Department of Computer and IT Engineering University of Kurdistan. Data Communication Netwotks (Graduate level) Data Link Layer

Size: px
Start display at page:

Download "Department of Computer and IT Engineering University of Kurdistan. Data Communication Netwotks (Graduate level) Data Link Layer"

Transcription

1 Department of Computer and IT Engineering University of Kurdistan Data Communication Netwotks (Graduate level) Data Link Layer By: Dr. Alireza Abdollahpouri

2 Data Link Layer 2

3 Data Link Layer Application Presentation Session Transport Network Data Link Physical Function: Send blocks of data (frames) between physical devices Regulate access to the physical media Key challenge: How to delineate frames? How to detect errors? How to perform media access control (MAC)? How to recover from and avoid collisions? 3

4 Adaptors Communicating datagram sending node frame adapter link layer protocol frame adapter receiving node link layer implemented in adaptor (NIC) Ethernet card, PCMCI card, card sending side: encapsulates datagram in a frame adds error checking bits, rdt, flow control, etc. receiving side looks for errors, rdt, flow control, etc extracts datagram, passes to receiving node adapter is semiautonomous link & physical layers 4

5 Hop-to-hop delivery 5

6 Link-Layer Services Service provided by the data link layer for network layer: Unacknowledged connectionless service Acknowledged connectionless service Acknowledged connection-oriented service 6

7 Link-Layer Duties Framing Encapsulating packet into frame, adding header, trailer Using MAC addresses, rather than IP addresses Error detection and/or correction Errors caused by signal attenuation, noise. Receiver detecting presence of errors Receiver correcting errors without retransmission Flow control Pacing between adjacent sending and receiving nodes Media access control (MAC) Pacing between adjacent sending and receiving nodes 7

8 Framing 8

9 Framing Break sequence of bits into a frame Typically implemented by the network adaptor How to define the borders? 9

10 Byte Counting (character count) Data Sender: insert length of the data in bytes at the beginning of each frame Receiver: extract the length and read that many bytes what if the count field gets corrupted? 10

11 Byte Oriented: Byte stuffing START DLE DLE Data DLE END END Add START and END sentinels to the data Problem: what if END appear in the data? Add a special DLE (Data Link Escape) character before END What if DLE appears in the data? Add DLE before it. Used by Point-to-Point protocol, e.g. modem, DSL, cellular 11

12 Bit Oriented: Bit Stuffing Data Add sentinels to the start and end of data Both sentinels are the same Example: in High-level Data Link Protocol (HDLC) Sender: insert a 0 after each in data Known as bit stuffing Receiver: after seeing in the data remove the 0 (it was stuffed) look at one more bit end of frame error! Discard the frame Disadvantage: 20% overhead at worst 12

13 Bit Stuffing- example 13

14 Physical Layer Coding Violations Only applicable if physical layer coding has some redundancy The combinations of low-low and high-high which are not used for data may be used for marking frame boundaries. e.g., in Manchester coding 14

15 Error Control 15

16 Transmission Errors Transmission errors are caused by: Thermal noise {Shannon} impulse noise (e..g, arcing relays) signal distortion during transmission (attenuation) crosstalk voice amplitude signal compression (companding) quantization noise (PCM) jitter (variations in signal timings) receiver and transmitter out of synch. 16

17 Packet corruption Types of errors: single bit; only 1 bit in the data unit has changed less likely burst error; 2 or more bits in the data unit have changed Example: 0.01 s of burst impulse noise 1200 bps data rate 12 bits of errors 17

18 Error Detection Error detection Transmit extra (redundant) information Use redundant information to detect errors Extreme case: send two copies of the data Trade-off: accuracy vs. overhead Techniques for detecting errors Parity checking Checksum Cyclic Redundancy Check (CRC) 18

19 Error detection Redundancy: adding extra bits for detecting errors at the destination 19

20 Error detection techniques 20

21 Parity bits Idea: add extra bits to keep the number of 1s even Example: 7-bit ASCII characters + 1 parity bit Detects 1-bit errors and some 2-bit errors Not reliable against bursty errors 21

22 Two Dimensional Parity Parity bit for each column Parity bit for each row Parity bit for the parity byte Can detect all 1-, 2-, and 3-bit errors, some 4-bit errors 14% overhead 22

23 Two Dimensional Parity Examples Odd number of 1s Odd Number of 1s Odd number of 1s Odd Number of 1s 23

24 Two Dimensional Parity Examples Odd number of 1s Cannot be detected Odd number of 1s 24

25 Error detection techniques 25

26 Checksums Idea: Add up the bytes in the data Include the sum in the frame START Data Checksum END Use ones-complement arithmetic Lower overhead than parity: 16 bits per frame But, not resilient to errors Why? = Used in UDP, TCP, and IP 26

27 Checksum Example: IP header 1. The data unit is divided into k sections, each of n bits 2. All sections are added using 1 s complement 3. The sum is complemented 4. The checksum is sent with data 27

28 1 s complement Suppose the following block of 16 bits is to be sent using a checksum of 8 bits The numbers are added using one s complement Sum Checksum The pattern sent is

29 Checksum (cnt d) Performance Can we use this technique to detect an error if 2 corresponding opposite bits in 2 data segments become corrupted? An example: Transmitted sequence: Received sequence:

30 Error detection techniques 30

31 Cyclic Redundancy Check (CRC) Uses field theory to compute a semi-unique value for a given message Much better performance than previous approaches Fixed size overhead per frame (usually 32-bits) Quick to implement in hardware Only 1 in 2 32 chance of missing an error with 32-bit CRC Details are in the book/on Wikipedia 31

32 Cyclic Redundancy Check (CRC) Represent a (n+1)-bit message as an n-degree polynomial M(x) E.g., M(x) = x 7 + x 5 + x 3 + x 2 + x 0 Choose a divisor k-degree polynomial G(x) Compute reminder R(x) of M(x)*x k / G(x), i.e., compute A(x) such that M(x)*x k = A(x)*G(x) + R(x), where degree(r(x)) < k Let T(x) = M(x)*x k R(x) = A(x)*G(x) Then T(x) is divisible by G(x) 32

33 CRC check Based on binary division CRC added to the data unit so that the resulting data becomes exactly divisible by a predetermined number CRC exactly 1 less bit than the divisor 1. A string of n zeros added to the data unit 2. New data divided by divisor 3. Replace 0 s by CRC 33

34 CRC generator Modulo-2 division 34

35 CRC generator (cnt d) Name Polynomial Application CRC-8 x 8 + x 2 + x + 1 ATM header CRC-10 x 10 + x 9 + x 5 + x 4 + x ATM AAL ITU-16 x 16 + x 12 + x HDLC ITU-32 x 32 + x 26 + x 23 + x 22 + x 16 + x 12 + x 11 + x 10 + x 8 + x 7 + x 5 + x 4 + x 2 + x + 1 LANs 35

36 CRC performance CRC can detect 1. all burst errors that affect odd number of bits 2. all burst errors of length degree of polynomial 3. with high probability burst errors > degree of polynomial Example: CRC-12 (degree of 12) 1. OK 2. OK % 36

37 Error correction 1. By retransmission flow and error control protocols 2. Forward Error Correction (FEC) require more redundancy bits should locate the invalid bit or bits n-bit code word contains m data bits + r redundancy bits n=m+r m r m+r+1 bits discoverable by r bits r Code-word Example: 2 m + r +1 For m=5 data bits can r be 3? 37

38 Hamming distance The Hamming distance is the number of bits that have to be changed to get from one bit pattern to another. Example: & have a hamming distance of 2 For any coding whose members have a Hamming distance of two, any one bit error can be detected. Why? 38

39 Hamming distance (a) A code with poor distance properties (b) A code with good distance properties o o o o x x x x x o o o x x o o o o o x o o o x o x o o x o o x o x o o o x x = codewordso = non-codewords 39

40 Error detection/correction To detect d single bit errors, you need a d+1 code distance. To correct d single bit errors, you need a 2d+1 code distance. In general, the price for redundant bits is too expensive to do error correction for network messages. Network protocols use error detection and ARQ. 40

41 Hamming code Example: 7-bit ASCII code + 4 bit redundancy Each r bit is the parity bit for one combination of data bits r1: bits: 1, 3, 5, 7, 9, 11 r2: bits: 2, 3, 6, 7, 10, 11 r3: bits 4, 5, 6, 7 r4: bits 8, 9, 10, Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ

42 Hamming code (cnt d) Example of redundancy bit calculation (even parity) 42

43 Hamming code (cnt d) Error detection using Hamming code once the bit is identified the receiver can reverse its value 43

44 Flow Control 44

45 Flow Control The process of managing the rate of data transmission between two nodes to prevent a fast sender from overwhelming a slow receiver Transmission Link Buffer 45

46 Categories of Flow Control 46

47 Stop-and-Wait Automatic Repeat request Simplest flow and error control mechanism The sending device keeps a copy of the last frame transmitted until it receives an acknowledgement identification of duplicate transmission (lost or delayed ACK) A damaged or lost frame is treated in the same way Timers introduced Positive ACK sent only for frames received safe & sound 47

48 A Simplex Stop-and-Wait ARQ 1. Normal operation 2. The frame is lost 3. The ACK is lost 4. The ACK is delayed 48

49 Stop-and-Wait ARQ(Normal operation) The sender will not send the next piece of data until it is sure that the current one is correctly received sequence number necessary to check for duplicated packets No NACK when packet is corrupted duplicate ACKs instead 49

50 Stop-and-Wait ARQ(Lost or damaged frame) roundtrip time + processing in the receiver Should be as short as possible. Why? 50

51 Stop-and-Wait ARQ (Lost ACK) Importance of frame numbering Numbering frames prevents the retaining of duplicate frames 51

52 Stop-and-Wait ARQ (Delayed ACK) Importance of ACK numbering Numbered acknowledgments are needed if an acknowledgment is delayed and the next frame is lost. 52

53 Duplex Stop-and-Wait ARQ Piggybacking combine data with ACK (less overhead saves bandwidth) 53

54 Performance of Stop-and-wait ARQ RTT d trans = (Frame size)/bandwidth d ptop = (Speed of signal)/ (Channel length) Utilization = d trans /( d trans + 2 d prop ), error free case or Utilization = (1-P E )d trans /( d trans + 2 d prop, ) error case 54

55 Stop-and-wait operation Example: 1 Gbps link, 15 ms prop. delay, 8000 bit frame: first bit transmitted, t = 0 last bit transmitted, t = L / R sender receiver RTT first bit arrives last bit arrives, send ACK ACK arrives, send next frame, t = RTT + L / R very low d trans = R L = 8000bits 10 bps 9 = 8microseconds U sender = L / R RTT + L / R = =

56 Sliding window (Pipelined) protocols Pipelining: sender allows multiple, in-flight, yet-to-beacknowledged frames range of sequence numbers must be increased buffering at sender and/or receiver Two generic forms of pipelined protocols: Go-Back-N, Selective repeat 56

57 Sliding Window Protocols Sequence numbers sent frames are numbered sequentially number of frames stored in the header if the number of bits in the header is m than sequence number goes from 0 to 2 m -1 Sliding window to hold the unacknowledged outstanding frames frame sequence number acknowledged frames 57

58 Question What is the consequence of the window size in the receiver on the order of the received packets? Answer: Window size 1 means that the packets are received in order This is not the case for the larger window size 58

59 Sliding Window: Retransmission Strategies How to deal with errors? If the ACK is not received then the sender must go back and retransmit earlier frames (from the lost frame) (Go-Back-N) Sender only retransmits frames for which a NAK is received (the lost or corrupted frames) (Selective repeat) 59

60 Go-back-N (Control variables) S- holds the sequence number of the recently sent frame SF holds sequence number of the first frame in the window SL holds the sequence number of the last frame R sequence number of the frame expected to be received 60

61 The name of Go-back-N: why? Re-sending frame when the frame is damaged the sender goes back and sends a set of frames starting from the last one ACKn d the number of retransmitted frames is N Example: The window size is 4. A sender has sent frame 6 and the timer expires for frame 3 (frame 3 not ACKn d). The sender goes back and re-sends the frames 3, 4, 5 and 6. 61

62 Go-back-N (normal operation) How many frames can be transmitted without acknowledgment? ACK1 not necessary if ACK2 is sent expected sequence number 62

63 Go-back-N (damaged or lost frame) damaged frames are discarded! Why are correctly received packets not buffered? What is the disadvantage of this? 63

64 Go-back-N (sender window size) sequence number 64

65 Go-back-N (drawback) Inefficient all out of order received packets are discarded This is a problem in a noisy link many frames must be retransmitted -> bandwidth consuming Solution re-send only the damaged frames Selective Repeat ARQ avoid unnecessary retransmissions 65

66 Selective Repeat ARQ Processing at the receiver more complex The window size is reduced to 2 m-1 (at most) Both the transmitter and the receiver have the same window size Receiver expects frames within the range of the sequence numbers 66

67 Selective Repeat ARQ (lost frame) 67

68 Selective Repeat 68

69 Selective Repeat ARQ (sender window size) 69

70 Sliding window- analysis Frame transmission time is normalized to a value of 1; thus, the propagation time is a. 70

71 Sliding window- analysis The throughput on the line depends on both the window size W and the value of a 71

72 Sliding window- utilization Error free channel a =d prop /d trans Selective repeat with error Go-back-N with error Assume a frame is in error with probability P 72

73 Sequence number and window size Transmitter window size Receiver window size How many sequence numbers required? Stop-and-wait ARQ Go-back-N W 1 1+W Selective repeat W W 2W In SR protocol with the window size of 5, how many bits required to numbering the sequence of frames? 2*5=10 sequence numbers, we need 4 bits 73

74 Stop-and-wait utilization (example) A channel has a bit rate of 4 kbps and a propagation delay of 20 ms. For what range of frame sizes does Stopand-Wait give an efficiency (link utilization) > 50%? Efficiency will be 50% when the time to transmit the frame equals the roundtrip propagation delay. At a transmission rate of 4 bits/ms, 160 bits takes 40 ms. For frame sizes above 160 bits, stop and wait is reasonably efficient. 74

75 Sliding window utilization (example) A 3000 km long T1 trunk is used to transmit 64 byte frame s using selective-repeat protocol. If the propagation speed is 6 µsec/km, how many bits should the sequence numbers be? To operate efficiently, the sequence space (actually, the send window size) must be large enough to allow the transmitter to keep transmitting until the first acknowledgement has been received. The propagation time is 18 ms. At T1 speed, which is Mbps (excluding the 1 header bit), a 64 byte frame takes msec. Therefore, the first frame fully arrives 18.3 msec after its transmission was started. The acknowledgement takes another 18 msec to get back, plus a small (negligible) time for the acknowledgement to arrive fully. In all, this time is 36.3 msec. The transmitter must have enough window space to keep going for 36.3 msec. A frame takes 0.3 ms, so it takes 121 frames to fill the pipe. Seven bit sequence numbers are needed 75

76 Questions 76

Chapter 3. The Data Link Layer. Wesam A. Hatamleh

Chapter 3. The Data Link Layer. Wesam A. Hatamleh Chapter 3 The Data Link Layer The Data Link Layer Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols The Data

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala Set 4. September 09 CMSC417 Set 4 1 CSMC 417 Computer Networks Prof. Ashok K Agrawala 2009 Ashok Agrawala Set 4 1 The Data Link Layer 2 Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control

More information

PART III. Data Link Layer MGH T MGH C I 204

PART III. Data Link Layer MGH T MGH C I 204 PART III Data Link Layer Position of the data-link layer Data link layer duties LLC and MAC sublayers IEEE standards for LANs Chapters Chapter 10 Error Detection and Correction Chapter 11 Data Link Control

More information

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Nov 1,

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Nov 1, CSMC 417 Computer Networks Prof. Ashok K Agrawala 2018 Ashok Agrawala 1 Message, Segment, Packet, and Frame host host HTTP HTTP message HTTP TCP TCP segment TCP router router IP IP packet IP IP packet

More information

DATA LINK LAYER UNIT 7.

DATA LINK LAYER UNIT 7. DATA LINK LAYER UNIT 7 1 Data Link Layer Design Issues: 1. Service provided to network layer. 2. Determining how the bits of the physical layer are grouped into frames (FRAMING). 3. Dealing with transmission

More information

The data link layer has a number of specific functions it can carry out. These functions include. Figure 2-1. Relationship between packets and frames.

The data link layer has a number of specific functions it can carry out. These functions include. Figure 2-1. Relationship between packets and frames. Module 2 Data Link Layer: - Data link Layer design issues - Error Detection and correction Elementary Data link protocols, Sliding window protocols- Basic Concept, One Bit Sliding window protocol, Concept

More information

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science

Data Link Technology. Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Data Link Technology Suguru Yamaguchi Nara Institute of Science and Technology Department of Information Science Agenda Functions of the data link layer Technologies concept and design error control flow

More information

The Data Link Layer Chapter 3

The Data Link Layer Chapter 3 The Data Link Layer Chapter 3 Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols Revised: August 2011 & February

More information

CS254 Network Technologies. Lecture 2: Network Models & Error Detection and Correction. Dr Nikos Antonopoulos

CS254 Network Technologies. Lecture 2: Network Models & Error Detection and Correction. Dr Nikos Antonopoulos CS254 Network Technologies Lecture 2: Network Models & Error Detection and Correction Dr Nikos Antonopoulos Department of Computing University of Surrey Autumn 2006 2.1 Layered Tasks Sender, Receiver,

More information

CSCI-1680 Link Layer I Rodrigo Fonseca

CSCI-1680 Link Layer I Rodrigo Fonseca CSCI-1680 Link Layer I Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Jannotti Last time Physical layer: encoding, modulation Today Link layer framing Getting frames

More information

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002

EE 122: Error detection and reliable transmission. Ion Stoica September 16, 2002 EE 22: Error detection and reliable transmission Ion Stoica September 6, 2002 High Level View Goal: transmit correct information Problem: bits can get corrupted - Electrical interference, thermal noise

More information

High Level View. EE 122: Error detection and reliable transmission. Overview. Error Detection

High Level View. EE 122: Error detection and reliable transmission. Overview. Error Detection High Level View EE 22: Error detection and reliable transmission Ion Stoica September 6, 22 Goal: transmit correct information Problem: bits can get corrupted - Electrical interference, thermal noise Solution

More information

Error Detection Codes. Error Detection. Two Dimensional Parity. Internet Checksum Algorithm. Cyclic Redundancy Check.

Error Detection Codes. Error Detection. Two Dimensional Parity. Internet Checksum Algorithm. Cyclic Redundancy Check. Error Detection Two types Error Detection Codes (e.g. CRC, Parity, Checksums) Error Correction Codes (e.g. Hamming, Reed Solomon) Basic Idea Add redundant information to determine if errors have been introduced

More information

Telecom Systems Chae Y. Lee. Contents. Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility)

Telecom Systems Chae Y. Lee. Contents. Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility) Data Link Control Contents Flow Control Error Detection/Correction Link Control (Error Control) Link Performance (Utility) 2 Flow Control Flow control is a technique for assuring that a transmitting entity

More information

CSE 461: Framing, Error Detection and Correction

CSE 461: Framing, Error Detection and Correction CSE 461: Framing, Error Detection and Correction Next Topics Framing Focus: How does a receiver know where a message begins/ends Error detection and correction Focus: How do we detect and correct messages

More information

Introduction to Computer Networks. 03 Data Link Layer Introduction

Introduction to Computer Networks. 03 Data Link Layer Introduction Introduction to Computer Networks 03 Data Link Layer Introduction Link Layer 1 Introduction and services 2 Link Layer Services 2.1 Framing 2.2 Error detection and correction 2.3 Flow Control 2.4 Multiple

More information

CS422 Computer Networks

CS422 Computer Networks CS422 Computer Networks Lecture 3 Data Link Layer Dr. Xiaobo Zhou Department of Computer Science CS422 DataLinkLayer.1 Data Link Layer Design Issues Services Provided to the Network Layer Provide service

More information

Links. CS125 - mylinks 1 1/22/14

Links. CS125 - mylinks 1 1/22/14 Links 1 Goals of Today s Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared media Channel partitioning Taking turns Random access Shared

More information

Data Link Layer. Overview. Links. Shivkumar Kalyanaraman

Data Link Layer. Overview. Links. Shivkumar Kalyanaraman Data Link Layer shivkuma@ecse.rpi.edu http://www.ecse.rpi.edu/homepages/shivkuma 1-1 Based in part upon the slides of Prof. Raj Jain (OSU) Overview The data link layer problem Error detection and correction

More information

Chapter 3. The Data Link Layer

Chapter 3. The Data Link Layer Chapter 3 The Data Link Layer 1 Data Link Layer Algorithms for achieving reliable, efficient communication between two adjacent machines. Adjacent means two machines are physically connected by a communication

More information

Overview. Data Link Technology. Role of the data-link layer. Role of the data-link layer. Function of the physical layer

Overview. Data Link Technology. Role of the data-link layer. Role of the data-link layer. Function of the physical layer Overview Data Link Technology Functions of the data link layer Technologies concept and design error control flow control fundamental protocols Suguru Yamaguchi Nara Institute of Science and Technology

More information

CS 3640: Introduction to Networks and Their Applications

CS 3640: Introduction to Networks and Their Applications CS 3640: Introduction to Networks and Their Applications Fall 2018, Lecture 5: The Link Layer I Errors and medium access Instructor: Rishab Nithyanand Teaching Assistant: Md. Kowsar Hossain 1 You should

More information

CSE 123: Computer Networks

CSE 123: Computer Networks Student Name: PID: UCSD email: CSE 123: Computer Networks Homework 1 Solution (Due 10/12 in class) Total Points: 30 Instructions: Turn in a physical copy at the beginning of the class on 10/10. Problems:

More information

CS 640 Introduction to Computer Networks. Role of data link layer. Today s lecture. Lecture16

CS 640 Introduction to Computer Networks. Role of data link layer. Today s lecture. Lecture16 Introduction to Computer Networks Lecture16 Role of data link layer Service offered by layer 1: a stream of bits Service to layer 3: sending & receiving frames To achieve this layer 2 does Framing Error

More information

INF Data Communication Data Link Layer

INF Data Communication Data Link Layer INF3190 - Data Communication Data Link Layer Carsten Griwodz Email: griff@ifi.uio.no most slides from: Ralf Steinmetz, TU Darmstadt and a few from Olav Lysne, J. K. Kurose og K. W. Ross Function, Services

More information

Lecture 5. Homework 2 posted, due September 15. Reminder: Homework 1 due today. Questions? Thursday, September 8 CS 475 Networks - Lecture 5 1

Lecture 5. Homework 2 posted, due September 15. Reminder: Homework 1 due today. Questions? Thursday, September 8 CS 475 Networks - Lecture 5 1 Lecture 5 Homework 2 posted, due September 15. Reminder: Homework 1 due today. Questions? Thursday, September 8 CS 475 Networks - Lecture 5 1 Outline Chapter 2 - Getting Connected 2.1 Perspectives on Connecting

More information

Outline. EEC-484/584 Computer Networks. Data Link Layer Design Issues. Framing. Lecture 6. Wenbing Zhao Review.

Outline. EEC-484/584 Computer Networks. Data Link Layer Design Issues. Framing. Lecture 6. Wenbing Zhao Review. EEC-484/584 Computer Networks Lecture 6 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline Review Data Link Layer Design Issues Error

More information

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY COMPUTER NETWORKS UNIT - II DATA LINK LAYER 1. What are the responsibilities of data link layer? Specific responsibilities of

More information

Data Link Layer. Srinidhi Varadarajan

Data Link Layer. Srinidhi Varadarajan Data Link Layer Srinidhi Varadarajan Data Link Layer: Functionality The data link layer must: Detect errors (using redundancy bits) Request retransmission if data is lost (using automatic repeat request

More information

CSCI-1680 Link Layer Reliability Rodrigo Fonseca

CSCI-1680 Link Layer Reliability Rodrigo Fonseca CSCI-1680 Link Layer Reliability Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Last time Physical layer: encoding, modulation Link layer framing Today Getting

More information

CSCI-1680 Link Layer Reliability John Jannotti

CSCI-1680 Link Layer Reliability John Jannotti CSCI-1680 Link Layer Reliability John Jannotti Based partly on lecture notes by David Mazières, Phil Levis, Rodrigo Fonseca Roadmap Last time Physical layer: encoding, modulation Link layer framing Today

More information

Networking Link Layer

Networking Link Layer Networking Link Layer ECE 650 Systems Programming & Engineering Duke University, Spring 2018 (Link Layer Protocol material based on CS 356 slides) TCP/IP Model 2 Layer 1 & 2 Layer 1: Physical Layer Encoding

More information

2.4 Error Detection Bit errors in a frame will occur. How do we detect (and then. (or both) frames contains an error. This is inefficient (and not

2.4 Error Detection Bit errors in a frame will occur. How do we detect (and then. (or both) frames contains an error. This is inefficient (and not CS475 Networks Lecture 5 Chapter 2: Direct Link Networks Assignments Reading for Lecture 6: Sections 2.6 2.8 Homework 2: 2.1, 2.4, 2.6, 2.14, 2.18, 2.31, 2.35. Due Thursday, Sept. 15 2.4 Error Detection

More information

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame

Links Reading: Chapter 2. Goals of Todayʼs Lecture. Message, Segment, Packet, and Frame Links Reading: Chapter 2 CS 375: Computer Networks Thomas Bressoud 1 Goals of Todayʼs Lecture Link-layer services Encoding, framing, and error detection Error correction and flow control Sharing a shared

More information

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition

Chapter Six. Errors, Error Detection, and Error Control. Data Communications and Computer Networks: A Business User s Approach Seventh Edition Chapter Six Errors, Error Detection, and Error Control Data Communications and Computer Networks: A Business User s Approach Seventh Edition After reading this chapter, you should be able to: Identify

More information

I. INTRODUCTION. each station (i.e., computer, telephone, etc.) directly connected to all other stations

I. INTRODUCTION. each station (i.e., computer, telephone, etc.) directly connected to all other stations I. INTRODUCTION (a) Network Topologies (i) point-to-point communication each station (i.e., computer, telephone, etc.) directly connected to all other stations (ii) switched networks (1) circuit switched

More information

Inst: Chris Davison

Inst: Chris Davison ICS 153 Introduction to Computer Networks Inst: Chris Davison cbdaviso@uci.edu ICS 153 Data Link Layer Contents Simplex and Duplex Communication Frame Creation Flow Control Error Control Performance of

More information

The Data Link Layer Chapter 3

The Data Link Layer Chapter 3 The Data Link Layer Chapter 3 Data Link Layer Design Issues Error Detection and Correction Elementary Data Link Protocols Sliding Window Protocols Example Data Link Protocols Revised: August 2011 The Data

More information

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1 Data Link Networks Hardware Building Blocks Nodes & Links CS565 Data Link Networks 1 PROBLEM: Physically connecting Hosts 5 Issues 4 Technologies Encoding - encoding for physical medium Framing - delineation

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer 9/9/2009 CSC 257/457 - Fall 2009 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview : 9/7/2007 CSC 257/457 - Fall 2007 1 Internet Architecture Bottom-up: physical: electromagnetic signals on the wire link: data transfer between neighboring network elements network:

More information

Data Link Control Protocols

Data Link Control Protocols Protocols : Introduction to Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 23 May 2012 Y12S1L07, Steve/Courses/2012/s1/its323/lectures/datalink.tex,

More information

CS 455/555 Intro to Networks and Communications. Link Layer

CS 455/555 Intro to Networks and Communications. Link Layer CS 455/555 Intro to Networks and Communications Link Layer Dr. Michele Weigle Department of Computer Science Old Dominion University mweigle@cs.odu.edu http://www.cs.odu.edu/~mweigle/cs455-s13 1 Link Layer

More information

Data link layer functions. 2 Computer Networks Data Communications. Framing (1) Framing (2) Parity Checking (1) Error Detection

Data link layer functions. 2 Computer Networks Data Communications. Framing (1) Framing (2) Parity Checking (1) Error Detection 2 Computer Networks Data Communications Part 6 Data Link Control Data link layer functions Framing Needed to synchronise TX and RX Account for all bits sent Error control Detect and correct errors Flow

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

More information

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1

Computer Network. Direct Link Networks Reliable Transmission. rev /2/2004 1 Computer Network Direct Link Networks Reliable Transmission rev 1.01 24/2/2004 1 Outline Direct link networks (Ch. 2) Encoding Framing Error detection Reliable delivery Media access control Network Adapter

More information

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 2.

Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion. Chapter 2. Islamic University of Gaza Faculty of Engineering Department of Computer Engineering ECOM 4021: Networks Discussion Chapter 2 Getting Connected Eng. Haneen El-Masry March, 2014 2.2 ENCODING Encoding the

More information

Data Link Layer Overview

Data Link Layer Overview Data Link Layer Overview First of four classes on the data link layer Internet Architecture Bottom up: Physical: electromagnetic signals on the wire Link: data transfer between neighboring network elements

More information

The Link Layer and LANs. Chapter 6: Link layer and LANs

The Link Layer and LANs. Chapter 6: Link layer and LANs The Link Layer and LANs EECS3214 2018-03-14 4-1 Chapter 6: Link layer and LANs our goals: understand principles behind link layer services: error detection, correction sharing a broadcast channel: multiple

More information

Chapter 5 Link Layer and LANs

Chapter 5 Link Layer and LANs Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007. All material copyright 1996-2007 J.F Kurose and K.W. Ross, All Rights

More information

Point-to-Point Links. Outline Encoding Framing Error Detection Sliding Window Algorithm. Fall 2004 CS 691 1

Point-to-Point Links. Outline Encoding Framing Error Detection Sliding Window Algorithm. Fall 2004 CS 691 1 Point-to-Point Links Outline Encoding Framing Error Detection Sliding Window Algorithm Fall 2004 CS 691 1 Encoding Signals propagate over a physical medium modulate electromagnetic waves e.g., vary voltage

More information

CS 4453 Computer Networks Winter

CS 4453 Computer Networks Winter CS 4453 Computer Networks Chapter 2 OSI Network Model 2015 Winter OSI model defines 7 layers Figure 1: OSI model Computer Networks R. Wei 2 The seven layers are as follows: Application Presentation Session

More information

EITF25 Internet Techniques and Applications L3: Data Link layer. Stefan Höst

EITF25 Internet Techniques and Applications L3: Data Link layer. Stefan Höst EITF25 Internet Techniques and Applications L3: Data Link layer Stefan Höst Communication on physical layer To transmit on the physical medium use signals At each computer it can be seen as transmitting

More information

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain

ERROR AND FLOW CONTROL. Lecture: 10 Instructor Mazhar Hussain ERROR AND FLOW CONTROL Lecture: 10 Instructor Mazhar Hussain 1 FLOW CONTROL Flow control coordinates the amount of data that can be sent before receiving acknowledgement It is one of the most important

More information

Data Link Layer: Overview, operations

Data Link Layer: Overview, operations Data Link Layer: Overview, operations Chapter 3 1 Outlines 1. Data Link Layer Functions. Data Link Services 3. Framing 4. Error Detection/Correction. Flow Control 6. Medium Access 1 1. Data Link Layer

More information

COMPUTER NETWORKS UNIT-3

COMPUTER NETWORKS UNIT-3 COMPUTER NETWORKS UNIT-3 Syllabus: The Data Link Layer - Data Link Layer Design Issues, Services Provided to the Network Layer Framing Error Control Flow Control, Error Detection and Correction Error-Correcting

More information

TYPES OF ERRORS. Data can be corrupted during transmission. Some applications require that errors be detected and corrected.

TYPES OF ERRORS. Data can be corrupted during transmission. Some applications require that errors be detected and corrected. Data can be corrupted during transmission. Some applications require that errors be detected and corrected. TYPES OF ERRORS There are two types of errors, 1. Single Bit Error The term single-bit error

More information

Lecture 4: CRC & Reliable Transmission. Lecture 4 Overview. Checksum review. CRC toward a better EDC. Reliable Transmission

Lecture 4: CRC & Reliable Transmission. Lecture 4 Overview. Checksum review. CRC toward a better EDC. Reliable Transmission 1 Lecture 4: CRC & Reliable Transmission CSE 123: Computer Networks Chris Kanich Quiz 1: Tuesday July 5th Lecture 4: CRC & Reliable Transmission Lecture 4 Overview CRC toward a better EDC Reliable Transmission

More information

2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS Collision Free Protocols 2.3 FDDI 2.4 DATA LINK LAYER DESIGN ISSUES 2.5 FRAMING & STUFFING

2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS Collision Free Protocols 2.3 FDDI 2.4 DATA LINK LAYER DESIGN ISSUES 2.5 FRAMING & STUFFING UNIT-2 2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS 2.2.1 Pure ALOHA 2.2.2 Slotted ALOHA 2.2.3 Carrier Sense Multiple Access 2.2.4 CSMA with Collision Detection 2.2.5 Collision Free Protocols 2.2.5.1

More information

Data Link Layer (1) Networked Systems 3 Lecture 6

Data Link Layer (1) Networked Systems 3 Lecture 6 Data Link Layer (1) Networked Systems 3 Lecture 6 Purpose of Data Link Layer Arbitrate access to the physical layer Structure and frame the raw bits Provide flow control Detect and correct bit errors Perform

More information

Lecture 5: Data Link Layer Basics

Lecture 5: Data Link Layer Basics Lecture 5: Data Link Layer Basics Dr. Mohammed Hawa Electrical Engineering Department University of Jordan EE426: Communication Networks Layer 2 PDU: Frame 2 1 Bit-oriented vs. Byte-oriented Layer 2 protocols

More information

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing. /9/008 From Signals to Packets Lecture Datalink Framing, Switching Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Carnegie Mellon University Analog Signal Digital

More information

4. Error correction and link control. Contents

4. Error correction and link control. Contents //2 4. Error correction and link control Contents a. Types of errors b. Error detection and correction c. Flow control d. Error control //2 a. Types of errors Data can be corrupted during transmission.

More information

Direct Link Communication I: Basic Techniques. Data Transmission. ignore carrier frequency, coding etc.

Direct Link Communication I: Basic Techniques. Data Transmission. ignore carrier frequency, coding etc. Direct Link Communication I: Basic Techniques Link speed unit: bps abstraction Data Transmission ignore carrier frequency, coding etc. Point-to-point link: wired or wireless includes broadcast case Interested

More information

(Refer Slide Time: 2:20)

(Refer Slide Time: 2:20) Data Communications Prof. A. Pal Department of Computer Science & Engineering Indian Institute of Technology, Kharagpur Lecture-15 Error Detection and Correction Hello viewers welcome to today s lecture

More information

Data Link Layer. Learning Objectives. Position of the data-link layer. MCA 207, Data Communication & Networking

Data Link Layer. Learning Objectives. Position of the data-link layer. MCA 207, Data Communication & Networking Data Link Layer Bharati Vidyapeeth s Institute of Computer Applications and Management,New Delhi-63 by Vishal Jain U2. 1 Learning Objectives To introduce the design issues of data link layer. To discuss

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Link Layer: Intro, Errors, Multiple Access Sec 6.1, 6.2, 6.3 Prof. Lina Battestilli Fall 2017 Chapter 6: Link layer Goals: understand principles behind

More information

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

Announcements. No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine Computer Science Department 1 / 33 1 COS 140: Foundations

More information

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6

No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Announcements No book chapter for this topic! Slides are posted online as usual Homework: Will be posted online Due 12/6 Copyright c 2002 2017 UMaine School of Computing and Information S 1 / 33 COS 140:

More information

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science Advanced Computer Networks Rab Nawaz Jadoon Department of Computer Science DCS COMSATS Institute of Information Technology Assistant Professor COMSATS University, Lahore Pakistan Advanced Computer Networks

More information

NETWORK PROBLEM SET Solution

NETWORK PROBLEM SET Solution NETWORK PROBLEM SET Solution Problem 1 Consider a packet-switched network of N nodes connected by the following topologies: 1. For a packet-switched network of N nodes, the number of hops is one less than

More information

CSC 4900 Computer Networks: The Link Layer

CSC 4900 Computer Networks: The Link Layer CSC 4900 Computer Networks: The Link Layer Professor Henry Carter Fall 2017 Last Time We talked about intra-as routing protocols: Which routing algorithm is used in RIP? OSPF? What techniques allow OSPF

More information

ECE 4450:427/527 - Computer Networks Spring 2017

ECE 4450:427/527 - Computer Networks Spring 2017 ECE 4450:427/527 - Computer Networks Spring 2017 Dr. Nghi Tran Department of Electrical & Computer Engineering Lecture 5.1: Link Layer Dr. Nghi Tran (ECE-University of Akron) ECE 4450:427/527 Computer

More information

Chapter 3 The Data Link Layer

Chapter 3 The Data Link Layer Chapter 3 The Data Link Layer 陳瑞奇 (Rikki) 亞洲大學資訊工程學系 Adapted from Computer Networks, Andrew S. Tanenbaum, Vrije University, Netherlands & Computer Networking: A Top Down Approach, Jim Kurose, Keith Ross

More information

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks?

COMPUTER NETWORKS UNIT I. 1. What are the three criteria necessary for an effective and efficient networks? Question Bank COMPUTER NETWORKS Short answer type questions. UNIT I 1. What are the three criteria necessary for an effective and efficient networks? The most important criteria are performance, reliability

More information

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7

CIS 551 / TCOM 401 Computer and Network Security. Spring 2007 Lecture 7 CIS 551 / TCOM 401 Computer and Network Security Spring 2007 Lecture 7 Announcements Reminder: Project 1 is due on Thursday. 2/1/07 CIS/TCOM 551 2 Network Architecture General blueprints that guide the

More information

Link layer, LANs: outline. Chapter 5-1 Link Layer. Link layer: introduction. Link layer services

Link layer, LANs: outline. Chapter 5-1 Link Layer. Link layer: introduction. Link layer services Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction

More information

Computer Networking : Principles, Protocols and Practice

Computer Networking : Principles, Protocols and Practice Computer Networking : Principles, Protocols and Practice Part 3 : Transport Layer Olivier Bonaventure http://inl.info.ucl.ac.be/ O. Bonaventure 2008 Basics Module 3 : Transport Layer Building a reliable

More information

06/05/2008. Chapter 3. The Data Link Layer. Data Link Layer Design Issues. Services Provided to the Network Layer. Error Control Flow Control

06/05/2008. Chapter 3. The Data Link Layer. Data Link Layer Design Issues. Services Provided to the Network Layer. Error Control Flow Control Chapter 3 The Data Link Layer Data Link Layer Design Issues Services Provided to the Network Layer Framing Error Control Flow Control 1 Functions of the Data Link Layer Provide service interface to the

More information

Your favorite blog :www.vijay-jotani.weebly.com (popularly known as VIJAY JOTANI S BLOG..now in facebook.join ON FB VIJAY

Your favorite blog :www.vijay-jotani.weebly.com (popularly known as VIJAY JOTANI S BLOG..now in facebook.join ON FB VIJAY VISIT: Course Code : MCS-042 Course Title : Data Communication and Computer Network Assignment Number : MCA (4)/042/Assign/2014-15 Maximum Marks : 100 Weightage : 25% Last Dates for Submission : 15 th

More information

Lecture 2 Error Detection & Correction. Types of Errors Detection Correction

Lecture 2 Error Detection & Correction. Types of Errors Detection Correction Lecture 2 Error Detection & Correction Types of Errors Detection Correction Basic concepts Networks must be able to transfer data from one device to another with complete accuracy. Data can be corrupted

More information

Comparison of ISO-OSI and TCP/IP Suit. Functions of Data Link Layer:

Comparison of ISO-OSI and TCP/IP Suit. Functions of Data Link Layer: Comparison of ISO-OSI and TCP/IP Suit Functions of Data Link Layer: 1. Frame generation ( Character Count, Character Stuffing, Bit Stuffing) 2. Error Processing (Parity(EVEN or ODD), Block Parity, Hamming

More information

Jaringan Komputer. Data Link Layer. The Data Link Layer. Study the design principles

Jaringan Komputer. Data Link Layer. The Data Link Layer. Study the design principles Jaringan Komputer The Data Link Layer Data Link Layer Study the design principles Algorithms for achieving reliable, efficient communication between two adjacent machines at the data link layer Adjacent

More information

C08a: Data Link Protocols

C08a: Data Link Protocols CISC 7332X T6 C08a: Data Link Protocols Hui Chen Department of Computer & Information Science CUNY Brooklyn College 10/16/2018 CUNY Brooklyn College 1 Data Link Layer Responsible for delivering frames

More information

Chapter 11 Data Link Control 11.1

Chapter 11 Data Link Control 11.1 Chapter 11 Data Link Control 11.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 11-1 FRAMING The data link layer needs to pack bits into frames, so that each

More information

Communication Networks. Part I

Communication Networks. Part I Communication Networks Part I Manuel P. Ricardo Faculdade de Engenharia da Universidade do Porto » What are the main uses of computer networks?» What are the common architectures of network applications?»

More information

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online

CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online 1 CS/ECE 438: Communication Networks for Computers Spring 2018 Midterm Examination Online Solutions 1. General Networking a. In traditional client-server communication using TCP, a new socket is created.

More information

UNIT I FUNDAMENTALS & LINK LAYER

UNIT I FUNDAMENTALS & LINK LAYER Building a network: UNIT I FUNDAMENTALS & LINK LAYER A computer network or data network is a telecommunications network which allows computers to exchange data. In computer networks, networked computing

More information

William Stallings Data and Computer Communications. Chapter 7 Data Link Control

William Stallings Data and Computer Communications. Chapter 7 Data Link Control William Stallings Data and Computer Communications Chapter 7 Data Link Control Flow Control Ensuring the sending entity does not overwhelm the receiving entity Preventing buffer overflow Transmission time

More information

Data Link Control. Surasak Sanguanpong Last updated: 11 July 2000

Data Link Control. Surasak Sanguanpong  Last updated: 11 July 2000 1/14 Data Link Control Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: 11 July 2000 Flow Control 2/14 technique for controlling the data transmission so that s have sufficient

More information

Solutions for Chapter similar to 1 and 3

Solutions for Chapter similar to 1 and 3 Solutions for Chapter 2 1. 2. similar to 1 and 3 3. 4. In a 5-bit sequence with 32 codes, there are 8 codes that start with 00 and there are 8 codes that ends with 00. Between them 00100 and 00000 are

More information

Computer and Network Security

Computer and Network Security CIS 551 / TCOM 401 Computer and Network Security Spring 2009 Lecture 6 Announcements First project: Due: 6 Feb. 2009 at 11:59 p.m. http://www.cis.upenn.edu/~cis551/project1.html Plan for Today: Networks:

More information

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science

Advanced Computer Networks. Rab Nawaz Jadoon DCS. Assistant Professor COMSATS University, Lahore Pakistan. Department of Computer Science Advanced Computer Networks Department of Computer Science DCS COMSATS Institute of Information Technology Rab Nawaz Jadoon Assistant Professor COMSATS University, Lahore Pakistan Advanced Computer Networks

More information

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Lecture 6 Datalink Framing, Switching. From Signals to Packets Lecture 6 Datalink Framing, Switching David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05/ 1 From Signals to

More information

Analyzation of Automatic Repeat Request (ARQ) Protocols

Analyzation of Automatic Repeat Request (ARQ) Protocols RESEARCH ARTICLE OPEN ACCESS Analyzation of Automatic Repeat Request (ARQ) Protocols 1 Jeshvina.S, 2 Sneha.P, 3 Saraanya.S Final year BCA, Dept of Computer Science New Horizon College Kasturinagar, Bangalore

More information

CPE 448/548 Exam #1 (100 pts) February 14, Name Class: 448

CPE 448/548 Exam #1 (100 pts) February 14, Name Class: 448 Name Class: 448 1) (14 pts) A message M = 11001 is transmitted from node A to node B using the CRC code. The CRC generator polynomial is G(x) = x 3 + x 2 + 1 ( bit sequence 1101) a) What is the transmitted

More information

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과.

Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과. Link Layer and LANs 안상현서울시립대학교컴퓨터 통계학과 ahn@venus.uos.ac.kr Data Link Layer Goals: understand principles behind data link layer services: error detection, correction sharing a broadcast channel: multiple

More information

5th Slide Set Computer Networks

5th Slide Set Computer Networks Prof. Dr. Christian Baun 5th Slide Set Computer Networks Frankfurt University of Applied Sciences WS1718 1/38 5th Slide Set Computer Networks Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

More information

CHANNEL CODING 1. Introduction

CHANNEL CODING 1. Introduction CHANNEL CODING 1. Introduction The fundamental resources at the disposal of a communications engineer are signal power, time and bandwidth. For a given communications environment, these three resources

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information