System Software. Computer Science and Engineering College of Engineering The Ohio State University. Lecture 13

Size: px
Start display at page:

Download "System Software. Computer Science and Engineering College of Engineering The Ohio State University. Lecture 13"

Transcription

1 System Software Computer Science and Engineering College of Engineering The Ohio State University Lecture 13

2 Road Map Lectures Administration Abstract machine characteristics Version control Software engineering Technical writing Lab 1 Forming Groups Requirements analysis Design Review Implementation Submission of documentation

3 System Software What is system software anyway? Answer: Software that supports the operation of the computer Often closely related to the architecture Allows developers to focus on the application without worrying about the low-level details of the machine

4 What and Why Examples Operating systems Device drivers Compilers, linkers/loaders, assemblers Motivation Software can often do a better job of managing the computer and optimizing performance People are expensive, computers are cheap

5 Layers of Abstraction Computer can be viewed at different levels of abstraction Each layer is a kind of virtual machine Each virtual machine corresponds to a language Bridges the human/computer gap Application Tools High-level Assembly ISA Microarchitecture Circuits

6 Computer Program Program: A collection of actions Written in a formal notation (language) Static (a piece of text, a file) Variations in language Imperative, functional, object-oriented, dynamically typed

7 Compiling Programs Program = Text file Contains easy-to-understand statements like "print", "if", "while", etc. But a computer can only execute machine instructions Instruction set architecture of the CPU A compiler translates the program (source code) into an executable (machine code) Recall "Bugs World" from CSE 2231 Examples: C, C++, Objective-C, Ada

8 Interpreting Programs An interpreter reads a program and executes it directly Advantages Platform independence Read-eval-print loop (aka REPL) Reflection Disadvantages Speed Later error detection (i.e., at run time) Examples: JavaScript, Python, Ruby

9 Combination of Both A language is not inherently compiled or interpreted A property of its implementation Sometimes a combination is used: Compile source code into an intermediate representation (byte code) Interpret the byte code Examples of combination: Java, C#

10 Java: Compile and Interpret program byte code MyProgram.java compiled MyProgram.class interpreted Java VM

11 Compile vs Interpret Compilation/interpretation is not fundamental to a language definition Can occur at all levels High-level or interpret compiler Assembly assembler Machine Language or interpret

12 Program vs Process Process: a program in execution Stateful (memory, registers) Current location of execution (PC) Variables have values (data section) Call stack Dynamic (changes over time) Instruction execution I/O interrupts (keyboard, touch, mouse, network, graphics ) Synchronization with other processes

13 Operating Systems How does a program become a process? Requires certain system resources (processor, memory, I/O, ) At any instant, there are many processes Multiple, concurrent users (stdlinux) Multiple, concurrent applications OS background tasks But there are a fixed set of resources Operating system handles resource management and process scheduling

14 Process Lifecycle

15 Challenges in Operating Systems Concurrency is fundamental Actors (processes/environment) are independent actors Concurrency is hard Nondeterminism Same inputs and initial conditions can result in different results Problems are hard to reproduce, debug Complex mental model: Impossible to think through all possible interleavings Synchronization is not familiar from sequential programming

16 Danger: Deadlock Example: Process A holds resource X, needs Y Process B holds resource Y, needs X Generally: a cycle in the resourceallocation graph

17 Danger: Starvation A process waits for a resource forever Example: Process A is waiting for resource X Two higher-priority processes alternate in using X, and A always loses out

18 Example A 2-way road squeezes down to one lane through a 4-mile tunnel Lane can not accommodate 2-way traffic No shoulder, pull-outs, turnarounds in tunnel Design a traffic protocol for the tunnel Cars at one end can not see the road at the other end of the tunnel Can use signs, clocks, traffic lights, flares, sextants, lunar calendar

19 Solutions?

20 Example: Dining Philosophers Set of philosophers, each of which is thinking, hungry, or eating Eating is finite, but may think forever Eating requires having forks, but forks are shared with neighbors Classically, 5 philosophers in a ring

21 Solutions?

22 Many More Examples Readers-writers Readers can share access to critical section, writers require exclusive access Bounded-buffer Producer putting things into buffer, consumer taking things out Producer has to wait if buffer is full, consumer has to wait if buffer is empty Sleeping barber, cigarette smokers, roller coaster, drinking philosophers

23 Responsibilities of OS Schedules processes Handles interrupts Manages real memory Manages virtual memory Large block of contiguous memory space Can be larger than physical memory File management File handles for open files, position marks Security Restrict what user-level process can do Prevent one user from interfering with another

24 Virtual Mem, Pages, Page Faults

25 Summary Compiling vs interpreting Program vs Process Operating systems: Challenges Operating systems: Responsibilities

Processes The Process Model. Chapter 2. Processes and Threads. Process Termination. Process Creation

Processes The Process Model. Chapter 2. Processes and Threads. Process Termination. Process Creation Chapter 2 Processes The Process Model Processes and Threads 2.1 Processes 2.2 Threads 2.3 Interprocess communication 2.4 Classical IPC problems 2.5 Scheduling Multiprogramming of four programs Conceptual

More information

Processes The Process Model. Chapter 2 Processes and Threads. Process Termination. Process States (1) Process Hierarchies

Processes The Process Model. Chapter 2 Processes and Threads. Process Termination. Process States (1) Process Hierarchies Chapter 2 Processes and Threads Processes The Process Model 2.1 Processes 2.2 Threads 2.3 Interprocess communication 2.4 Classical IPC problems 2.5 Scheduling Multiprogramming of four programs Conceptual

More information

Ruby: Introduction, Basics

Ruby: Introduction, Basics Ruby: Introduction, Basics Computer Science and Engineering College of Engineering The Ohio State University Lecture 4 Ruby vs Java: Similarities Imperative and object-oriented Classes and instances (ie

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

Concurrency. Chapter 5

Concurrency. Chapter 5 Concurrency 1 Chapter 5 2 Concurrency Is a fundamental concept in operating system design Processes execute interleaved in time on a single processor Creates the illusion of simultaneous execution Benefits

More information

Process Management And Synchronization

Process Management And Synchronization Process Management And Synchronization In a single processor multiprogramming system the processor switches between the various jobs until to finish the execution of all jobs. These jobs will share the

More information

Ruby: Introduction, Basics

Ruby: Introduction, Basics Ruby: Introduction, Basics Computer Science and Engineering College of Engineering The Ohio State University Lecture 4 Ruby vs Java: Similarities Imperative and object-oriented Classes and instances (ie

More information

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28)

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28) Lecture Topics Today: Concurrency (Stallings, chapter 5.1-5.4, 5.7) Next: Exam #1 1 Announcements Self-Study Exercise #5 Project #3 (due 9/28) Project #4 (due 10/12) 2 Exam #1 Tuesday, 10/3 during lecture

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

Resource Allocation. Pradipta De

Resource Allocation. Pradipta De Resource Allocation Pradipta De pradipta.de@sunykorea.ac.kr Outline Dining Philosophers Problem Drinking Philosophers Problem Dining Philosophers Problem f(5) 5 f(1) Each philosopher goes through, Think

More information

Department of CSIT ( G G University, Bilaspur ) Model Answer 2013 (Even Semester) - AR-7307

Department of CSIT ( G G University, Bilaspur ) Model Answer 2013 (Even Semester) - AR-7307 Department of CSIT ( G G University, Bilaspur ) Model Answer 2013 (Even Semester) - AR-7307 Class: MCA Semester: II Year:2013 Paper Title: Principles of Operating Systems Max Marks: 60 Section A: (All

More information

Midterm Exam. October 20th, Thursday NSC

Midterm Exam. October 20th, Thursday NSC CSE 421/521 - Operating Systems Fall 2011 Lecture - XIV Midterm Review Tevfik Koşar University at Buffalo October 18 th, 2011 1 Midterm Exam October 20th, Thursday 9:30am-10:50am @215 NSC Chapters included

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Concept of a process

Concept of a process Concept of a process In the context of this course a process is a program whose execution is in progress States of a process: running, ready, blocked Submit Ready Running Completion Blocked Concurrent

More information

148 PROCESSES CHAP. 2

148 PROCESSES CHAP. 2 148 PROCESSES CHAP. 2 Interprocess communication primitives can be used to solve such problems as the producer-consumer, dining philosophers, reader-writer, and sleeping barber. Even with these primitives,

More information

2. The shared resource(s) in the dining philosophers problem is(are) a. forks. b. food. c. seats at a circular table.

2. The shared resource(s) in the dining philosophers problem is(are) a. forks. b. food. c. seats at a circular table. CSCI 4500 / 8506 Sample Questions for Quiz 3 Covers Modules 5 and 6 1. In the dining philosophers problem, the philosophers spend their lives alternating between thinking and a. working. b. eating. c.

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

CSC501 Operating Systems Principles. Process Synchronization

CSC501 Operating Systems Principles. Process Synchronization CSC501 Operating Systems Principles Process Synchronization 1 Last Lecture q Process Scheduling Question I: Within one second, how many times the timer interrupt will occur? Question II: Within one second,

More information

Chapter 2 Processes and Threads. Interprocess Communication Race Conditions

Chapter 2 Processes and Threads. Interprocess Communication Race Conditions Chapter 2 Processes and Threads [ ] 2.3 Interprocess communication 2.4 Classical IPC problems 2.5 Scheduling 85 Interprocess Communication Race Conditions Two processes want to access shared memory at

More information

CS450/550 Operating Systems

CS450/550 Operating Systems CS450/550 Operating Systems Lecture 2 Processes and Threads Palden Lama Department of Computer Science CS450/550 P&T.1 Review: Summary of Lecture 1 Two major OS functionalities: machine extension and resource

More information

CS3502 OPERATING SYSTEMS

CS3502 OPERATING SYSTEMS CS3502 OPERATING SYSTEMS Spring 2018 Synchronization Chapter 6 Synchronization The coordination of the activities of the processes Processes interfere with each other Processes compete for resources Processes

More information

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) EI 338: Computer Systems Engineering (Operating Systems & Computer Architecture) Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn Download lectures ftp://public.sjtu.edu.cn User:

More information

CS450/550 Operating Systems

CS450/550 Operating Systems CS450/550 Operating Systems Lecture 2 Processes and Threads Dr. Xiaobo Zhou Department of Computer Science CS450/550 P&T.1 Review: Summary of Lecture 1 Two major OS functionalities: machine extension and

More information

Concurrency pros and cons. Concurrent Programming Problems. Linked list example. Linked list example. Mutual Exclusion. Concurrency is good for users

Concurrency pros and cons. Concurrent Programming Problems. Linked list example. Linked list example. Mutual Exclusion. Concurrency is good for users Concurrency pros and cons Con Programming Problems OS Spring 2011 Concurrency is good for users One of the reasons for multiprogramming Working on the same problem, simultaneous execution of programs,

More information

Process Synchronization. studykorner.org

Process Synchronization. studykorner.org Process Synchronization Semaphore Implementation Must guarantee that no two processes can execute wait () and signal () on the same semaphore at the same time The main disadvantage of the semaphore definition

More information

Synchronization Principles II

Synchronization Principles II CSC 256/456: Operating Systems Synchronization Principles II John Criswell University of Rochester 1 Synchronization Issues Race conditions and the need for synchronization Critical Section Problem Mutual

More information

CSE 4/521 Introduction to Operating Systems

CSE 4/521 Introduction to Operating Systems CSE 4/521 Introduction to Operating Systems Lecture 7 Process Synchronization II (Classic Problems of Synchronization, Synchronization Examples) Summer 2018 Overview Objective: 1. To examine several classical

More information

Classical Synchronization Problems. Copyright : University of Illinois CS 241 Staff 1

Classical Synchronization Problems. Copyright : University of Illinois CS 241 Staff 1 Classical Synchronization Problems 1 1 This lecture Goals: Topics Introduce classical synchronization problems Producer-Consumer Problem Reader-Writer Problem Dining Philosophers Problem Sleeping Barber

More information

Introduction to Operating Systems

Introduction to Operating Systems Introduction to Operating Systems Lecture 4: Process Synchronization MING GAO SE@ecnu (for course related communications) mgao@sei.ecnu.edu.cn Mar. 18, 2015 Outline 1 The synchronization problem 2 A roadmap

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

MARUTHI SCHOOL OF BANKING (MSB)

MARUTHI SCHOOL OF BANKING (MSB) MARUTHI SCHOOL OF BANKING (MSB) SO IT - OPERATING SYSTEM(2017) 1. is mainly responsible for allocating the resources as per process requirement? 1.RAM 2.Compiler 3.Operating Systems 4.Software 2.Which

More information

CSI3131 Final Exam Review

CSI3131 Final Exam Review CSI3131 Final Exam Review Final Exam: When: April 24, 2015 2:00 PM Where: SMD 425 File Systems I/O Hard Drive Virtual Memory Swap Memory Storage and I/O Introduction CSI3131 Topics Process Computing Systems

More information

Deadlocks. Copyright : University of Illinois CS 241 Staff 1

Deadlocks. Copyright : University of Illinois CS 241 Staff 1 Deadlocks 1 Deadlock Which way should I go? 2 Deadlock I Oh can no! almost I m get stuck! across GRIDLOCK! 3 Deadlock Definition Deadlocked process Waiting for an event that will never occur Typically,

More information

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering)

Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) A. Multiple Choice Questions (60 questions) Subject: Operating System (BTCOC403) Class: S.Y.B.Tech. (Computer Engineering) Unit-I 1. What is operating system? a) collection of programs that manages hardware

More information

Chapters 5 and 6 Concurrency

Chapters 5 and 6 Concurrency Operating Systems: Internals and Design Principles, 6/E William Stallings Chapters 5 and 6 Concurrency Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Concurrency When several processes/threads

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

OS Process Synchronization!

OS Process Synchronization! OS Process Synchronization! Race Conditions! The Critical Section Problem! Synchronization Hardware! Semaphores! Classical Problems of Synchronization! Synchronization HW Assignment! 3.1! Concurrent Access

More information

Process Synchronization

Process Synchronization TDDI04 Concurrent Programming, Operating Systems, and Real-time Operating Systems Process Synchronization [SGG7] Chapter 6 Copyright Notice: The lecture notes are mainly based on Silberschatz s, Galvin

More information

Ruby: Introduction, Basics

Ruby: Introduction, Basics Ruby: Introduction, Basics Computer Science and Engineering College of Engineering The Ohio State University Lecture 3 Ruby vs Java: Similarities Imperative and object-oriented Classes and instances (ie

More information

Process Coordination

Process Coordination Process Coordination Why is it needed? Processes may need to share data More than one process reading/writing the same data (a shared file, a database record, ) Output of one process being used by another

More information

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 21. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 21 Matthew Jacob Indian Institute of Science Semaphore Examples Semaphores can do more than mutex locks Example: Consider our concurrent program where process P1 reads

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo CSE 421/521 - Operating Systems Fall 2014 Lecture - XXV Final Review Tevfik Koşar University at Buffalo December 2nd, 2014 1 Final Exam December 4th, Thursday 11:00am - 12:20pm Room: 110 Knox Chapters

More information

Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team

Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team http://101companies.org/wiki/ Contribution:javaMultithreading Multithreading Prof. Dr. Ralf Lämmel Universität Koblenz-Landau Software Languages Team Non-101samples available here: https://github.com/101companies/101repo/tree/master/technologies/java_platform/samples/javathreadssamples

More information

Sections 01 (11:30), 02 (16:00), 03 (8:30) Ashraf Aboulnaga & Borzoo Bonakdarpour

Sections 01 (11:30), 02 (16:00), 03 (8:30) Ashraf Aboulnaga & Borzoo Bonakdarpour Course CS350 - Operating Systems Sections 01 (11:30), 02 (16:00), 03 (8:30) Instructor Ashraf Aboulnaga & Borzoo Bonakdarpour Date of Exam October 25, 2011 Time Period 19:00-21:00 Duration of Exam Number

More information

5 Classical IPC Problems

5 Classical IPC Problems OPERATING SYSTEMS CLASSICAL IPC PROBLEMS 2 5 Classical IPC Problems The operating systems literature is full of interesting problems that have been widely discussed and analyzed using a variety of synchronization

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information

Concurrency Terminology

Concurrency Terminology Lesson 1 Concurrency Ch 1 [BenA 06] Terminology Concurrency in Systems Problem Examples Solution Considerations 1 Concurrency Terminology Process, thread tavallinen ohjelma Ordinary program Sequential

More information

Roadmap. Readers-Writers Problem. Readers-Writers Problem. Readers-Writers Problem (Cont.) Dining Philosophers Problem.

Roadmap. Readers-Writers Problem. Readers-Writers Problem. Readers-Writers Problem (Cont.) Dining Philosophers Problem. CSE 421/521 - Operating Systems Fall 2011 Lecture - X Process Synchronization & Deadlocks Roadmap Classic Problems of Synchronization Readers and Writers Problem Dining-Philosophers Problem Sleeping Barber

More information

Process Synchronization

Process Synchronization CSC 4103 - Operating Systems Spring 2007 Lecture - VI Process Synchronization Tevfik Koşar Louisiana State University February 6 th, 2007 1 Roadmap Process Synchronization The Critical-Section Problem

More information

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1

To Everyone... iii To Educators... v To Students... vi Acknowledgments... vii Final Words... ix References... x. 1 ADialogueontheBook 1 Contents To Everyone.............................. iii To Educators.............................. v To Students............................... vi Acknowledgments........................... vii Final Words..............................

More information

Concurrency pros and cons. Concurrent Programming Problems. Mutual Exclusion. Concurrency is good for users

Concurrency pros and cons. Concurrent Programming Problems. Mutual Exclusion. Concurrency is good for users Concurrency pros and cons Con Programming Problems OS Spring 2009 Concurrency is good for users One of the reasons for multiprogramming Working on the same problem, simultaneous execution of programs,

More information

Concurrent Object Oriented Languages

Concurrent Object Oriented Languages Concurrent Object Oriented Languages Semaphores wiki.eecs.yorku.ca/course/6490a Semaphores A semaphore is a datatype. Its values are nonnegative integers. A semaphore, say s, supports two atomic operations:

More information

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing

CMSC 330: Organization of Programming Languages. Concurrency & Multiprocessing CMSC 330: Organization of Programming Languages Concurrency & Multiprocessing Multiprocessing Multiprocessing: The use of multiple parallel computations We have entered an era of multiple cores... Hyperthreading

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on

Chapter 6: Process Synchronization. Operating System Concepts 9 th Edit9on Chapter 6: Process Synchronization Operating System Concepts 9 th Edit9on Silberschatz, Galvin and Gagne 2013 Objectives To present the concept of process synchronization. To introduce the critical-section

More information

Synchronization Principles

Synchronization Principles Synchronization Principles Gordon College Stephen Brinton The Problem with Concurrency Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

IV. Process Synchronisation

IV. Process Synchronisation IV. Process Synchronisation Operating Systems Stefan Klinger Database & Information Systems Group University of Konstanz Summer Term 2009 Background Multiprogramming Multiple processes are executed asynchronously.

More information

Chapter 7: Process Synchronization!

Chapter 7: Process Synchronization! Chapter 7: Process Synchronization Background The Critical-Section Problem Synchronization Hardware Semaphores Classical Problems of Synchronization Monitors 7.1 Background Concurrent access to shared

More information

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture

Last class: Today: Course administration OS definition, some history. Background on Computer Architecture 1 Last class: Course administration OS definition, some history Today: Background on Computer Architecture 2 Canonical System Hardware CPU: Processor to perform computations Memory: Programs and data I/O

More information

Starvation and Deadlock

Starvation and Deadlock Starvation and Deadlock EventBarrier channel; Another EventBarrier Example void OutputThread { while (TRUE) { ComputeDataToSend(); channel.wait(); SendData(); channel.complete(); Invariants:. Output thread

More information

Semaphores (by Dijkstra)

Semaphores (by Dijkstra) CSCI 4401 Principles of Operating Systems I Process Synchronization II: Classic Problems Vassil Roussev vassil@cs.uno.edu Semaphores (by Dijkstra) A higher-level way of doing synchronization between threads/processes

More information

Concurrency: Deadlock and Starvation. Chapter 6

Concurrency: Deadlock and Starvation. Chapter 6 Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other Involve conflicting needs for resources

More information

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017

CS 471 Operating Systems. Yue Cheng. George Mason University Fall 2017 CS 471 Operating Systems Yue Cheng George Mason University Fall 2017 Outline o Process concept o Process creation o Process states and scheduling o Preemption and context switch o Inter-process communication

More information

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10)

Synchronization. CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) Synchronization CSE 2431: Introduction to Operating Systems Reading: Chapter 5, [OSC] (except Section 5.10) 1 Outline Critical region and mutual exclusion Mutual exclusion using busy waiting Sleep and

More information

Operating System Design

Operating System Design Module 6: Operating System Design Stage 1 Semester 2 Module Title Module Number/Reference 6 Module Status (Mandatory/Elective) Module ECTS credit 5 Module NFQ level (only if applicable) Pre-requisite Module

More information

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University

CS 4410 Operating Systems. Review 1. Summer 2016 Cornell University CS 4410 Operating Systems Review 1 Summer 2016 Cornell University 1 A modern computer system keyboard disks mouse printer monitor CPU Disk controller USB controller Graphics adapter memory OS device driver

More information

Introduction to Linear-Time Temporal Logic. CSE 814 Introduction to LTL

Introduction to Linear-Time Temporal Logic. CSE 814 Introduction to LTL Introduction to Linear-Time Temporal Logic CSE 814 Introduction to LTL 1 Outline Motivation for TL in general Types of properties to be expressed in TL Structures on which LTL formulas are evaluated Syntax

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Chapter 6: Synchronization 6.1 Background 6.2 The Critical-Section Problem 6.3 Peterson s Solution 6.4 Synchronization Hardware 6.5 Mutex Locks 6.6 Semaphores 6.7 Classic

More information

Operating Systems. Thread Synchronization Primitives. Thomas Ropars.

Operating Systems. Thread Synchronization Primitives. Thomas Ropars. 1 Operating Systems Thread Synchronization Primitives Thomas Ropars thomas.ropars@univ-grenoble-alpes.fr 2017 2 Agenda Week 42/43: Synchronization primitives Week 44: Vacation Week 45: Synchronization

More information

Semaphores. To avoid busy waiting: when a process has to wait, it will be put in a blocked queue of processes waiting for the same event

Semaphores. To avoid busy waiting: when a process has to wait, it will be put in a blocked queue of processes waiting for the same event Semaphores Synchronization tool (provided by the OS) that do not require busy waiting A semaphore S is an integer variable that, apart from initialization, can only be accessed through 2 atomic and mutually

More information

Semaphores. Semaphores. Semaphore s operations. Semaphores: observations

Semaphores. Semaphores. Semaphore s operations. Semaphores: observations Semaphores Synchronization tool (provided by the OS) that do not require busy waiting A semaphore S is an integer variable that, apart from initialization, can only be accessed through 2 atomic and mutually

More information

Semaphores. Otto J. Anshus University of {Tromsø, Oslo}

Semaphores. Otto J. Anshus University of {Tromsø, Oslo} Semaphores Otto J. Anshus University of {Tromsø, Oslo} Input sequence f Output sequence g Concurrency: Double buffering /* Fill s and empty t concurrently */ Get (s,f) s Put (t,g) t /* Copy */ t := s;

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 12 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ 2 Mutex vs Semaphore Mutex is binary,

More information

Chendu College of Engineering & Technology

Chendu College of Engineering & Technology Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram District 603311 +91-44-27540091/92 www.ccet.org.in

More information

Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java

Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java Based on the book (chapter 29): Introduction to Java Programming (Comprehensive Version) by Y. Daniel Liang Based

More information

Interprocess Communication and Synchronization

Interprocess Communication and Synchronization Chapter 2 (Second Part) Interprocess Communication and Synchronization Slide Credits: Jonathan Walpole Andrew Tanenbaum 1 Outline Race Conditions Mutual Exclusion and Critical Regions Mutex s Test-And-Set

More information

Chapter 2 Processes and Threads

Chapter 2 Processes and Threads MODERN OPERATING SYSTEMS Third Edition ANDREW S. TANENBAUM Chapter 2 Processes and Threads The Process Model Figure 2-1. (a) Multiprogramming of four programs. (b) Conceptual model of four independent,

More information

Dept. of CSE, York Univ. 1

Dept. of CSE, York Univ. 1 EECS 3221.3 Operating System Fundamentals No.5 Process Synchronization(1) Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University Background: cooperating processes with shared

More information

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10 MULTITHREADING AND SYNCHRONIZATION CS124 Operating Systems Fall 2017-2018, Lecture 10 2 Critical Sections Race conditions can be avoided by preventing multiple control paths from accessing shared state

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole OS-Related Hardware & Software The Process Concept 2 Lecture 2 Overview OS-Related Hardware & Software - complications in real systems - brief introduction to memory

More information

Operating System Overview

Operating System Overview A Typical Computer from a Hardware Point of View... Operating System Overview Otto J. Anshus Memory Chipset I/O bus (including slides from, Princeton University) University of Tromsø Keyboard Network /OJA

More information

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Process Synchronization: Semaphores CSSE 332 Operating Systems Rose-Hulman Institute of Technology Critical-section problem solution 1. Mutual Exclusion - If process Pi is executing in its critical section,

More information

Announcement. Exercise #2 will be out today. Due date is next Monday

Announcement. Exercise #2 will be out today. Due date is next Monday Announcement Exercise #2 will be out today Due date is next Monday Major OS Developments 2 Evolution of Operating Systems Generations include: Serial Processing Simple Batch Systems Multiprogrammed Batch

More information

Lesson 6: Process Synchronization

Lesson 6: Process Synchronization Lesson 6: Process Synchronization Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks Semaphores Classic Problems of Synchronization

More information

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition,

Chapter 6: Process Synchronization. Operating System Concepts 8 th Edition, Chapter 6: Process Synchronization, Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

Lesson 1. Concurrency. Terminology Concurrency in Systems Problem Examples Copyright Teemu Kerola 2009

Lesson 1. Concurrency. Terminology Concurrency in Systems Problem Examples Copyright Teemu Kerola 2009 Lesson 1 Concurrency Ch1[B [BenA A06] Terminology Concurrency in Systems Problem Examples Solution Considerations 1 Concurrency Terminology Process, thread Ordinary program tavallinen ohjelma Sequential

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad COMPUTER SCIENCE AND ENGINEERING QUESTION BANK OPERATING SYSTEMS

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad COMPUTER SCIENCE AND ENGINEERING QUESTION BANK OPERATING SYSTEMS INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING QUESTION BANK Title Code Regulation Structure Coordinator Team of Instructors OPERATING SYSTEMS A50510

More information

Synchronization. Peter J. Denning CS471/CS571. Copyright 2001, by Peter Denning

Synchronization. Peter J. Denning CS471/CS571. Copyright 2001, by Peter Denning Synchronization Peter J. Denning CS471/CS571 Copyright 2001, by Peter Denning What is synchronization? Requirement that one process stop to wait to pass a point until another process sends a signal. The

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information