Net Id Subnet Id Host Id class B 10 Net Id Subnet Id Host Id class C 110 Net Id Host Id class D 1110 Multicast address class E Reserved Class A B C D E Range to to to to to

15 bridge? ?? ? X? bridge host A Can Host A have this address? Masks are all Yes 2. No 3. I don t know 33% 33% 33% Yes No know 29 The IPv4 Subnet Mask at ETHZ is ffff:ffff:ffff:ffff:: 8. ffff:ffff:ffff:ffff:c000:: 9. I don t know 11% 11% 11% 11% 11% 11% 11% 11% 11% ffff:ffff:ffff:ffff:: ffff:ffff:ffff:ffff:c000:: I don t know 30

16 The IPv6 Subnet Mask at ETHZ is /48 7. ffff:ffff:ffff:ffff:: 8. ffff:ffff:ffff:ffff:c000:: 9. I don t know 11% 11% 11% 11% 11% 11% 11% /48 31 ffff:ffff:: ff:c000:: What is the subnet broadcast address for subnet /26? I don t know 17% 17% 17% 17% 17% 17% I don t know 33

17 5. NATs: Why invented? (Network Address Translation boxes) Goal: re use same IP address for several devices / use private addresses This is a special type of «middle box», that is violating the TCP/IP architecture Used in residential networks («ADSL Modem») Used in companies to save IP addresses 35 How does Network Address Translation Work? NAT box modifies IP address and port numbers (port numbers are in TCP and UDP headers see transport protocol module) Maps (IP address, protocol type, port number) Exact matching from NAT Table To: UDP : 1029 To: UDP : 3441 To: UDP : 1029 To: UDP : 3442 LAN IPv 4 NAT box LAN Internet udp udp udp udp 3442 NAT table 36

18 Creating a NAT table entry: on the fly From: TCP : 1765 To: Port 80 From: TCP : 2343 To: Port 80 LAN IPv 4 NAT box LAN Internet udp udp udp udp tcp tcp 2343 NAT table Why some applications don t work with NATs S NAT Assume A behind a NAT and S in the internet Communication between A and S must be initiated by A «punch a hole through the NAT» If A and S are both behind a NAT (e.g. with voice over IP), we have a bootstrap problem A does not know its IP address as seen by S Solving this requires a third party this is what made Skype s fortune Cone or restricted NATs: third party used only to discover translated address Symmetric NAT: third party relays all traffic 38

19 Types of NATs Cone: translated (address, port) = f (internal (address, port)) ; remains valid as long as refreshed Symmetric: translated (address, port) = f(internal (address, port), correspondent (address, port)) Restricted: translated (address, port) = f (internal (address, port)) ; but valid only for specific correspondent address traffic from an unknown correspondent address is silently discarded This is only a rough classification; many things may happen in practice; NATs are a hack! 39 NAT44 and NAT66 NATs are motivated primarily by shortage of IPv4 addresses NAT44 maps IPv4 IPv4 addresses Widespread Many believe that there is no need for NAT66 since there are as many IPv6 addresses as one may ever need NAT66 are not widespread But NAT66 may be needed for other reasons use private addresses eg IEWv6 to EPFL v6 RFC 6296 specifies NAT66 40

20 When a NAT has a packet to forward and an association exists in the NAT table A. The NAT looks for a longest prefix match B. The NAT looks for an exact match C. None of the above D. I don t know The NAT looks for a longest. The NAT looks for an exact. 0% 0% 0% 0% None of the above I don t know 41 From WAN to LAN, the NAT may modify A. The source port B. The destination port C. None of the above D. I don t know 0% 0% 0% 0% The source port The destination port None of the above I don t know 42

21 ed2 in has a packet to destination address: ; packet is sent directly to ; packet is sent to MAC Address Resolution Q: What does «send packet directly» mean? A: send in an Ethernet frame, with destination MAC address = MAC address of Pb: what is the MAC address of ? Solution: ed2 in learns MAC address of using an address resolution procedure 44 Address Resolution with IPv4 : ARP Protocol 1: ed2-in has a packet to send to (stisun1) 1 No dest IP address Dest MAC addr = ff:ff:ff:ff:ff:ff ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 this address is on the same subnet lrcsuns sends an ARP request to all systems on the subnet (Ethernet broadcast Ethernet type = ARP) target IP address = ARP request is received by all IP hosts on the local network is not forwarded by routers 45

22 Address Resolution with IPv4 : ARP Protocol 1 2 No dest IP address Dest MAC addr = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 2: stisun1 has recognized its IPv4 address sends an ARP reply packet to the requesting host with its IPv4 and MAC addresses 46 Address Resolution with IPv4 : ARP Protocol Dest IP addr = Dest MAC Addr = 00:00:c0:b3:d2:8d ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 3: ed2-in reads ARP reply, stores in a cache and sends IPv4 packet to stisun1 1 and 2 are ARP packets; Ethertype = ARP (0806) 3 is an IPv4 packet; Ethertype = IPv4 (0800) ed2 in keeps mapping in cache; expires if there is no traffic from stisun2 for some period of time > cache timeout 47

23 Address Resolution with IPv6 is part of the Neighbor Discovery Protocol (NDP) 1: ed2-in has a packet to send to 2001:620:618:1a6:1:80b2:f66:1(stisun1) 1 Dest IP address = ff02::1:ff66:1 Dest MAC address = 33:33:ff:66:00:01 ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:d0:b3:d2:8d this address is on the same subnet lrcsuns sends a Neighbor Solicitation (NS) packet to the solicited node multicast address ff02::1:ff66:1 NS is received by all IPv6 hosts on the local network that have the same solicited node multicast address (here: only stisun1) 48 The Solicited Node Multicast Address Add last 24 bits of target IP address to ff02::1:ff00:0/104 A packet with such a destination address is forwarded by layer 2 to all nodes that listen to this multicast address Using MAC multicast address 33:33:<last 32 bits of IP address> This is better than broadcast Target address Solicited Node multicast address Compressed Uncompressed Uncompressed Compressed 2001:620:618:1a6:001:80b2:f66:1 2001:0620:0618:01a6:0001:80b2:0f66:0001 ff02:0000:0000:0000:0000:0001:ff66:0001 ff02::1:ff66:1 49

24 Address Resolution with IPv6 : NDP Protocol 1 2 Dest IP address = 2001:620:618:1a6:1:80b2:f01:1 Dest MAC address = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:c0:b3:d2:8d 2: stisun1 has received the NS packet and recognized its IPv6 address as the target sends a Neighbor Advertisement in reply with its IPv6 and MAC addresses 50 Address Resolution with IPv6 : NDP Protocol Dest IP address = 2001:620:618:1a6:1:80b2:f66:1 Dest MAC address = 00:00:c0:b3:d2:8d ed2-in stisun1 lrcpc2 ed0-ext :620:618:1a6:1: 2001:620:618:1a6:1: 80b2:f01:1 08:00:20:71:0d:d4 80b2:f66:1 00:00:c0:b3:d2:8d 3: ed2-in reads NA, stores in a cache and sends IPv6 packet to stisun1 1,2 and 3 are IPv6 packets; Ethertype = ARP (86DD) ed2 in keeps mapping in cache; expires if there is no traffic from stisun2 for some period of time > cache timeout 51

25 Look inside an ARP packet Ethernet II Destination: ff:ff:ff:ff:ff:ff (ff:ff:ff:ff:ff:ff) Source: 00:03:93:a3:83:3a (Apple_a3:83:3a) Type: ARP (0x0806) Trailer: Address Resolution Protocol (request) Hardware type: Ethernet (0x0001) Protocol type: IP (0x0800) Hardware size: 6 Protocol size: 4 Opcode: request (0x0001) Sender MAC address: 00:03:93:a3:83:3a (Apple_a3:83:3a) Sender IP address: ( ) Target MAC address: 00:00:00:00:00:00 (00:00:00_00:00:00) Target IP address: ( ) 52 Look Inside an ICMPv6 NDP Neighbour Solicitation Packet Solicited Node Multicast Address corresponding to this IPv6 target address Neighbor Solicitation (=ARP Request) 53

26 ed2 in has a packet to destination address ; packet is sent to ; the packet is sent by «ed2 in» inside an Ethernet frame with destination MAC address = 08:00:20:71:0d:d inside an Ethernet frame with destination MAC address = 00:00.0d:0d:9a:75 3. None of the above 4. I don t know 00:00.0d:0d:9a:75 0% 0% 0% 0% Security Issues with ARP/ NDP ARP requests / replies may be falsified (ARP spoofing) 1 2 No dest IP address Dest MAC addr = 08:00:20:71:0d:d4 ed2-in stisun1 lrcpc2 ed0-ext :00:20:71:0d:d :00:c0:b3:d2:8d :00:0c:02:78:36 Can we prevent ARP spoofing? 55

27 DHCP Snooping and Dynamic ARP Inspection can prevent ARP spoofing in LANs DHCP snooping = switch/ethernet concentrator/wifi base station observes all DHCP traffic and remembers mappings IP addr MAC addresses (DHCP is used to automatically configure the IP address at system boot) Dynamic ARP inspection: switch filters all ARP (or NDP) traffic and allows only valid answers This solution is deployed in enterprise networks, rarely in homes or WiFi access points 56 Conclusion The network layer (= IP) is the center piece of communication networks IP is built on two principles: one IP address per interface and longest prefix match; this allows to compress routing tables by aggregation inside subnet, don t use routers There are (unfortunately) two versions of IP, IPv4 and IPv6; they are not compatible interworking requires some tricks (see later). NATs came as an after thought and use a different principle than IP unicast (exact match versus longest prefix match) are widely deployed NATs hide IP addresses and complicate the operation of networks The goal of ARP/NDP is to find the MAC address corresponding to an IP address 57

The Netwok Layer IPv4 and IPv6 Part 1

The Netwok Layer IPv4 and IPv6 Part 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 1 Jean Yves Le Boudec 2014 1 Contents 1. The Two Principles of IP Unicast 2. IPv4 addresses 3. IPv6 addresses 4. Subnets and

More information

The Netwok Layer IPv4 and IPv6 Part 1

The Netwok Layer IPv4 and IPv6 Part 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 1 Jean Yves Le Boudec 2015 1 Contents 1. The Two Principles of IP Unicast 2. IPv4 addresses 3. IPv6 addresses 4. NATs 5. Subnets

More information

The Netwok Layer IPv4 and IPv6 Part 1

The Netwok Layer IPv4 and IPv6 Part 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 1 Jean Yves Le Boudec 2015 1 Contents 1. The Two Principles of IP Unicast 2. IPv4 addresses 3. IPv6 addresses 4. NATs 5. Subnets

More information

The Netwok Layer IPv4 and IPv6 Part 1

The Netwok Layer IPv4 and IPv6 Part 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 1 Jean Yves Le Boudec 2017 1 Contents 1. The Two Principles of IP Unicast 2. IPv4 addresses 3. IPv6 addresses 4. NATs 5. Subnets

More information

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2014 1 Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer

More information

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2015 1 Contents 6. ARP 7. Host configuration 8. IP packet format Textbook Chapter 5: The Network Layer

More information

The Netwok Layer IPv4 and IPv6 Part 2

The Netwok Layer IPv4 and IPv6 Part 2 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok Layer IPv4 and IPv6 Part 2 Jean Yves Le Boudec 2017 1 Contents 6. Host configuration 7. ARP 8. IP packet format, HL and TTL Textbook Chapter 5: The Network

More information

Computer Networks Principles Network Layer - IP

Computer Networks Principles Network Layer - IP Computer Networks Principles Network Layer - IP Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr 1 Network Layer Overview: Datagram service IP addresses Packet forwarding principles Details of IP 2

More information

The Netwok 15 Layer IPv4 and IPv6 Part 3

The Netwok 15 Layer IPv4 and IPv6 Part 3 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Netwok 15 Layer IPv4 and IPv6 Part 3 Jean Yves Le Boudec 2015 Contents 1. Fragmentation 2. Interworking h4 h6 with NATs 3. Proxy ARP Textbook Chapter 5: The

More information

The Network 15 Layer IPv4 and IPv6 Part 3

The Network 15 Layer IPv4 and IPv6 Part 3 1 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE The Network 15 Layer IPv4 and IPv6 Part 3 Jean Yves Le Boudec 2017 Contents 9. Proxy ARP 10. Fragmentation 11. Interworking h4 h6 with NATs Textbook Chapter 5:

More information

IP Multicast Jean Yves Le Boudec 2014

IP Multicast Jean Yves Le Boudec 2014 IP Multicast Jean Yves Le Boudec 2014 1 IP Multicast Unicast = send to one destination Multicast = send to a group of destinations IP has multicast addresses: IPv4 : 224.0.0.0 to 239.255.255.255; IPv6:

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2017

The TCP/IP Architecture. Jean Yves Le Boudec 2017 The TCP/IP Architecture Jean Yves Le Boudec 2017 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Textbook Chapter 2: Introduction of edition 1

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2015

The TCP/IP Architecture. Jean Yves Le Boudec 2015 The TCP/IP Architecture Jean Yves Le Boudec 2015 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 Why? TCP/IP

More information

IP Multicast Jean Yves Le Boudec 2015

IP Multicast Jean Yves Le Boudec 2015 IP Multicast Jean Yves Le Boudec 2015 1 IP Multicast Unicast = send to one destination Multicast = send to a group of destinations IP has multicast addresses: IPv4 : 224.0.0.0 to 239.255.255.255; IPv6:

More information

Internet Protocol Addressing and Routing. Redes TCP/IP

Internet Protocol Addressing and Routing. Redes TCP/IP Internet Protocol Addressing and Routing Redes TCP/IP Internet Topology Internet - WAN Gateway or router Physical Network (LAN) internet LAN LAN LAN Dotted Decimal Notation 2 7 2 6 2 5 2 4 2 3 2 2 2 1

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2015

The TCP/IP Architecture. Jean Yves Le Boudec 2015 The TCP/IP Architecture Jean Yves Le Boudec 2015 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 Why? TCP/IP

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2015

The TCP/IP Architecture. Jean Yves Le Boudec 2015 The TCP/IP Architecture Jean Yves Le Boudec 2015 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 Why? TCP/IP

More information

The TCP/IP Architecture. Jean Yves Le Boudec 2017

The TCP/IP Architecture. Jean Yves Le Boudec 2017 The TCP/IP Architecture Jean Yves Le Boudec 2017 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Textbook Chapter 2: Introduction of edition 1

More information

The TCP/IP Architecture Jean Yves Le Boudec 2014

The TCP/IP Architecture Jean Yves Le Boudec 2014 The TCP/IP Architecture Jean Yves Le Boudec 2014 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 TCP/IP is a

More information

The TCP/IP Architecture Jean Yves Le Boudec 2014

The TCP/IP Architecture Jean Yves Le Boudec 2014 The TCP/IP Architecture Jean Yves Le Boudec 2014 Objective Understand Layered Model of Communication Systems Know what MAC, IP addresses and DNS names are Chapter 2: Introduction Textbook 2 TCP/IP is a

More information

IP Multicast Jean Yves Le Boudec 2017

IP Multicast Jean Yves Le Boudec 2017 IP Multicast Jean Yves Le Boudec 2017 1 IP Multicast Unicast = send to one destination Multicast = send to a group of destinations IP has multicast addresses: 224.0.0.0/4 (i.e. 224.0.0.0 to 239.255.255.255)

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information

Tunnels. Jean Yves Le Boudec 2015

Tunnels. Jean Yves Le Boudec 2015 Tunnels Jean Yves Le Boudec 2015 1. Tunnels Definition: a tunnel, also called encapsulation occurs whenever a communication layer carries packets of a layer that is not the one above e.g.: IP packet in

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

IPv6. (Internet Protocol version 6)

IPv6. (Internet Protocol version 6) IPv6 Réseaux 1 IPv6 (Internet Protocol version 6) 2 IPv6 IP version 6 is the new version of the Internet Protocol (IP) The standardization process started in the 90s The main elements of IPv4 are still

More information

Tunnels. Jean Yves Le Boudec 2015

Tunnels. Jean Yves Le Boudec 2015 Tunnels Jean Yves Le Boudec 2015 1. Tunnels Definition: a tunnel, also called encapsulation occurs whenever a communication layer carries packets of a layer that is not the one above e.g.: IP packet in

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

The MAC Layer. Jean Yves Le Boudec 2015

The MAC Layer. Jean Yves Le Boudec 2015 The MAC Layer Jean Yves Le Boudec 2015 1 Contents 1. MAC as Shared Medium : The Ethernet Myth and the WiFi Reality 2. MAC on cabled systems: the world of switches 3. Format and addresses 4. Virtual LANs

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

PART X. Internetworking Part 1. (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution)

PART X. Internetworking Part 1. (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution) PART X Internetworking Part 1 (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution) CS422 Part 10 1 Spring 1999 Motivation For Internetworking LANs Low cost Limited distance WANs High

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

Computer Networking. Network Layer - IP. Prof. Andrzej Duda

Computer Networking. Network Layer - IP. Prof. Andrzej Duda Computer Networking Network Layer - IP Prof. Andrzej Duda duda@imag.fr http://duda.imag.fr 1 The transport layer relies on the services of the network layer, which provides a communication service between

More information

IP: Addressing, ARP, Routing

IP: Addressing, ARP, Routing IP: Addressing, ARP, Routing Network Protocols and Standards Autumn 2004-2005 Oct 21, 2004 CS573: Network Protocols and Standards 1 IPv4 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics

More information

Tunnels. Jean Yves Le Boudec 2014

Tunnels. Jean Yves Le Boudec 2014 Tunnels Jean Yves Le Boudec 2014 2 Menu Today: lecture Tunnels, 6to4 Link State Routing Tomorrow 11:15 12:15 Last clicker test How TOR works (presentation of best research exercise award) No lab Lab 3

More information

IPv6 Feature Facts

IPv6 Feature Facts 12.1.2 IPv6 Feature Facts The current IP addressing standard, version 4, will eventually run out of unique addresses, so a new system is being developed. It is named IP version 6 or IPv6. You should know

More information

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061. Lecture 2. Internetworking IPv4, IPv6 RMIT University Data Communication and Net-Centric Computing COSC 1111/2061 Internetworking IPv4, IPv6 Technology Slide 1 Lecture Overview During this lecture, we will understand The principles of Internetworking

More information

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William

Computer Networking: A Top Down Approach Featuring the. Computer Networks with Internet Technology, William Dr. John Keeney 3BA33 TCP/IP protocol architecture with IP OSI Model Layers TCP/IP Protocol Architecture Layers TCP/IP Protocol Suite Application Layer Application Layer Telnet FTP HTTP DNS RIPng SNMP

More information

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions Jean-Yves Le Boudec January 2013 INSTRUCTIONS 1. Write your solution into this document and return it to us (you

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address

Outline. IP Address. IP Address. The Internet Protocol. o Hostname & IP Address. o The Address Outline IP The Internet Protocol o IP Address IP subnetting CIDR o ARP Protocol o IP Function o Fragmentation o NAT o IPv6 2 IP Address o Hostname & IP Address IP Address o The Address ping www.nu.ac.th

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang

CS 356: Computer Network Architectures. Lecture 10: IP Fragmentation, ARP, and ICMP. Xiaowei Yang CS 356: Computer Network Architectures Lecture 10: IP Fragmentation, ARP, and ICMP Xiaowei Yang xwy@cs.duke.edu Overview Homework 2-dimension parity IP fragmentation ARP ICMP Fragmentation and Reassembly

More information

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS

Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS Internetworking/Internetteknik, Examination 2G1305 Date: August 18 th 2004 at 9:00 13:00 SOLUTIONS 1. General (5p) a) The so-called hourglass model (sometimes referred to as a wine-glass ) has been used

More information

Chapter Motivation For Internetworking

Chapter Motivation For Internetworking Chapter 17-20 Internetworking Part 1 (Concept, IP Addressing, IP Routing, IP Datagrams, Address Resolution 1 Motivation For Internetworking LANs Low cost Limited distance WANs High cost Unlimited distance

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-2 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to ND Snooping 1-7 Introduction

More information

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R

PUCPR. Internet Protocol. Edgard Jamhour E N G L I S H S E M E S T E R PUCPR Internet Protocol Address Resolution and Routing Edgard Jamhour 2014 E N G L I S H S E M E S T E R 1. Address Resolution The IP address does not identify, indeed, a computer, but a network interface.

More information

The MAC Layer. Jean Yves Le Boudec 2015

The MAC Layer. Jean Yves Le Boudec 2015 The MAC Layer Jean Yves Le Boudec 2015 1 Contents 1. MAC as Shared Medium : The Ethernet Myth and the WiFi Reality 2. MAC on cabled systems: the world of switches 3. Format and addresses 4. Virtual LANs

More information

EXAM TCP/IP NETWORKING Duration: 3 hours

EXAM TCP/IP NETWORKING Duration: 3 hours SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours Jean-Yves Le Boudec January 2018 INSTRUCTIONS 1. Write your solution into this document and return it to us (you do not need to

More information

Planning for Information Network

Planning for Information Network Planning for Information Network Lecture 7: Introduction to IPv6 Assistant Teacher Samraa Adnan Al-Asadi 1 IPv6 Features The ability to scale networks for future demands requires a limitless supply of

More information

ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP

ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP IP ROUTING INTRODUCTION TO IP, IP ROUTING PROTOCOLS AND PROXY ARP Peter R. Egli 1/37 Contents 1. IP Routing 2. Routing Protocols 3. Fragmentation in the IP Layer 4. Proxy ARP 5. Routing and IP forwarding

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

Address Resolution Protocol (ARP), RFC 826

Address Resolution Protocol (ARP), RFC 826 Address Resolution Protocol (ARP), RFC 826 Prof. Lin Weiguo Copyleft 2009~2017, School of Computing, CUC Sept. 2017 ARP & RARP } Note: } The Internet is based on IP addresses } Data link protocols (Ethernet,

More information

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Network Layer. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Network Layer By: Dr. Alireza Abdollahpouri What s the Internet: nuts and bolts view PC server wireless laptop cellular handheld millions

More information

SEN366 (SEN374) (Introduction to) Computer Networks

SEN366 (SEN374) (Introduction to) Computer Networks SEN366 (SEN374) (Introduction to) Computer Networks Prof. Dr. Hasan Hüseyin BALIK (12 th Week) The Internet Protocol 12.Outline Principles of Internetworking Internet Protocol Operation Internet Protocol

More information

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011

IPv6 Associated Protocols. Athanassios Liakopoulos 6DEPLOY IPv6 Training, Skopje, June 2011 IPv6 Associated Protocols Athanassios Liakopoulos (aliako@grnet.gr) 6DEPLOY IPv6 Training, Skopje, June 2011 Copy... Rights This slide set is the ownership of the 6DEPLOY project via its partners The Powerpoint

More information

IPv6 Protocol Architecture

IPv6 Protocol Architecture IPv6 Protocol Architecture v4/v6 Header Comparison Not kept in IPv6 Renamed in IPv6 Same name and function New in IPv6 2 New Functional Improvement Address Space Increase from 32-bit to 128-bit address

More information

The MAC Layer. Contents. Textbook. Jean Yves Le Boudec Fall 2012

The MAC Layer. Contents. Textbook. Jean Yves Le Boudec Fall 2012 The MAC Layer Jean Yves Le Boudec Fall 2012 1 Contents 1. MAC as Shared Medium : The Ethernet Myth and the WiFi Reality 2. MAC as interconnection at small scale : Why Ethernet became a point to point technology

More information

Rocky Mountain IPv6 Summit April 9, 2008

Rocky Mountain IPv6 Summit April 9, 2008 Rocky Mountain IPv6 Summit April 9, 2008 Introduction to the IPv6 Protocol Scott Hogg GTRI - Director of Advanced Technology Services CCIE #5133, CISSP 1 IPv6 Header IPv4 Header 20 bytes IPv6 Header, 40

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions

EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions SCIPER: First name: Family name: EXAM TCP/IP NETWORKING Duration: 3 hours With Solutions Jean-Yves Le Boudec January 2018 INSTRUCTIONS 1. Write your solution into this document and return it to us (you

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 6.2: IP Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer Networks

More information

Introduction to routing in the Internet

Introduction to routing in the Internet Introduction to routing in the Internet Internet architecture IPv4, ICMP, ARP Addressing, routing principles (Chapters 2 3 in Huitema) Internet-1 Internet Architecture Principles End-to-end principle by

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy

Agenda L2 versus L3 Switching IP Protocol, IP Addressing IP Forwarding ARP and ICMP IP Routing First Hop Redundancy Primer IP Technology L2 Ethernet Switching versus L3 routing IP Protocol, IP Addressing, IP Forwarding ARP and ICMP IP Routing, OSPF Basics First Hop Redundancy (HSRP) Agenda L2 versus L3 Switching IP

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

6 Chapter 6. Figure 1 Required Unique Addresses

6 Chapter 6. Figure 1 Required Unique Addresses 6 Chapter 6 6.1 Public and Private IP Addresses The stability of the Internet depends directly on the uniqueness of publicly used network addresses. In Figure 1 Required Unique Addresses, there is an issue

More information

Basics of communication. Grundlagen der Rechnernetze Introduction 31

Basics of communication. Grundlagen der Rechnernetze Introduction 31 Basics of communication Grundlagen der Rechnernetze Introduction 31 Types of communication H9 H8 H1 H7 R1 N3 H2 N1 R3 H3 R2 N2 H6 H5 H4 Unicast communication where a piece of information is sent from one

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Workshop on Scientific Applications for the Internet of Things (IoT) March

Workshop on Scientific Applications for the Internet of Things (IoT) March Workshop on Scientific Applications for the Internet of Things (IoT) March 16-27 2015 IP Networks: From IPv4 to IPv6 Alvaro Vives - alvaro@nsrc.org Contents 1 Digital Data Transmission 2 Switched Packet

More information

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and

IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and INTERNET PROTOCOL VERSION 6 (IPv6) Introduction IPv6 is Internet protocol version 6. Following are its distinctive features as compared to IPv4. Header format simplification Expanded routing and addressing

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

IPv6 Neighbor Discovery

IPv6 Neighbor Discovery The IPv6 neighbor discovery process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local

More information

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT

ISO 9001:2008. Pankaj Kumar Dir, TEC, DOT ISO 9001:2008 Pankaj Kumar Dir, TEC, DOT AWARENESS OBJECTIVES IPv6 Address Format & Basic Rules Understanding the IPv6 Address Components Understanding & Identifying Various Types of IPv6 Addresses 3/25/2012

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Chapter 4: Network Layer 4. 1 Introduction 4.2 What s inside a router 4.3 IP: Internet Protocol Datagram format 4.4 Generalized

More information

McGraw-Hill The McGraw-Hill Companies, Inc., 2000

McGraw-Hill The McGraw-Hill Companies, Inc., 2000 !! McGraw-Hill The McGraw-Hill Companies, Inc., 2000 "#$% & '$# )1 ) ) )6 ) )* )- ). )0 )1! )11 )1 )1 )16 )1 3'' 4", ( ( $ ( $ $$+, $$, /+ & 23,4 )/+ &4 $ 53" Network Layer Position of network layer Figure

More information

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane

EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane EC441 Fall 2018 Introduction to Computer Networking Chapter4: Network Layer Data Plane This presentation is adapted from slides produced by Jim Kurose and Keith Ross for their book, Computer Networking:

More information

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL

IPv6 Protocol & Structure. npnog Dec, 2017 Chitwan, NEPAL IPv6 Protocol & Structure npnog3 9-11 Dec, 2017 Chitwan, NEPAL Protocol Header Comparison IPv4 contains 10 basic header fields, while IPv6 has 6 basic header fields IPv6 header size is 40 octets compared

More information

1 Connectionless Routing

1 Connectionless Routing UCSD DEPARTMENT OF COMPUTER SCIENCE CS123a Computer Networking, IP Addressing and Neighbor Routing In these we quickly give an overview of IP addressing and Neighbor Routing. Routing consists of: IP addressing

More information

Networking Fundamentals

Networking Fundamentals Networking Fundamentals Network Startup Resource Center www.nsrc.org These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

12.1. IPv6 Feature. The Internet Corporation for Assigned Names and Numbers (ICANN) assigns IPv6 addresses based on the following strategy:

12.1. IPv6 Feature. The Internet Corporation for Assigned Names and Numbers (ICANN) assigns IPv6 addresses based on the following strategy: 12.1. IPv6 Feature The current IP addressing standard, version 4, will eventually run out of unique addresses, so a new system is being developed. It is named IP version 6 or IPv6. You should know about

More information

Connection Oriented Networking MPLS and ATM

Connection Oriented Networking MPLS and ATM ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Connection Oriented Networking MPLS and ATM Jean-Yves Le Boudec Fall 0 Contents. Connection Oriented network layer. ATM.MPLS (Multi Protocol Label Switching) .

More information

Internet Protocol, Version 6

Internet Protocol, Version 6 Outline Protocol, Version 6 () Introduction to Header Format Addressing Model ICMPv6 Neighbor Discovery Transition from to vs. Taken from:chun-chuan Yang Basics: TCP/ Protocol Suite Protocol (IP) Features:

More information

The MAC Layer. Mukhopadhyay. Jean Yves Le Boudec 2018

The MAC Layer. Mukhopadhyay. Jean Yves Le Boudec 2018 The MAC Layer Mukhopadhyay Jean Yves Le Boudec 2018 1 Contents 1. MAC as Shared Medium 2. MAC on cabled systems: the world of switches 3. Format and addresses 4. Virtual LANs 5. Architecture Aspects 6.

More information

Internet Network Protocols IPv4/ IPv6

Internet Network Protocols IPv4/ IPv6 Internet Network Protocols IPv4/ IPv6 Prof. Anja Feldmann, Ph.D. anja@inet.tu-berlin.de TCP/IP Illustrated, Volume 1, W. Richard Stevens http://www.kohala.com/start 1 IP Interfaces IP address: identifier

More information

COSC4377. TCP vs UDP Example Statistics

COSC4377. TCP vs UDP Example Statistics Lecture 16 TCP vs UDP Example Statistics Trace Sample UDP/TCP Ratio Total IP Traffic (pkts/bytes/flows) pkts bytes flows CAIDA OC48 08 2002 0.11 0.03 0.11 (1371M/838GB/79M) 01 2003 0.12 0.05 0.27 (463M/267GB/26M)

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-5 Introduction to IPv6 DNS 1-8 Protocols

More information

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables

IPv6 Concepts. Improve router performance Simplify IP header Align to 64 bits Address hierarchy with more levels Simplify routing tables IPv6 Concepts Tópicos Avançados de Redes 2016/2017 Why IPv6? 2 Lack of IPv4 addresses Imply NAT, or other solutions; Realm Specific IP (RFC3102) Improve router performance Simplify IP header Align to 64

More information

Introduction to Internetworking

Introduction to Internetworking Introduction to Internetworking Introductory terms Communications Network Facility that provides data transfer services An internet Collection of communications networks interconnected by bridges and/or

More information

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1

Table of Contents 1 IPv6 Configuration IPv6 Application Configuration 2-1 Table of Contents 1 IPv6 Configuration 1-1 IPv6 Overview 1-1 IPv6 Features 1-1 Introduction to IPv6 Address 1-3 Introduction to IPv6 Neighbor Discovery Protocol 1-6 Introduction to IPv6 DNS 1-8 Protocols

More information

Vorlesung Kommunikationsnetze

Vorlesung Kommunikationsnetze Picture 15 13 Vorlesung Kommunikationsnetze Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

Addressing protocols. TELE3118 lecture notes Copyright by Tim Moors Aug-09. Copyright Aug-09, Tim Moors

Addressing protocols. TELE3118 lecture notes Copyright by Tim Moors Aug-09. Copyright Aug-09, Tim Moors Addressing protocols TELE3118 lecture notes Copyright by Tim Moors Aug-09 2 Which address(es) to use? How does source determine addresses when sending to www.example.com? o Source has its MAC address o

More information

Internet. Organization Addresses TCP/IP Protocol stack Forwarding. 1. Use of a globally unique address space based on Internet Addresses

Internet. Organization Addresses TCP/IP Protocol stack Forwarding. 1. Use of a globally unique address space based on Internet Addresses Internet Organization Addresses TCP/IP Protocol stack Forwarding Jörg Liebeherr, 1998-2003 1 What defines the Internet? 1. Use of a globally unique address space based on Internet Addresses 2. Support

More information