CS395T Project 2: Shift-Reduce Parsing

Size: px
Start display at page:

Download "CS395T Project 2: Shift-Reduce Parsing"

Transcription

1 CS395T Project 2: Shift-Reduce Parsing Due date: Tuesday, October 17 at 9:30am In this project you ll implement a shift-reduce parser. First you ll implement a greedy model, then you ll extend that model to be a global model using beam search, with appropriate structured training. Goal: The primary goal of this assignment is to expose you to different ways of doing approximate inference and learning in intractably large state spaces. You ll learn how to manage complex inferential state spaces at both training time and test time. Background Dependency trees are a form of tree-structured syntactic annotation. In this formalism, each word is assigned one parent word these parent assignments have to form a directed acyclic graph. The standard dataset used in English parsing is the Penn Treebank. This dataset is annotated with constituency syntax, but several different rule-based dependency conversions have been proposed; we use Stanford dependencies in this project. Here s an example of a sentence from the dataset: 1 Not _ ADV RB _ 3 neg 2 all _ DET PDT _ 3 predet 3 those _ DET DT _ 6 nsubj 4 who _ PRON WP _ 5 nsubj 5 wrote _ VERB VBD _ 3 rcmod 6 oppose _ VERB VBP _ 0 root 7 the _ DET DT _ 8 det 8 changes _ NOUN NNS _ 6 dobj 9. _ PUNCT. _ 6 punct Not all those who wrote oppose the changes. Figure 1: Dependency parse. Arrows are drawn from parents to children. The columns are (1) sentence index; (2) word; (3) blank; (4) coarse part-of-speech tag; (5) part-of-speech tag; (6) blank; (7) index (1-based) of syntactic parent; (8) dependency label; (9-10) blank. Dependency parsing is the task of predicting the syntactic parents (column 7) and dependency labels (column 8). In this project, we ll be doing unlabeled dependency parsing (unless you choose to explore labeled parsing), which just involves predicting the parents. Moreover, we will be assuming access to gold part of speech tags for feature extraction. 1 Systems for dependency parsing either operate in a graph-based or transition-based paradigm. Graphbased systems search over all trees using dynamic programs and are typically trained in structured logistic regression or max-margin frameworks, similar to CRFs for NER. Transition-based systems make local decisions and process the trees incrementally from left-to-right. In this project, you ll implement both a purely greedy transition-based system as well as a global transition-based system that approximately optimizes the sequence of transitions using beam search, with scores summed over all transitions. Building a tree from a sequence of local decisions involves a shift-reduce system similar to deterministic parsing algorithms used in compilers. The parser s state is captured by a stack of partial dependency trees 1 In practice, systems either run a part-of-speech tagger to produce predicted part-of-speech tags or do tagging as well as parsing, which can be implemented as an extension of the shift-reduce framework (Bohnet and Nivre, 2012). 1

2 and a buffer of words waiting to be processed. There are several related systems for modeling trees as decisions in this framework. We use the arc-standard framework; see Nivre (2004) or Huang et al. (2009) for more details on how this works. Code is provided to you that produces a transition sequence from a parse using the lowest stack depth heuristic: attach left children eagerly rather than keeping them on the stack until right children are finished. Dependency parsing is evaluated according to two heuristics: unlabeled attachment score (UAS) and labeled attachment score (LAS). UAS counts how many words in the evaluation set are assigned the correct parent, and divides this by the total number of words that is, it s simply the model s per-word accuracy at parent prediction. LAS is the same but also requires the dependency label to be correct; LAS is therefore always lower than UAS. In this project, you re only expected to do unlabeled parsing, so you can return a placeholder dependency label whenever one is required. Your Task In this project, you ll be building two related shift-reduce parsers: 1. A purely greedy parser that is implemented via a classifier over shift/reduce decisions 2. A global beam-search parser that searches over the same space but does inference over whole sequences You will also be extending your project in some way beyond this. Getting Started To start, try running python parser.py This simply synthesizes the sequence of transitions for each sentence in the development set and checks that these reconstruct the original tree they do nearly 100% of the time. The code in treedata.py loads the data into instances of ParsedSentence. This class contains both a list of Token objects similar to the representation used in Project 1, though this time Tokens contain the word, part-of-speech, and a coarse part-of-speech. It also contains a list of Dependency objects, indexed according to words in the sentence, with each object containing the index of the parent (0-based, -1 is the root) and the dependency label. You are provided with code that finds a canonical transition sequence given a syntactic parse. Specifically, the get decision sequence function takes a ParsedSentence object and returns two parallel lists of decisions ( S, L, or R ) and states (ParserState objects). This conversion follows the arc-standard transition system. ParserState objects consist of three data structures: the stack (a list of word indices, top of the stack last), the buffer (a list of word indices, next word first), and the current set of dependencies (a dictionary mapping child word indices to parent word indices). Several convenience methods are included to (a) access various parts of these data structures, (b) check conditions about them, and (c) execute transitions and return new ParserState objects. You should familiarize yourself with this representation of parser state. Part 1: Greedy Shift-Reduce Parsing In the first part of this project, you will implement a purely greedy version of a shift-reduce parser. This parser is a simple n-way classifier among decisions based on a current ParserState. The function 2

3 extract features provides a baseline feature set that looks at the top two words of the stack and the first few words of the buffer. GreedyModel is provided as a convenience class to store your code that can be run from the main parser.py Applying decisions to the parser state will lead to new parser states. Keep in mind that not every decision will be legal in every state. At the end of decoding, you can use the state.get dep objs method to convert the dependencies associated with a ParserState into Dependency objects suitable for evaluation. You are given more freedom here to decide how to build the greedy classifier: you can choose your classifier (perceptron, structured SVM, logistic regression), optimization techniques, training regimen, and features. The baseline feature set is a bit more impoverished than what was given to you for NER. You ll probably still want to use some optimizations like in Project 1, such as caching features and The minimum performance requirement on the development set here is 78 UAS. This is a pretty low bar and is achievable with the current feature set using SGD. Our reference implementation on this part got 86.8 UAS using Adagrad and additional features looking at children of items on the stack. With additional feature tuning (see (Zhang and Nivre, 2011) for some ideas of better features), you can get close to 90 UAS. Training on 1000 sentences, you should still get over 70, so you can develop features on a smaller dataset. Part 2: Global Beam Search and Structured Learning In this part, rather than scoring isolated classification decisions, you will instead be ranking parses according to the sum of the scores of all decisions made to create those parses. Training should now also take into account that we re doing a global search. You might want to follow these rough steps: 1. Implement beam search for global decoding. You should be able to run this with the greedy model and get decent results, though increasing the beam size might not cause things to be better (why not?) 2. Implement structured learning with either structured perceptron (non-loss augmented decode) or structured SVM (loss-augmented decode) for this purpose. You can either produce complete parses when computing your gradients or use early updating where you update as soon as the gold hypothesis falls off the beam. To assist you with beam search, we ve provided a Beam class in utils.py. This maintains parallel lists of elements and scores, sorted by score. It supports two operations: adding a scored item and returning the list of scored items. Only the k highest-scoring items are kept in the beam; adding an item that already exists in the beam will cause that items score to be max(new score, old score). Our implementation isn t particularly efficient, but it shouldn t be the bottleneck in your code, though you re free to optimize it further! Your beam search parser should be able to get at least 75 UAS depending on how well-tuned your greedy model is you may find it hard to beat your greedy model s performance. However, you should observe that increasing the beam size from 1 to higher values gives better results within your structured learning model. Running with a beam size more than 10 or 20 might be prohibitively slow, but see if you can get some small beam sizes (single digits) working well! Try training on smaller training sets for debugging if the full dataset still proves too slow. Implementation Tips One aspect you ll need to deal with is the fact that you ll encounter novel ParserState configurations during training, potentially leading to features you ve never seen before. Do you want to expand 3

4 the feature vector on-the-fly? Pre-extract a certain set of features (this could be the set of features from part 1) and ignore any features not in this set? How do you want to handle feature caching? Feel free to reuse learning code from Project 1 that you find useful! Part 3: Extensions These are suggestions for extensions. You also don t need to address each part of each section these are just suggestions, use your judgment about what you think constitutes a thorough enough extension. Training Explore additional tradeoffs between beam search and greedy search. What happens if you run the greedy parameters in the beam system at test time? Vice versa? Try a significantly larger or smaller feature set and see if the two parsers differ. Dynamic Oracle Implement the dynamic oracle of (Goldberg and Nivre, 2012). This is pretty ambitious! Modeling Implement a different transition systems, such as arc eager (Nivre, 2003; Nivre et al., 2006; Zhang and Clark, 2008), arc hybrid, or arc swift (Qi and Manning, 2017). How do the errors compare? You can also experiment with labeled dependency parsing. Features solve? Implement additional features from Zhang and Nivre (2011). What kinds of errors do these Other languages Experiment with dependency parsing in other languages. What s different about these languages? How do errors differ? Arabic, Chinese, and Japanese are included ask the instructor if there are other languages you re especially interested in. 2 Submission and Grading You should submit three files on Canvas: 1. Your code as a zip file or gzipped tar 2. Your best parser s output on the blind test set in CoNLL format. Set the appropriate flag in parser.py to produce this. 3. A report of around 2 pages, not including references, though you aren t expected to reference many papers. Your report should list your collaborators, briefly restate the core problem and what you are doing, describe relevant details of your implementation, present results from your greedy and beamed parsers as well, discuss these, describe your extension and give results for that, and optionally discuss error cases addressed by your extension or describe how the system could be further improved. Your report should be written in the tone and style of an ACL/NIPS conference paper. Any LaTeX format with reasonably small (1 margins) is fine, including the ACL style files 3 or any other one- or twocolumn format with equivalent density. 2 Treebanks available for Arabic, Basque, Bulgarian, Catalan, Chinese, Czech, Danish, Dutch, German, Greek, Hungarian, Italian, Japanese, Portuguese, Slovene, Spanish, Swedish, and Turkish. 3 Available at 4

5 Slip Days Per the syllabus, you have seven slip days to use during the semester, so you may choose to use part or all of your budget on this process to turn it in late as needed. References Bernd Bohnet and Joakim Nivre A Transition-Based System for Joint Part-of-Speech Tagging and Labeled Non-Projective Dependency Parsing. In Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL). Yoav Goldberg and Joakim Nivre A Dynamic Oracle for Arc-Eager Dependency Parsing. In Proceedings of the International Conference on Computational Linguistics (COLING). Liang Huang, Wenbin Jiang, and Qun Liu Bilingually-constrained (Monolingual) Shift-reduce Parsing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav Marinov Labeled Pseudo-projective Dependency Parsing with Support Vector Machines. In Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL). Joakim Nivre An Efficient Algorithm for Projective Dependency Parsing. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT). Joakim Nivre Incrementality in Deterministic Dependency Parsing. In Proceedings of the Workshop on Incremental Parsing: Bringing Engineering and Cognition Together. Peng Qi and Christopher D. Manning Arc-swift: A Novel Transition System for Dependency Parsing. In Proceedings of the Association for Computational Linguistics (ACL). Yue Zhang and Stephen Clark A Tale of Two Parsers: Investigating and Combining Graph-based and Transition-based Dependency Parsing Using Beam-search. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP). Yue Zhang and Joakim Nivre Transition-based Dependency Parsing with Rich Non-local Features. In Proceedings of the Association for Computational Linguistics. 5

Introduction to Data-Driven Dependency Parsing

Introduction to Data-Driven Dependency Parsing Introduction to Data-Driven Dependency Parsing Introductory Course, ESSLLI 2007 Ryan McDonald 1 Joakim Nivre 2 1 Google Inc., New York, USA E-mail: ryanmcd@google.com 2 Uppsala University and Växjö University,

More information

Transition-Based Dependency Parsing with Stack Long Short-Term Memory

Transition-Based Dependency Parsing with Stack Long Short-Term Memory Transition-Based Dependency Parsing with Stack Long Short-Term Memory Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, Noah A. Smith Association for Computational Linguistics (ACL), 2015 Presented

More information

A Quick Guide to MaltParser Optimization

A Quick Guide to MaltParser Optimization A Quick Guide to MaltParser Optimization Joakim Nivre Johan Hall 1 Introduction MaltParser is a system for data-driven dependency parsing, which can be used to induce a parsing model from treebank data

More information

Transition-based Dependency Parsing with Rich Non-local Features

Transition-based Dependency Parsing with Rich Non-local Features Transition-based Dependency Parsing with Rich Non-local Features Yue Zhang University of Cambridge Computer Laboratory yue.zhang@cl.cam.ac.uk Joakim Nivre Uppsala University Department of Linguistics and

More information

Agenda for today. Homework questions, issues? Non-projective dependencies Spanning tree algorithm for non-projective parsing

Agenda for today. Homework questions, issues? Non-projective dependencies Spanning tree algorithm for non-projective parsing Agenda for today Homework questions, issues? Non-projective dependencies Spanning tree algorithm for non-projective parsing 1 Projective vs non-projective dependencies If we extract dependencies from trees,

More information

Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set

Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set Fast(er) Exact Decoding and Global Training for Transition-Based Dependency Parsing via a Minimal Feature Set Tianze Shi* Liang Huang Lillian Lee* * Cornell University Oregon State University O n 3 O n

More information

Easy-First POS Tagging and Dependency Parsing with Beam Search

Easy-First POS Tagging and Dependency Parsing with Beam Search Easy-First POS Tagging and Dependency Parsing with Beam Search Ji Ma JingboZhu Tong Xiao Nan Yang Natrual Language Processing Lab., Northeastern University, Shenyang, China MOE-MS Key Lab of MCC, University

More information

Stack- propaga+on: Improved Representa+on Learning for Syntax

Stack- propaga+on: Improved Representa+on Learning for Syntax Stack- propaga+on: Improved Representa+on Learning for Syntax Yuan Zhang, David Weiss MIT, Google 1 Transi+on- based Neural Network Parser p(action configuration) So1max Hidden Embedding words labels POS

More information

Homework 2: Parsing and Machine Learning

Homework 2: Parsing and Machine Learning Homework 2: Parsing and Machine Learning COMS W4705_001: Natural Language Processing Prof. Kathleen McKeown, Fall 2017 Due: Saturday, October 14th, 2017, 2:00 PM This assignment will consist of tasks in

More information

Let s get parsing! Each component processes the Doc object, then passes it on. doc.is_parsed attribute checks whether a Doc object has been parsed

Let s get parsing! Each component processes the Doc object, then passes it on. doc.is_parsed attribute checks whether a Doc object has been parsed Let s get parsing! SpaCy default model includes tagger, parser and entity recognizer nlp = spacy.load('en ) tells spacy to use "en" with ["tagger", "parser", "ner"] Each component processes the Doc object,

More information

Tekniker för storskalig parsning: Dependensparsning 2

Tekniker för storskalig parsning: Dependensparsning 2 Tekniker för storskalig parsning: Dependensparsning 2 Joakim Nivre Uppsala Universitet Institutionen för lingvistik och filologi joakim.nivre@lingfil.uu.se Dependensparsning 2 1(45) Data-Driven Dependency

More information

NLP in practice, an example: Semantic Role Labeling

NLP in practice, an example: Semantic Role Labeling NLP in practice, an example: Semantic Role Labeling Anders Björkelund Lund University, Dept. of Computer Science anders.bjorkelund@cs.lth.se October 15, 2010 Anders Björkelund NLP in practice, an example:

More information

Dynamic Feature Selection for Dependency Parsing

Dynamic Feature Selection for Dependency Parsing Dynamic Feature Selection for Dependency Parsing He He, Hal Daumé III and Jason Eisner EMNLP 2013, Seattle Structured Prediction in NLP Part-of-Speech Tagging Parsing N N V Det N Fruit flies like a banana

More information

Transition-Based Dependency Parsing with MaltParser

Transition-Based Dependency Parsing with MaltParser Transition-Based Dependency Parsing with MaltParser Joakim Nivre Uppsala University and Växjö University Transition-Based Dependency Parsing 1(13) Introduction Outline Goals of the workshop Transition-based

More information

arxiv: v1 [cs.cl] 25 Apr 2017

arxiv: v1 [cs.cl] 25 Apr 2017 Joint POS Tagging and Dependency Parsing with Transition-based Neural Networks Liner Yang 1, Meishan Zhang 2, Yang Liu 1, Nan Yu 2, Maosong Sun 1, Guohong Fu 2 1 State Key Laboratory of Intelligent Technology

More information

Dependency Parsing 2 CMSC 723 / LING 723 / INST 725. Marine Carpuat. Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Dependency Parsing 2 CMSC 723 / LING 723 / INST 725. Marine Carpuat. Fig credits: Joakim Nivre, Dan Jurafsky & James Martin Dependency Parsing 2 CMSC 723 / LING 723 / INST 725 Marine Carpuat Fig credits: Joakim Nivre, Dan Jurafsky & James Martin Dependency Parsing Formalizing dependency trees Transition-based dependency parsing

More information

Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser

Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser Hybrid Combination of Constituency and Dependency Trees into an Ensemble Dependency Parser Nathan David Green and Zdeněk Žabokrtský Charles University in Prague Institute of Formal and Applied Linguistics

More information

Projective Dependency Parsing with Perceptron

Projective Dependency Parsing with Perceptron Projective Dependency Parsing with Perceptron Xavier Carreras, Mihai Surdeanu, and Lluís Màrquez Technical University of Catalonia {carreras,surdeanu,lluism}@lsi.upc.edu 8th June 2006 Outline Introduction

More information

Supplementary A. Built-in transition systems

Supplementary A. Built-in transition systems L. Aufrant, G. Wisniewski PanParser (Supplementary) Supplementary A. Built-in transition systems In the following, we document all transition systems built in PanParser, along with their cost. s and s

More information

Non-Projective Dependency Parsing in Expected Linear Time

Non-Projective Dependency Parsing in Expected Linear Time Non-Projective Dependency Parsing in Expected Linear Time Joakim Nivre Uppsala University, Department of Linguistics and Philology, SE-75126 Uppsala Växjö University, School of Mathematics and Systems

More information

Transition-based Parsing with Neural Nets

Transition-based Parsing with Neural Nets CS11-747 Neural Networks for NLP Transition-based Parsing with Neural Nets Graham Neubig Site https://phontron.com/class/nn4nlp2017/ Two Types of Linguistic Structure Dependency: focus on relations between

More information

Refresher on Dependency Syntax and the Nivre Algorithm

Refresher on Dependency Syntax and the Nivre Algorithm Refresher on Dependency yntax and Nivre Algorithm Richard Johansson 1 Introduction This document gives more details about some important topics that re discussed very quickly during lecture: dependency

More information

Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model

Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model Transition-Based Parsing of the Chinese Treebank using a Global Discriminative Model Yue Zhang Oxford University Computing Laboratory yue.zhang@comlab.ox.ac.uk Stephen Clark Cambridge University Computer

More information

A Transition-Based Dependency Parser Using a Dynamic Parsing Strategy

A Transition-Based Dependency Parser Using a Dynamic Parsing Strategy A Transition-Based Dependency Parser Using a Dynamic Parsing Strategy Francesco Sartorio Department of Information Engineering University of Padua, Italy sartorio@dei.unipd.it Giorgio Satta Department

More information

Basic Parsing with Context-Free Grammars. Some slides adapted from Karl Stratos and from Chris Manning

Basic Parsing with Context-Free Grammars. Some slides adapted from Karl Stratos and from Chris Manning Basic Parsing with Context-Free Grammars Some slides adapted from Karl Stratos and from Chris Manning 1 Announcements HW 2 out Midterm on 10/19 (see website). Sample ques>ons will be provided. Sign up

More information

Non-Projective Dependency Parsing with Non-Local Transitions

Non-Projective Dependency Parsing with Non-Local Transitions Non-Projective Dependency Parsing with Non-Local Transitions Daniel Fernández-González and Carlos Gómez-Rodríguez Universidade da Coruña FASTPARSE Lab, LyS Research Group, Departamento de Computación Campus

More information

Dependency Parsing CMSC 723 / LING 723 / INST 725. Marine Carpuat. Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Dependency Parsing CMSC 723 / LING 723 / INST 725. Marine Carpuat. Fig credits: Joakim Nivre, Dan Jurafsky & James Martin Dependency Parsing CMSC 723 / LING 723 / INST 725 Marine Carpuat Fig credits: Joakim Nivre, Dan Jurafsky & James Martin Dependency Parsing Formalizing dependency trees Transition-based dependency parsing

More information

CS224n: Natural Language Processing with Deep Learning 1 Lecture Notes: Part IV Dependency Parsing 2 Winter 2019

CS224n: Natural Language Processing with Deep Learning 1 Lecture Notes: Part IV Dependency Parsing 2 Winter 2019 CS224n: Natural Language Processing with Deep Learning 1 Lecture Notes: Part IV Dependency Parsing 2 Winter 2019 1 Course Instructors: Christopher Manning, Richard Socher 2 Authors: Lisa Wang, Juhi Naik,

More information

Dependency Parsing. Johan Aulin D03 Department of Computer Science Lund University, Sweden

Dependency Parsing. Johan Aulin D03 Department of Computer Science Lund University, Sweden Dependency Parsing Johan Aulin D03 Department of Computer Science Lund University, Sweden d03jau@student.lth.se Carl-Ola Boketoft ID03 Department of Computing Science Umeå University, Sweden calle_boketoft@hotmail.com

More information

Density-Driven Cross-Lingual Transfer of Dependency Parsers

Density-Driven Cross-Lingual Transfer of Dependency Parsers Density-Driven Cross-Lingual Transfer of Dependency Parsers Mohammad Sadegh Rasooli Michael Collins rasooli@cs.columbia.edu Presented by Owen Rambow EMNLP 2015 Motivation Availability of treebanks Accurate

More information

Learning Latent Linguistic Structure to Optimize End Tasks. David A. Smith with Jason Naradowsky and Xiaoye Tiger Wu

Learning Latent Linguistic Structure to Optimize End Tasks. David A. Smith with Jason Naradowsky and Xiaoye Tiger Wu Learning Latent Linguistic Structure to Optimize End Tasks David A. Smith with Jason Naradowsky and Xiaoye Tiger Wu 12 October 2012 Learning Latent Linguistic Structure to Optimize End Tasks David A. Smith

More information

Sorting Out Dependency Parsing

Sorting Out Dependency Parsing Sorting Out Dependency Parsing Joakim Nivre Uppsala University and Växjö University Sorting Out Dependency Parsing 1(38) Introduction Introduction Syntactic parsing of natural language: Who does what to

More information

Transition-based dependency parsing

Transition-based dependency parsing Transition-based dependency parsing Syntactic analysis (5LN455) 2014-12-18 Sara Stymne Department of Linguistics and Philology Based on slides from Marco Kuhlmann Overview Arc-factored dependency parsing

More information

Online Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies

Online Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies Online Graph Planarisation for Synchronous Parsing of Semantic and Syntactic Dependencies Ivan Titov University of Illinois at Urbana-Champaign James Henderson, Paola Merlo, Gabriele Musillo University

More information

Automatic Discovery of Feature Sets for Dependency Parsing

Automatic Discovery of Feature Sets for Dependency Parsing Automatic Discovery of Feature Sets for Dependency Parsing Peter Nilsson Pierre Nugues Department of Computer Science Lund University peter.nilsson.lund@telia.com Pierre.Nugues@cs.lth.se Abstract This

More information

Sorting Out Dependency Parsing

Sorting Out Dependency Parsing Sorting Out Dependency Parsing Joakim Nivre Uppsala University and Växjö University Sorting Out Dependency Parsing 1(38) Introduction Introduction Syntactic parsing of natural language: Who does what to

More information

Combining Discrete and Continuous Features for Deterministic Transition-based Dependency Parsing

Combining Discrete and Continuous Features for Deterministic Transition-based Dependency Parsing Combining Discrete and Continuous Features for Deterministic Transition-based Dependency Parsing Meishan Zhang and Yue Zhang Singapore University of Technology and Design {meishan zhang yue zhang}@sutd.edu.sg

More information

Easy-First Chinese POS Tagging and Dependency Parsing

Easy-First Chinese POS Tagging and Dependency Parsing Easy-First Chinese POS Tagging and Dependency Parsing ABSTRACT Ji Ma, Tong Xiao, Jingbo Zhu, Feiliang Ren Natural Language Processing Laboratory Northeastern University, China majineu@outlook.com, zhujingbo@mail.neu.edu.cn,

More information

The Application of Constraint Rules to Data-driven Parsing

The Application of Constraint Rules to Data-driven Parsing The Application of Constraint Rules to Data-driven Parsing Sardar Jaf The University of Manchester jafs@cs.man.ac.uk Allan Ramsay The University of Manchester ramsaya@cs.man.ac.uk Abstract In this paper,

More information

Assignment 4 CSE 517: Natural Language Processing

Assignment 4 CSE 517: Natural Language Processing Assignment 4 CSE 517: Natural Language Processing University of Washington Winter 2016 Due: March 2, 2016, 1:30 pm 1 HMMs and PCFGs Here s the definition of a PCFG given in class on 2/17: A finite set

More information

Morpho-syntactic Analysis with the Stanford CoreNLP

Morpho-syntactic Analysis with the Stanford CoreNLP Morpho-syntactic Analysis with the Stanford CoreNLP Danilo Croce croce@info.uniroma2.it WmIR 2015/2016 Objectives of this tutorial Use of a Natural Language Toolkit CoreNLP toolkit Morpho-syntactic analysis

More information

MaltOptimizer: A System for MaltParser Optimization

MaltOptimizer: A System for MaltParser Optimization MaltOptimizer: A System for MaltParser Optimization Miguel Ballesteros Joakim Nivre Universidad Complutense de Madrid, Spain miballes@fdi.ucm.es Uppsala University, Sweden joakim.nivre@lingfil.uu.se Abstract

More information

Parsing with Dynamic Programming

Parsing with Dynamic Programming CS11-747 Neural Networks for NLP Parsing with Dynamic Programming Graham Neubig Site https://phontron.com/class/nn4nlp2017/ Two Types of Linguistic Structure Dependency: focus on relations between words

More information

Incremental Integer Linear Programming for Non-projective Dependency Parsing

Incremental Integer Linear Programming for Non-projective Dependency Parsing Incremental Integer Linear Programming for Non-projective Dependency Parsing Sebastian Riedel James Clarke ICCS, University of Edinburgh 22. July 2006 EMNLP 2006 S. Riedel, J. Clarke (ICCS, Edinburgh)

More information

Managing a Multilingual Treebank Project

Managing a Multilingual Treebank Project Managing a Multilingual Treebank Project Milan Souček Timo Järvinen Adam LaMontagne Lionbridge Finland {milan.soucek,timo.jarvinen,adam.lamontagne}@lionbridge.com Abstract This paper describes the work

More information

A Dynamic Confusion Score for Dependency Arc Labels

A Dynamic Confusion Score for Dependency Arc Labels A Dynamic Confusion Score for Dependency Arc Labels Sambhav Jain and Bhasha Agrawal Language Technologies Research Center IIIT-Hyderabad, India {sambhav.jain, bhasha.agrawal}@research.iiit.ac.in Abstract

More information

Dependency grammar and dependency parsing

Dependency grammar and dependency parsing Dependency grammar and dependency parsing Syntactic analysis (5LN455) 2016-12-05 Sara Stymne Department of Linguistics and Philology Based on slides from Marco Kuhlmann Activities - dependency parsing

More information

Dependency grammar and dependency parsing

Dependency grammar and dependency parsing Dependency grammar and dependency parsing Syntactic analysis (5LN455) 2014-12-10 Sara Stymne Department of Linguistics and Philology Based on slides from Marco Kuhlmann Mid-course evaluation Mostly positive

More information

Topics in Parsing: Context and Markovization; Dependency Parsing. COMP-599 Oct 17, 2016

Topics in Parsing: Context and Markovization; Dependency Parsing. COMP-599 Oct 17, 2016 Topics in Parsing: Context and Markovization; Dependency Parsing COMP-599 Oct 17, 2016 Outline Review Incorporating context Markovization Learning the context Dependency parsing Eisner s algorithm 2 Review

More information

Improving Transition-Based Dependency Parsing with Buffer Transitions

Improving Transition-Based Dependency Parsing with Buffer Transitions Improving Transition-Based Dependency Parsing with Buffer Transitions Daniel Fernández-González Departamento de Informática Universidade de Vigo Campus As Lagoas, 32004 Ourense, Spain danifg@uvigo.es Carlos

More information

AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands

AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands AT&T: The Tag&Parse Approach to Semantic Parsing of Robot Spatial Commands Svetlana Stoyanchev, Hyuckchul Jung, John Chen, Srinivas Bangalore AT&T Labs Research 1 AT&T Way Bedminster NJ 07921 {sveta,hjung,jchen,srini}@research.att.com

More information

EDAN20 Language Technology Chapter 13: Dependency Parsing

EDAN20 Language Technology   Chapter 13: Dependency Parsing EDAN20 Language Technology http://cs.lth.se/edan20/ Pierre Nugues Lund University Pierre.Nugues@cs.lth.se http://cs.lth.se/pierre_nugues/ September 19, 2016 Pierre Nugues EDAN20 Language Technology http://cs.lth.se/edan20/

More information

Online Service for Polish Dependency Parsing and Results Visualisation

Online Service for Polish Dependency Parsing and Results Visualisation Online Service for Polish Dependency Parsing and Results Visualisation Alina Wróblewska and Piotr Sikora Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland alina@ipipan.waw.pl,piotr.sikora@student.uw.edu.pl

More information

Dependency grammar and dependency parsing

Dependency grammar and dependency parsing Dependency grammar and dependency parsing Syntactic analysis (5LN455) 2015-12-09 Sara Stymne Department of Linguistics and Philology Based on slides from Marco Kuhlmann Activities - dependency parsing

More information

NLP Chain. Giuseppe Castellucci Web Mining & Retrieval a.a. 2013/2014

NLP Chain. Giuseppe Castellucci Web Mining & Retrieval a.a. 2013/2014 NLP Chain Giuseppe Castellucci castellucci@ing.uniroma2.it Web Mining & Retrieval a.a. 2013/2014 Outline NLP chains RevNLT Exercise NLP chain Automatic analysis of texts At different levels Token Morphological

More information

Statistical parsing. Fei Xia Feb 27, 2009 CSE 590A

Statistical parsing. Fei Xia Feb 27, 2009 CSE 590A Statistical parsing Fei Xia Feb 27, 2009 CSE 590A Statistical parsing History-based models (1995-2000) Recent development (2000-present): Supervised learning: reranking and label splitting Semi-supervised

More information

Dependency Parsing domain adaptation using transductive SVM

Dependency Parsing domain adaptation using transductive SVM Dependency Parsing domain adaptation using transductive SVM Antonio Valerio Miceli-Barone University of Pisa, Italy / Largo B. Pontecorvo, 3, Pisa, Italy miceli@di.unipi.it Giuseppe Attardi University

More information

Homework 2: HMM, Viterbi, CRF/Perceptron

Homework 2: HMM, Viterbi, CRF/Perceptron Homework 2: HMM, Viterbi, CRF/Perceptron CS 585, UMass Amherst, Fall 2015 Version: Oct5 Overview Due Tuesday, Oct 13 at midnight. Get starter code from the course website s schedule page. You should submit

More information

Dependency Parsing. Ganesh Bhosale Neelamadhav G Nilesh Bhosale Pranav Jawale under the guidance of

Dependency Parsing. Ganesh Bhosale Neelamadhav G Nilesh Bhosale Pranav Jawale under the guidance of Dependency Parsing Ganesh Bhosale - 09305034 Neelamadhav G. - 09305045 Nilesh Bhosale - 09305070 Pranav Jawale - 09307606 under the guidance of Prof. Pushpak Bhattacharyya Department of Computer Science

More information

Undirected Dependency Parsing

Undirected Dependency Parsing Computational Intelligence, Volume 59, Number 000, 2010 Undirected Dependency Parsing CARLOS GÓMEZ-RODRÍGUEZ cgomezr@udc.es Depto. de Computación, Universidade da Coruña. Facultad de Informática, Campus

More information

Incremental Joint POS Tagging and Dependency Parsing in Chinese

Incremental Joint POS Tagging and Dependency Parsing in Chinese Incremental Joint POS Tagging and Dependency Parsing in Chinese Jun Hatori 1 Takuya Matsuzaki 1 Yusuke Miyao 3 Jun ichi Tsujii 4 1 University of Tokyo / 7-3-1 Hongo, Bunkyo, Tokyo, Japan 2 National Institute

More information

Stanford s System for Parsing the English Web

Stanford s System for Parsing the English Web Stanford s System for Parsing the English Web David McClosky s, Wanxiang Che h, Marta Recasens s, Mengqiu Wang s, Richard Socher s, and Christopher D. Manning s s Natural Language Processing Group, Stanford

More information

Structured Prediction Basics

Structured Prediction Basics CS11-747 Neural Networks for NLP Structured Prediction Basics Graham Neubig Site https://phontron.com/class/nn4nlp2017/ A Prediction Problem I hate this movie I love this movie very good good neutral bad

More information

Forest-based Algorithms in

Forest-based Algorithms in Forest-based Algorithms in Natural Language Processing Liang Huang overview of Ph.D. work done at Penn (and ISI, ICT) INSTITUTE OF COMPUTING TECHNOLOGY includes joint work with David Chiang, Kevin Knight,

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Classification III Dan Klein UC Berkeley 1 Classification 2 Linear Models: Perceptron The perceptron algorithm Iteratively processes the training set, reacting to training errors

More information

Final Project Discussion. Adam Meyers Montclair State University

Final Project Discussion. Adam Meyers Montclair State University Final Project Discussion Adam Meyers Montclair State University Summary Project Timeline Project Format Details/Examples for Different Project Types Linguistic Resource Projects: Annotation, Lexicons,...

More information

Collins and Eisner s algorithms

Collins and Eisner s algorithms Collins and Eisner s algorithms Syntactic analysis (5LN455) 2015-12-14 Sara Stymne Department of Linguistics and Philology Based on slides from Marco Kuhlmann Recap: Dependency trees dobj subj det pmod

More information

Exploring Automatic Feature Selection for Transition-Based Dependency Parsing

Exploring Automatic Feature Selection for Transition-Based Dependency Parsing Procesamiento del Lenguaje Natural, Revista nº 51, septiembre de 2013, pp 119-126 recibido 18-04-2013 revisado 16-06-2013 aceptado 21-06-2013 Exploring Automatic Feature Selection for Transition-Based

More information

On Structured Perceptron with Inexact Search, NAACL 2012

On Structured Perceptron with Inexact Search, NAACL 2012 On Structured Perceptron with Inexact Search, NAACL 2012 John Hewitt CIS 700-006 : Structured Prediction for NLP 2017-09-23 All graphs from Huang, Fayong, and Guo (2012) unless otherwise specified. All

More information

LSA 354. Programming Assignment: A Treebank Parser

LSA 354. Programming Assignment: A Treebank Parser LSA 354 Programming Assignment: A Treebank Parser Due Tue, 24 July 2007, 5pm Thanks to Dan Klein for the original assignment. 1 Setup To do this assignment, you can use the Stanford teaching computer clusters.

More information

arxiv: v2 [cs.cl] 24 Mar 2015

arxiv: v2 [cs.cl] 24 Mar 2015 Yara Parser: A Fast and Accurate Dependency Parser Mohammad Sadegh Rasooli 1 and Joel Tetreault 2 1 Department of Computer Science, Columbia University, New York, NY, rasooli@cs.columbia.edu 2 Yahoo Labs,

More information

HC-search for Incremental Parsing

HC-search for Incremental Parsing HC-search for Incremental Parsing Yijia Liu, Wanxiang Che, Bing Qin, Ting Liu Research Center for Social Computing and Information Retrieval Harbin Institute of Technology, China {yjliu,car,qinb,tliu}@ir.hit.edu.cn

More information

Context Encoding LSTM CS224N Course Project

Context Encoding LSTM CS224N Course Project Context Encoding LSTM CS224N Course Project Abhinav Rastogi arastogi@stanford.edu Supervised by - Samuel R. Bowman December 7, 2015 Abstract This project uses ideas from greedy transition based parsing

More information

Large-Scale Syntactic Processing: Parsing the Web. JHU 2009 Summer Research Workshop

Large-Scale Syntactic Processing: Parsing the Web. JHU 2009 Summer Research Workshop Large-Scale Syntactic Processing: JHU 2009 Summer Research Workshop Intro CCG parser Tasks 2 The Team Stephen Clark (Cambridge, UK) Ann Copestake (Cambridge, UK) James Curran (Sydney, Australia) Byung-Gyu

More information

The CKY Parsing Algorithm and PCFGs. COMP-550 Oct 12, 2017

The CKY Parsing Algorithm and PCFGs. COMP-550 Oct 12, 2017 The CKY Parsing Algorithm and PCFGs COMP-550 Oct 12, 2017 Announcements I m out of town next week: Tuesday lecture: Lexical semantics, by TA Jad Kabbara Thursday lecture: Guest lecture by Prof. Timothy

More information

Grounded Compositional Semantics for Finding and Describing Images with Sentences

Grounded Compositional Semantics for Finding and Describing Images with Sentences Grounded Compositional Semantics for Finding and Describing Images with Sentences R. Socher, A. Karpathy, V. Le,D. Manning, A Y. Ng - 2013 Ali Gharaee 1 Alireza Keshavarzi 2 1 Department of Computational

More information

Online Learning of Approximate Dependency Parsing Algorithms

Online Learning of Approximate Dependency Parsing Algorithms Online Learning of Approximate Dependency Parsing Algorithms Ryan McDonald Fernando Pereira Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 {ryantm,pereira}@cis.upenn.edu

More information

Hidden Markov Models. Natural Language Processing: Jordan Boyd-Graber. University of Colorado Boulder LECTURE 20. Adapted from material by Ray Mooney

Hidden Markov Models. Natural Language Processing: Jordan Boyd-Graber. University of Colorado Boulder LECTURE 20. Adapted from material by Ray Mooney Hidden Markov Models Natural Language Processing: Jordan Boyd-Graber University of Colorado Boulder LECTURE 20 Adapted from material by Ray Mooney Natural Language Processing: Jordan Boyd-Graber Boulder

More information

Optimistic Backtracking A Backtracking Overlay for Deterministic Incremental Parsing

Optimistic Backtracking A Backtracking Overlay for Deterministic Incremental Parsing Optimistic Backtracking A Backtracking Overlay for Deterministic Incremental Parsing Gisle Ytrestøl Department of Informatics University of Oslo gisley@ifi.uio.no Abstract This paper describes a backtracking

More information

Statistical Dependency Parsing

Statistical Dependency Parsing Statistical Dependency Parsing The State of the Art Joakim Nivre Uppsala University Department of Linguistics and Philology joakim.nivre@lingfil.uu.se Statistical Dependency Parsing 1(29) Introduction

More information

Enhancing applications with Cognitive APIs IBM Corporation

Enhancing applications with Cognitive APIs IBM Corporation Enhancing applications with Cognitive APIs After you complete this section, you should understand: The Watson Developer Cloud offerings and APIs The benefits of commonly used Cognitive services 2 Watson

More information

Computationally Efficient M-Estimation of Log-Linear Structure Models

Computationally Efficient M-Estimation of Log-Linear Structure Models Computationally Efficient M-Estimation of Log-Linear Structure Models Noah Smith, Doug Vail, and John Lafferty School of Computer Science Carnegie Mellon University {nasmith,dvail2,lafferty}@cs.cmu.edu

More information

Army Research Laboratory

Army Research Laboratory Army Research Laboratory Arabic Natural Language Processing System Code Library by Stephen C. Tratz ARL-TN-0609 June 2014 Approved for public release; distribution is unlimited. NOTICES Disclaimers The

More information

CS 288: Statistical NLP Assignment 1: Language Modeling

CS 288: Statistical NLP Assignment 1: Language Modeling CS 288: Statistical NLP Assignment 1: Language Modeling Due September 12, 2014 Collaboration Policy You are allowed to discuss the assignment with other students and collaborate on developing algorithms

More information

Rube Goldberg Final Report Format

Rube Goldberg Final Report Format Rube Goldberg Final Report Format Group Assignment Your team is responsible for composing a single final report that describes in detail your Rube Goldberg machine. The audience of this report is the instructor

More information

DepPattern User Manual beta version. December 2008

DepPattern User Manual beta version. December 2008 DepPattern User Manual beta version December 2008 Contents 1 DepPattern: A Grammar Based Generator of Multilingual Parsers 1 1.1 Contributions....................................... 1 1.2 Supported Languages..................................

More information

Deliverable D1.4 Report Describing Integration Strategies and Experiments

Deliverable D1.4 Report Describing Integration Strategies and Experiments DEEPTHOUGHT Hybrid Deep and Shallow Methods for Knowledge-Intensive Information Extraction Deliverable D1.4 Report Describing Integration Strategies and Experiments The Consortium October 2004 Report Describing

More information

Meaning Banking and Beyond

Meaning Banking and Beyond Meaning Banking and Beyond Valerio Basile Wimmics, Inria November 18, 2015 Semantics is a well-kept secret in texts, accessible only to humans. Anonymous I BEG TO DIFFER Surface Meaning Step by step analysis

More information

COMP 412, Fall 2018 Lab 1: A Front End for ILOC

COMP 412, Fall 2018 Lab 1: A Front End for ILOC COMP 412, Lab 1: A Front End for ILOC Due date: Submit to: Friday, September 7, 2018 at 11:59 PM comp412code@rice.edu Please report suspected typographical errors to the class Piazza site. We will issue

More information

Advanced Search Algorithms

Advanced Search Algorithms CS11-747 Neural Networks for NLP Advanced Search Algorithms Daniel Clothiaux https://phontron.com/class/nn4nlp2017/ Why search? So far, decoding has mostly been greedy Chose the most likely output from

More information

Dependency Parsing with Undirected Graphs

Dependency Parsing with Undirected Graphs Dependency Parsing with Undirected Graphs Carlos Gómez-Rodríguez Departamento de Computación Universidade da Coruña Campus de Elviña, 15071 A Coruña, Spain carlos.gomez@udc.es Daniel Fernández-González

More information

The ATILF-LLF System for Parseme Shared Task: a Transition-based Verbal Multiword Expression Tagger

The ATILF-LLF System for Parseme Shared Task: a Transition-based Verbal Multiword Expression Tagger The ATILF-LLF System for Parseme Shared Task: a Transition-based Verbal Multiword Expression Tagger Hazem Al Saied Université de Lorraine, ATILF, CNRS Nancy, France halsaied@atilf.fr Abstract We describe

More information

Parsing the Language of Web 2.0

Parsing the Language of Web 2.0 Parsing the Language of Web 2.0 Jennifer Foster Joint work with Joachim Wagner, Özlem Çetinoğlu, Joseph Le Roux, Joakim Nivre, Anton Bryl, Rasul Kaljahi, Johann Roturier, Deirdre Hogan, Raphael Rubino,

More information

School of Computing and Information Systems The University of Melbourne COMP90042 WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2017)

School of Computing and Information Systems The University of Melbourne COMP90042 WEB SEARCH AND TEXT ANALYSIS (Semester 1, 2017) Discussion School of Computing and Information Systems The University of Melbourne COMP9004 WEB SEARCH AND TEXT ANALYSIS (Semester, 07). What is a POS tag? Sample solutions for discussion exercises: Week

More information

ERRATOR: a Tool to Help Detect Annotation Errors in the Universal Dependencies Project

ERRATOR: a Tool to Help Detect Annotation Errors in the Universal Dependencies Project ERRATOR: a Tool to Help Detect Annotation Errors in the Universal Dependencies Project Guillaume Wisniewski LIMSI, CNRS, Univ. Paris-Sud, Université Paris Saclay, 91 403 Orsay, France guillaume.wisniewski@limsi.fr

More information

Backpropagating through Structured Argmax using a SPIGOT

Backpropagating through Structured Argmax using a SPIGOT Backpropagating through Structured Argmax using a SPIGOT Hao Peng, Sam Thomson, Noah A. Smith @ACL July 17, 2018 Overview arg max Parser Downstream task Loss L Overview arg max Parser Downstream task Head

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Create Swift mobile apps with IBM Watson services IBM Corporation

Create Swift mobile apps with IBM Watson services IBM Corporation Create Swift mobile apps with IBM Watson services Create a Watson sentiment analysis app with Swift Learning objectives In this section, you ll learn how to write a mobile app in Swift for ios and add

More information

Training for Fast Sequential Prediction Using Dynamic Feature Selection

Training for Fast Sequential Prediction Using Dynamic Feature Selection Training for Fast Sequential Prediction Using Dynamic Feature Selection Emma Strubell Luke Vilnis Andrew McCallum School of Computer Science University of Massachusetts, Amherst Amherst, MA 01002 {strubell,

More information

A CASE STUDY: Structure learning for Part-of-Speech Tagging. Danilo Croce WMR 2011/2012

A CASE STUDY: Structure learning for Part-of-Speech Tagging. Danilo Croce WMR 2011/2012 A CAS STUDY: Structure learning for Part-of-Speech Tagging Danilo Croce WM 2011/2012 27 gennaio 2012 TASK definition One of the tasks of VALITA 2009 VALITA is an initiative devoted to the evaluation of

More information