Parsing Scheme (+ (* 2 3) 1) * 1

Size: px
Start display at page:

Download "Parsing Scheme (+ (* 2 3) 1) * 1"

Transcription

1 Parsing Scheme + (+ (* 2 3) 1) * 1 2 3

2 Compiling Scheme frame + frame halt * refer 1 apply * refer apply +

3 Compiling Scheme make-return START make-test make-close make-assign make- pair? yes yes yes yes yes no no no if? lambda? define? quote? no no symbol? yes make-refer make-frame no make-apply make- make-

4 Interpreting Bytecode frame frame halt 3 pc = halt acc = 7 2 refer 1 apply * refer apply +

5 bytecode frame 3 frame halt registers pc accumulator s environment frames val val... val 2 stack refer apply * refer apply + 1 pc arg env pc arg env pc arg env environment frame stack

6 Frame Bytecode Set program counter to second continuation Push registers onto frame stack Set program counter to first continuation

7 Constant Bytecode Set accumulator to value of operand Set program counter to continuation

8 Argument Bytecode Push accumulator onto stack Set program counter to continuation

9 Refer Bytecode Lookup value of operand in environment and store it in accumulator Set program counter to continuation

10 Apply Bytecode (primitive) Apply primitive to vals on stack Pop frame stack

11 Apply Bytecode (closure) Make application frame using closure's list (vars) and stack (vals) Push application frame onto environment Set program counter to body of closure

12 Pop frame stack Return Bytecode

13 Test Bytecode If accumulator is not #f then set program counter to first continuation else set program counter to second continuation

14 Assign Bytecode Make definition using operand and accumulator Add definition to top frame of environment Set program counter to continuation

15 Close Bytecode Make closure using operands and environment Set program counter to continuation

16 halt Halt Bytecode

17 Parsing Scheme + (+ (* 2 3) 1) *

18 Compiling Scheme frame + frame halt * refer 1 apply * refer apply + 2

19 Compiling Scheme make-return START pair? yes make-test make-close make-assign make- yes yes yes yes no no no if? lambda? define? quote? no no symbol? yes make-refer make-frame no make-apply make- make- 3

20 Interpreting Bytecode frame frame halt 3 pc = halt acc = 7 2 refer 1 apply * refer apply + 4

21 bytecode frame 3 frame halt registers pc accumulator s environment frames val val... val 2 stack refer apply * refer apply + 1 pc arg env pc arg env environment pc arg env frame stack 5

22 Frame Bytecode Set program counter to second continuation Push registers onto frame stack Set program counter to first continuation 6

23 Constant Bytecode Set accumulator to value of operand Set program counter to continuation 7

24 Argument Bytecode Push accumulator onto stack Set program counter to continuation 8

25 Refer Bytecode Lookup value of operand in environment and store it in accumulator Set program counter to continuation 9

26 Apply Bytecode (primitive) Apply primitive to vals on stack Pop frame stack 10

27 Apply Bytecode (closure) Make application frame using closure's list (vars) and stack (vals) Push application frame onto environment Set program counter to body of closure 11

28 Pop frame stack Return Bytecode 12

29 Test Bytecode If accumulator is not #f then set program counter to first continuation else set program counter to second continuation 13

30 Assign Bytecode Make definition using operand and accumulator Add definition to top frame of environment Set program counter to continuation 14

31 Close Bytecode Make closure using operands and environment Set program counter to continuation 15

32 Halt Bytecode halt 16

Scheme in Scheme: The Metacircular Evaluator Eval and Apply

Scheme in Scheme: The Metacircular Evaluator Eval and Apply Scheme in Scheme: The Metacircular Evaluator Eval and Apply CS21b: Structure and Interpretation of Computer Programs Brandeis University Spring Term, 2015 The metacircular evaluator is A rendition of Scheme,

More information

regsim.scm ~/umb/cs450/ch5.base/ 1 11/11/13

regsim.scm ~/umb/cs450/ch5.base/ 1 11/11/13 1 File: regsim.scm Register machine simulator from section 5.2 of STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS This file can be loaded into Scheme as a whole. Then you can define and simulate machines

More information

Fall Semester, The Metacircular Evaluator. Today we shift perspective from that of a user of computer langugaes to that of a designer of

Fall Semester, The Metacircular Evaluator. Today we shift perspective from that of a user of computer langugaes to that of a designer of 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 1996 Lecture Notes { October 31,

More information

Turtles All The Way Down

Turtles All The Way Down Turtles All The Way Down Bertrand Russell had just finished giving a public lecture on the nature of the universe. An old woman said Prof. Russell, it is well known that the earth rests on the back of

More information

Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs. Lexical addressing

Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs. Lexical addressing Computer Science 21b (Spring Term, 2015) Structure and Interpretation of Computer Programs Lexical addressing The difference between a interpreter and a compiler is really two points on a spectrum of possible

More information

6.184 Lecture 4. Interpretation. Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson

6.184 Lecture 4. Interpretation. Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson 6.184 Lecture 4 Interpretation Tweaked by Ben Vandiver Compiled by Mike Phillips Original material by Eric Grimson 1 Interpretation Parts of an interpreter Arithmetic calculator

More information

Discussion 12 The MCE (solutions)

Discussion 12 The MCE (solutions) Discussion 12 The MCE (solutions) ;;;;METACIRCULAR EVALUATOR FROM CHAPTER 4 (SECTIONS 4.1.1-4.1.4) of ;;;; STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAMS ;;;from section 4.1.4 -- must precede def of

More information

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson Streams, Delayed Evaluation and a Normal Order Interpreter CS 550 Programming Languages Jeremy Johnson 1 Theme This lecture discusses the stream model of computation and an efficient method of implementation

More information

Code example: sfact SICP Explicit-control evaluator. Example register machine: instructions. Goal: a tail-recursive evaluator.

Code example: sfact SICP Explicit-control evaluator. Example register machine: instructions. Goal: a tail-recursive evaluator. 6.001 SICP Explicit-control evaluator Big ideas: how to connect evaluator to machine instructions how to achieve tail recursion Obfuscation: tightly optimized instruction sequence Background eval-dispatch

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

6.037 Lecture 4. Interpretation. What is an interpreter? Why do we need an interpreter? Stages of an interpreter. Role of each part of the interpreter

6.037 Lecture 4. Interpretation. What is an interpreter? Why do we need an interpreter? Stages of an interpreter. Role of each part of the interpreter 6.037 Lecture 4 Interpretation Interpretation Parts of an interpreter Meta-circular Evaluator (Scheme-in-scheme!) A slight variation: dynamic scoping Original material by Eric Grimson Tweaked by Zev Benjamin,

More information

Racket: Modules, Contracts, Languages

Racket: Modules, Contracts, Languages Racket: Modules, Contracts, Languages Advanced Functional Programming Jean-Noël Monette November 2013 1 Today Modules are the way to structure larger programs in smaller pieces. Modules can import and

More information

CS 320: Concepts of Programming Languages

CS 320: Concepts of Programming Languages CS 320: Concepts of Programming Languages Wayne Snyder Computer Science Department Boston University Lecture 24: Compilation: Implementing Function Calls o Function Definitions in Mini-C o The Run-Time

More information

Procedures. EOPL3: Section 3.3 PROC and App B: SLLGEN

Procedures. EOPL3: Section 3.3 PROC and App B: SLLGEN Procedures EOPL3: Section 3.3 PROC and App B: SLLGEN The PROC language Expression ::= proc (Identifier) Expression AST: proc-exp (var body) Expression ::= (Expression Expression) AST: call-exp (rator rand)

More information

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13 Run-time Environments Lecture 13 by Prof. Vijay Ganesh) Lecture 13 1 What have we covered so far? We have covered the front-end phases Lexical analysis (Lexer, regular expressions,...) Parsing (CFG, Top-down,

More information

Lexical vs. Dynamic Scope

Lexical vs. Dynamic Scope Intro Lexical vs. Dynamic Scope where do I point to? Remember in Scheme whenever we call a procedure we pop a frame and point it to where the procedure points to (its defining environment). This is called

More information

Building up a language SICP Variations on a Scheme. Meval. The Core Evaluator. Eval. Apply. 2. syntax procedures. 1.

Building up a language SICP Variations on a Scheme. Meval. The Core Evaluator. Eval. Apply. 2. syntax procedures. 1. 6.001 SICP Variations on a Scheme Scheme Evaluator A Grand Tour Techniques for language design: Interpretation: eval/appl Semantics vs. snta Sntactic transformations Building up a language... 3. 1. eval/appl

More information

Scope, Functions, and Storage Management

Scope, Functions, and Storage Management Scope, Functions, and Storage Management Implementing Functions and Blocks cs3723 1 Simplified Machine Model (Compare To List Abstract Machine) Registers Code Data Program Counter (current instruction)

More information

Review Analyzing Evaluator. CS61A Lecture 25. What gets returned by mc-eval? (not analyzing eval) REVIEW What is a procedure?

Review Analyzing Evaluator. CS61A Lecture 25. What gets returned by mc-eval? (not analyzing eval) REVIEW What is a procedure? 2 1 Review Analyzing Evaluator CS61A Lecture 2011-08-02 Colleen Lewis What s look like What the output of analyze was Fact: The body of a lambda gets analyzed! We can give names to analyzed lambdas What

More information

TAIL RECURSION, SCOPE, AND PROJECT 4 11

TAIL RECURSION, SCOPE, AND PROJECT 4 11 TAIL RECURSION, SCOPE, AND PROJECT 4 11 COMPUTER SCIENCE 61A Noveber 12, 2012 1 Tail Recursion Today we will look at Tail Recursion and Tail Call Optimizations in Scheme, and how they relate to iteration

More information

Teaching London Computing

Teaching London Computing Teaching London Computing CAS London CPD Day 2016 Little Man Computer William Marsh School of Electronic Engineering and Computer Science Queen Mary University of London Overview and Aims LMC is a computer

More information

Assembly Language Manual for the STACK Computer

Assembly Language Manual for the STACK Computer Computer Science 301 1 Assembly Language Manual for the STACK Computer Assembly language programmers should read the hardware description of the STACK computer together with information about the effect

More information

Konzepte von Programmiersprachen

Konzepte von Programmiersprachen Konzepte von Programmiersprachen Chapter 5: Continuation-Passing Interpreters Stefan Wehr Universität Freiburg 8. Juni 2009 Konzepte von Programmiersprachen 1 / 43 Motivation Continuations: abstraction

More information

Project 2: Scheme Interpreter

Project 2: Scheme Interpreter Project 2: Scheme Interpreter CSC 4101, Fall 2017 Due: 12 November 2017 For this project, you will implement a simple Scheme interpreter in C++ or Java. Your interpreter should be able to handle the same

More information

Verified compilation of a first-order Lisp language

Verified compilation of a first-order Lisp language Verified compilation of a first-order Lisp language Lecture 7 MPhil ACS & Part III course, Functional Programming: Implementation, Specification and Verification Magnus Myreen Michaelmas term, 2013 Interpreter

More information

Syntactic Sugar: Using the Metacircular Evaluator to Implement the Language You Want

Syntactic Sugar: Using the Metacircular Evaluator to Implement the Language You Want Computer Science 21b (Spring Term, 2017) Structure and Interpretation of Computer Programs Syntactic Sugar: Using the Metacircular Evaluator to Implement the Language You Want Here is one of the big ideas

More information

Implementing Recursion

Implementing Recursion Implementing Recursion Shriram Krishnamurthi 2003-09-19 We ve seen that there are (at least two, fairly distinct ways of representing environments To implement recursive environments, we need to provide

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

Mid-Term 2 Grades

Mid-Term 2 Grades Mid-Term 2 Grades 100 46 1 HW 9 Homework 9, in untyped class interpreter: Add instanceof Restrict field access to local class Implement overloading (based on argument count) Due date is the same as for

More information

Fall Semester, Lecture Notes { November 12, Variations on a Scheme Nondeterministic evaluation

Fall Semester, Lecture Notes { November 12, Variations on a Scheme Nondeterministic evaluation 1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 1996 Lecture Notes { November 12,

More information

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline.

Code Generation. The Main Idea of Today s Lecture. We can emit stack-machine-style code for expressions via recursion. Lecture Outline. The Main Idea of Today s Lecture Code Generation We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

We can emit stack-machine-style code for expressions via recursion

We can emit stack-machine-style code for expressions via recursion Code Generation The Main Idea of Today s Lecture We can emit stack-machine-style code for expressions via recursion (We will use MIPS assembly as our target language) 2 Lecture Outline What are stack machines?

More information

The Eval/Apply Cycle Eval. Evaluation and universal machines. Examining the role of Eval. Eval from perspective of language designer

The Eval/Apply Cycle Eval. Evaluation and universal machines. Examining the role of Eval. Eval from perspective of language designer Evaluation and universal machines What is the role of evaluation in defining a language? How can we use evaluation to design a language? The Eval/Apply Cycle Eval Exp & env Apply Proc & args Eval and Apply

More information

Comp 311: Sample Midterm Examination

Comp 311: Sample Midterm Examination Comp 311: Sample Midterm Examination October 29, 2007 Name: Id #: Instructions 1. The examination is closed book. If you forget the name for a Scheme operation, make up a name for it and write a brief

More information

INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS FUNCTION COMPOSITION Instructors: Crista Lopes Copyright Instructors. Topics Recursion Higher-order functions Continuation-Passing Style Monads (take 1) Identity Monad Maybe

More information

CSE 341: Programming Languages

CSE 341: Programming Languages CSE 341: Programming Languages Winter 2005 Lecture 17 varargs and apply, implementing higher-order functions CSE341 Winter 2005, Lecture 17 1 Today: Some easy Scheme odds and ends Implementing higher-order

More information

Why do we need an interpreter? SICP Interpretation part 1. Role of each part of the interpreter. 1. Arithmetic calculator.

Why do we need an interpreter? SICP Interpretation part 1. Role of each part of the interpreter. 1. Arithmetic calculator. .00 SICP Interpretation part Parts of an interpreter Arithmetic calculator Names Conditionals and if Store procedures in the environment Environment as explicit parameter Defining new procedures Why do

More information

DRAWING ENVIRONMENT DIAGRAMS

DRAWING ENVIRONMENT DIAGRAMS DRAWING ENVIRONMENT DIAGRAMS COMPUTER SCIENCE 61A September 10, 2012 0.1 Background A frame is a location where variable bindings are stored A binding is a connection between a name and a value. The name

More information

An Explicit Continuation Evaluator for Scheme

An Explicit Continuation Evaluator for Scheme Massachusetts Institute of Technology Course Notes 2 6.844, Spring 05: Computability Theory of and with Scheme February 17 Prof. Albert R. Meyer revised March 3, 2005, 1265 minutes An Explicit Continuation

More information

CS 360 Programming Languages Interpreters

CS 360 Programming Languages Interpreters CS 360 Programming Languages Interpreters Implementing PLs Most of the course is learning fundamental concepts for using and understanding PLs. Syntax vs. semantics vs. idioms. Powerful constructs like

More information

Lecture 15 CIS 341: COMPILERS

Lecture 15 CIS 341: COMPILERS Lecture 15 CIS 341: COMPILERS Announcements HW4: OAT v. 1.0 Parsing & basic code generation Due: March 28 th No lecture on Thursday, March 22 Dr. Z will be away Zdancewic CIS 341: Compilers 2 Adding Integers

More information

Programming Languages: Application and Interpretation

Programming Languages: Application and Interpretation Programming Languages: Application and Interpretation Version 6.7 October 26, 2016 This is the documentation for the software accompanying the textbook Programming Languages: Application and Interpretation

More information

Lecture 8: Simple Calculator Application

Lecture 8: Simple Calculator Application Lecture 8: Simple Calculator Application Postfix Calculator Dr Kieran T. Herley Department of Computer Science University College Cork 2016/17 KH (27/02/17) Lecture 8: Simple Calculator Application 2016/17

More information

Scope and Parameter Passing 1 / 19

Scope and Parameter Passing 1 / 19 Scope and Parameter Passing 1 / 19 Outline Overview Naming and scope Function/procedure calls Static vs. dynamic scope Parameter passing schemes 2 / 19 Review of naming Most languages provide a way to

More information

CSE341: Programming Languages Lecture 17 Implementing Languages Including Closures. Dan Grossman Autumn 2018

CSE341: Programming Languages Lecture 17 Implementing Languages Including Closures. Dan Grossman Autumn 2018 CSE341: Programming Languages Lecture 17 Implementing Languages Including Closures Dan Grossman Autumn 2018 Typical workflow concrete syntax (string) "(fn x => x + x) 4" Parsing Possible errors / warnings

More information

Lecture 12: Conditional Expressions and Local Binding

Lecture 12: Conditional Expressions and Local Binding Lecture 12: Conditional Expressions and Local Binding Introduction Corresponds to EOPL 3.3-3.4 Please review Version-1 interpreter to make sure that you understand how it works Now we will extend the basic

More information

Mechanized Operational Semantics

Mechanized Operational Semantics Mechanized Operational Semantics J Strother Moore Department of Computer Sciences University of Texas at Austin Marktoberdorf Summer School 2008 (Lecture 2: An Operational Semantics) 1 M1 An M1 state consists

More information

An Elegant Weapon for a More Civilized Age

An Elegant Weapon for a More Civilized Age An Elegant Weapon for a More Civilized Age Solving an Easy Problem What are the input types? What is the output type? Give example input/output pairs Which input represents the domain of the recursion,

More information

Every language has its own scoping rules. For example, what is the scope of variable j in this Java program?

Every language has its own scoping rules. For example, what is the scope of variable j in this Java program? Lexical Binding There are two ways a variable can be used in a program: As a declaration As a "reference" or use of the variable Scheme has two kinds of variable "declarations" -- the bindings of a let-expression

More information

Jatha. Common Lisp in Java. Ola Bini JRuby Core Developer ThoughtWorks Studios.

Jatha. Common Lisp in Java. Ola Bini JRuby Core Developer ThoughtWorks Studios. Jatha Common Lisp in Java Ola Bini JRuby Core Developer ThoughtWorks Studios ola.bini@gmail.com http://olabini.com/blog Common Lisp? Common Lisp? ANSI standard Common Lisp? ANSI standard Powerful Common

More information

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types This lecture covers: Prolog s execution strategy explained more precisely The execution strategy has been presented as simply placing all matching clauses onto the stack. In fact, Prolog is slightly more

More information

Higher-Order Functions

Higher-Order Functions Higher-Order Functions 1 Why Functions as Values Abstraction is easier with functions as values abstract over add and sub cases filter, map, etc. What are objects? Callbacks? Separate deffun form becomes

More information

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou

COMP-421 Compiler Design. Presented by Dr Ioanna Dionysiou COMP-421 Compiler Design Presented by Dr Ioanna Dionysiou Administrative! Any questions about the syllabus?! Course Material available at www.cs.unic.ac.cy/ioanna! Next time reading assignment [ALSU07]

More information

(scheme-1) has lambda but NOT define

(scheme-1) has lambda but NOT define CS61A Lecture 12 2011-0-11 Colleen Lewis (calc) review (scheme-1) has lambda but NOT define Remember calc-apply? STk> (calc-apply '+ '(1 2 )) 6 STk> (calc-apply '* '(2 4 )) 24 STk> (calc-apply '/ '(10

More information

Recap: Functions as first-class values

Recap: Functions as first-class values Recap: Functions as first-class values Arguments, return values, bindings What are the benefits? Parameterized, similar functions (e.g. Testers) Creating, (Returning) Functions Iterator, Accumul, Reuse

More information

CDA 3103 Computer Organization Homework #7 Solution Set

CDA 3103 Computer Organization Homework #7 Solution Set CDA 3103 Computer Organization Homework #7 Solution Set 1 Problems 1. Write a MARIE assembly program for the following algorithm where the subroutine takes two numbers and returns their product. Your assembly

More information

Topic 7: Activation Records

Topic 7: Activation Records Topic 7: Activation Records Compiler Design Prof. Hanjun Kim CoreLab (Compiler Research Lab) POSTECH 1 Storage Organization Stack Free Memory Heap Static Code 2 ELF file format example Executable Object

More information

Compiling Techniques

Compiling Techniques Lecture 10: Introduction to 10 November 2015 Coursework: Block and Procedure Table of contents Introduction 1 Introduction Overview Java Virtual Machine Frames and Function Call 2 JVM Types and Mnemonics

More information

CSci 450, Org. of Programming Languages. Chapter 12 Expression Language Compilation

CSci 450, Org. of Programming Languages. Chapter 12 Expression Language Compilation CSci 450, Org. of Programming Languages Chapter 12 Expression Language Compilation H. Conrad Cunningham 7 November 2017 Contents 12.1 Chapter Introduction......................... 1 12.2 Stack Virtual

More information

A Type System for Object Initialization In the Java TM Bytecode Language

A Type System for Object Initialization In the Java TM Bytecode Language Electronic Notes in Theoretical Computer Science 10 (1998) URL: http://www.elsevier.nl/locate/entcs/volume10.html 7 pages A Type System for Object Initialization In the Java TM Bytecode Language Stephen

More information

Typical workflow. CSE341: Programming Languages. Lecture 17 Implementing Languages Including Closures. Reality more complicated

Typical workflow. CSE341: Programming Languages. Lecture 17 Implementing Languages Including Closures. Reality more complicated Typical workflow concrete synta (string) "(fn => + ) 4" Parsing CSE341: Programming Languages abstract synta (tree) Lecture 17 Implementing Languages Including Closures Function Constant + 4 Var Var Type

More information

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization.

Where We Are. Lexical Analysis. Syntax Analysis. IR Generation. IR Optimization. Code Generation. Machine Code. Optimization. Where We Are Source Code Lexical Analysis Syntax Analysis Semantic Analysis IR Generation IR Optimization Code Generation Optimization Machine Code Where We Are Source Code Lexical Analysis Syntax Analysis

More information

Below are example solutions for each of the questions. These are not the only possible answers, but they are the most common ones.

Below are example solutions for each of the questions. These are not the only possible answers, but they are the most common ones. 6.001, Fall Semester, 2002 Quiz II Sample solutions 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs

More information

UNIT 8C Computer Organization: The Machine s Language. von Neumann Architecture

UNIT 8C Computer Organization: The Machine s Language. von Neumann Architecture UNIT 8C Computer Organization: The Machine s Language 1 von Neumann Architecture Most computers follow the fetch-decodeexecutecycle introduced by John von Neumann. Fetch next instruction from memory. Decode

More information

Chapter 2: Instructions How we talk to the computer

Chapter 2: Instructions How we talk to the computer Chapter 2: Instructions How we talk to the computer 1 The Instruction Set Architecture that part of the architecture that is visible to the programmer - instruction formats - opcodes (available instructions)

More information

Scope & Symbol Table. l Most modern programming languages have some notion of scope.

Scope & Symbol Table. l Most modern programming languages have some notion of scope. Scope & Symbol Table l Most modern programming languages have some notion of scope. l Scope defines the lifetime of a program symbol. l If a symbol is no longer accessible then we say that it is out of

More information

CS61A Discussion Notes: Week 11: The Metacircular Evaluator By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal)

CS61A Discussion Notes: Week 11: The Metacircular Evaluator By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal) CS61A Discussion Notes: Week 11: The Metacircular Evaluator By Greg Krimer, with slight modifications by Phoebus Chen (using notes from Todd Segal) What is the Metacircular Evaluator? It is the best part

More information

CS1 Recitation. Week 2

CS1 Recitation. Week 2 CS1 Recitation Week 2 Sum of Squares Write a function that takes an integer n n must be at least 0 Function returns the sum of the square of each value between 0 and n, inclusive Code: (define (square

More information

UNIT 3

UNIT 3 UNIT 3 Presentation Outline Sequence control with expressions Conditional Statements, Loops Exception Handling Subprogram definition and activation Simple and Recursive Subprogram Subprogram Environment

More information

CS61A Notes Week 13: Interpreters

CS61A Notes Week 13: Interpreters CS61A Notes Week 13: Interpreters Read-Eval Loop Unlike Python, the result of evaluating an expression is not automatically printed. Instead, Logo complains if the value of any top-level expression is

More information

What are compilers? A Compiler

What are compilers? A Compiler What are compilers? Dr. Barbara G. Ryder Dept of Computer Science ryder@cs.rutgers.edu http://www.cs.rutgers.edu/~ryder 1 A Compiler A program that translates computer programs that people write, into

More information

Compiler Construction Lecture 05 A Simple Stack Machine. Lent Term, Lecturer: Timothy G. Griffin. Computer Laboratory University of Cambridge

Compiler Construction Lecture 05 A Simple Stack Machine. Lent Term, Lecturer: Timothy G. Griffin. Computer Laboratory University of Cambridge Compiler Construction Lecture 05 A Simple Stack Machine Lent Term, 2015 Lecturer: Timothy G. Griffin Computer Laboratory University of Cambridge 1 Where are we going? When we derived the stack machine

More information

Address Modes effective address

Address Modes effective address Address Modes The MARIE supports only three addressing modes: immediate, direct, and indirect. We are now going to discuss addressing modes in general. Most computers support quite a few of these modes.

More information

Stack. 4. In Stack all Operations such as Insertion and Deletion are permitted at only one end. Size of the Stack 6. Maximum Value of Stack Top 5

Stack. 4. In Stack all Operations such as Insertion and Deletion are permitted at only one end. Size of the Stack 6. Maximum Value of Stack Top 5 What is Stack? Stack 1. Stack is LIFO Structure [ Last in First Out ] 2. Stack is Ordered List of Elements of Same Type. 3. Stack is Linear List 4. In Stack all Operations such as Insertion and Deletion

More information

An Explicit-Continuation Metacircular Evaluator

An Explicit-Continuation Metacircular Evaluator Computer Science (1)21b (Spring Term, 2018) Structure and Interpretation of Computer Programs An Explicit-Continuation Metacircular Evaluator The vanilla metacircular evaluator gives a lot of information

More information

Project 3 Due October 21, 2015, 11:59:59pm

Project 3 Due October 21, 2015, 11:59:59pm Project 3 Due October 21, 2015, 11:59:59pm 1 Introduction In this project, you will implement RubeVM, a virtual machine for a simple bytecode language. Later in the semester, you will compile Rube (a simplified

More information

Typed Recursion {with {mk-rec : (((num -> num) -> (num -> num)) -> (num -> num)) {fun {body : ((num -> num) -> (num -> num))} {{fun {fx :

Typed Recursion {with {mk-rec : (((num -> num) -> (num -> num)) -> (num -> num)) {fun {body : ((num -> num) -> (num -> num))} {{fun {fx : Recursion {with {mk-rec {fun {body} {{fun {fx} {fx fx}} {fun {fx} {{fun {f} {body f}} {fun {x} {{fx fx} x}}}}}}} {with {fib {mk-rec {fun {fib} {fun {n} {if0 n 1 {if0 {- n 1} 1 {+ {fib {- n 1}} {fib {-

More information

CSE 5317 Midterm Examination 4 March Solutions

CSE 5317 Midterm Examination 4 March Solutions CSE 5317 Midterm Examination 4 March 2010 1. / [20 pts] Solutions (parts a j; -1 point for each wrong answer, 0 points for each blank answer, 2 point for each correct answer. Therefore, the score for this

More information

cs173: Programming Languages Midterm Exam

cs173: Programming Languages Midterm Exam cs173: Programming Languages Midterm Exam Fall 2002 Please read this page of instructions before you turn the page! This exam is worth 181 points. We will assign partial credit to partial responses, provided

More information

This exam is worth 70 points, or about 23% of your total course grade. The exam contains 15 questions.

This exam is worth 70 points, or about 23% of your total course grade. The exam contains 15 questions. CS 61A Final Exam May 16, 2008 Your name login: cs61a This exam is worth 70 points, or about 23% of your total course grade. The exam contains 15 questions. This booklet contains 18 numbered pages including

More information

Smalltalk Implementation

Smalltalk Implementation Smalltalk Implementation Prof. Harry Porter Portland State University 1 The Image The object heap The Virtual Machine The underlying system (e.g., Mac OS X) The ST language interpreter The object-memory

More information

Stacks. Chapter 5. Copyright 2012 by Pearson Education, Inc. All rights reserved

Stacks. Chapter 5. Copyright 2012 by Pearson Education, Inc. All rights reserved Stacks Chapter 5 Copyright 2012 by Pearson Education, Inc. All rights reserved Contents Specifications of the ADT Stack Using a Stack to Process Algebraic Expressions A Problem Solved: Checking for Balanced

More information

Variables and Bindings

Variables and Bindings Net: Variables Variables and Bindings Q: How to use variables in ML? Q: How to assign to a variable? # let = 2+2;; val : int = 4 let = e;; Bind the value of epression e to the variable Variables and Bindings

More information

Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM

Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM 1 Tizen/Artik IoT Lecture Chapter 3. JerryScript Parser & VM Sungkyunkwan University Contents JerryScript Execution Flow JerryScript Parser Execution Flow Lexing Parsing Compact Bytecode (CBC) JerryScript

More information

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find

CS1622. Semantic Analysis. The Compiler So Far. Lecture 15 Semantic Analysis. How to build symbol tables How to use them to find CS1622 Lecture 15 Semantic Analysis CS 1622 Lecture 15 1 Semantic Analysis How to build symbol tables How to use them to find multiply-declared and undeclared variables. How to perform type checking CS

More information

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End

Semantic Analysis. Outline. The role of semantic analysis in a compiler. Scope. Types. Where we are. The Compiler Front-End Outline Semantic Analysis The role of semantic analysis in a compiler A laundry list of tasks Scope Static vs. Dynamic scoping Implementation: symbol tables Types Static analyses that detect type errors

More information

Binary Code Analysis: Concepts and Perspectives

Binary Code Analysis: Concepts and Perspectives Binary Code Analysis: Concepts and Perspectives Emmanuel Fleury LaBRI, Université de Bordeaux, France May 12, 2016 E. Fleury (LaBRI, France) Binary Code Analysis: Concepts

More information

A Brief Survey of Abstract Machines for Functional Programming Languages

A Brief Survey of Abstract Machines for Functional Programming Languages A Brief Survey of Abstract Machines for Functional Programming Languages Prashant Kumar University of Calgary pkumar@ucalgary.ca June 6, 2014 Prashant Kumar (UofC) Abstract Machines June 6, 2014 1 / 24

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ws-1617/spa/ Recap: Taking Conditional Branches into Account Extending

More information

02 B The Java Virtual Machine

02 B The Java Virtual Machine 02 B The Java Virtual Machine CS1102S: Data Structures and Algorithms Martin Henz January 22, 2010 Generated on Friday 22 nd January, 2010, 09:46 CS1102S: Data Structures and Algorithms 02 B The Java Virtual

More information

Implementing Functions at the Machine Level

Implementing Functions at the Machine Level Subroutines/Functions Implementing Functions at the Machine Level A subroutine is a program fragment that... Resides in user space (i.e, not in OS) Performs a well-defined task Is invoked (called) by a

More information

Code Generation. Lecture 30

Code Generation. Lecture 30 Code Generation Lecture 30 (based on slides by R. Bodik) 11/14/06 Prof. Hilfinger CS164 Lecture 30 1 Lecture Outline Stack machines The MIPS assembly language The x86 assembly language A simple source

More information

Question Points Score

Question Points Score CS 453 Introduction to Compilers Midterm Examination Spring 2009 March 12, 2009 75 minutes (maximum) Closed Book You may use one side of one sheet (8.5x11) of paper with any notes you like. This exam has

More information

Vectors in Scheme. Data Structures in Scheme

Vectors in Scheme. Data Structures in Scheme Data Structures in Scheme Vectors in Scheme In Scheme, lists and S-expressions are basic. Arrays can be simulated using lists, but access to elements deep in the list can be slow (since a list is a linked

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1

More information

Algorithms for NLP. LR Parsing. Reading: Hopcroft and Ullman, Intro. to Automata Theory, Lang. and Comp. Section , pp.

Algorithms for NLP. LR Parsing. Reading: Hopcroft and Ullman, Intro. to Automata Theory, Lang. and Comp. Section , pp. 11-711 Algorithms for NL L arsing eading: Hopcroft and Ullman, Intro. to Automata Theory, Lang. and Comp. Section 10.6-10.7, pp. 248 256 Shift-educe arsing A class of parsers with the following principles:

More information

Today's Topics. Last Time Modelling Scopes and Visibility The Run Stack, the Dynamic Pointer Stack, the Display (LL,ON) addressing

Today's Topics. Last Time Modelling Scopes and Visibility The Run Stack, the Dynamic Pointer Stack, the Display (LL,ON) addressing Today's Topics Last Time Modelling Scopes and Visibility The Run Stack, the Dynamic Pointer Stack, the (LL,ON) addressing Today Maintaining the Kinds of parameters and parameter passing (LL,ON) Address

More information

Tail Recursion. ;; a recursive program for factorial (define fact (lambda (m) ;; m is non-negative (if (= m 0) 1 (* m (fact (- m 1))))))

Tail Recursion. ;; a recursive program for factorial (define fact (lambda (m) ;; m is non-negative (if (= m 0) 1 (* m (fact (- m 1)))))) Tail Recursion 1 Tail Recursion In place of loops, in a functional language one employs recursive definitions of functions. It is often easy to write such definitions, given a problem statement. Unfortunately,

More information

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall

CSE443 Compilers. Dr. Carl Alphonce 343 Davis Hall CSE443 Compilers Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall Announcements Weekly team meetings with me: - Doodle poll link in Piazza Wednesday (4/4) will be a workshop Wednesday - Post questions

More information

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack.

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. Other Automata We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. From all of this information we decide what state

More information