Operating Systems (1DT020 & 1TT802)

Size: px
Start display at page:

Download "Operating Systems (1DT020 & 1TT802)"

Transcription

1 Uppsala University Department of Information Technology Name: Perso. no: Operating Systems (1DT020 & 1TT802) This is a closed book exam. Calculators are not allowed. Answers should be written in English. Write your name on each sheet A mark of 50% is required to pass the exam. Make your answers as concise as possible. Write all your answers directly on this paper. Space for your answer has been left after each question. If you need more space you can use page 19 and 20 (do not forget to recall the number of the question). You should hand in all the 20 pages of the exam (even if you do not use page 19 and 20). The number in square brackets after the question s number indicates the number of points given to the question; there are 100 points in all. Problem no. Points possible Points scored TOTAL 100 Page 1/20

2 A. Operating systems, processes and threads [23 points] 1) [8 pts] 1-a) [2 pts] Give a short definition of an operating system. 1-b) [3 pts] What is an operating system kernel? Give 4 examples of operating system activities that must be performed by the operating system kernel. 1-c) [3 pts] What is dual mode operation? Why is dual mode operation needed? What is a privileged instruction in a processor s instruction set architecture? Page 2/20

3 2) [15 pts] 2-a) [2 pts] What is the difference between a program and a process? 2-b) [3 pts] What is the difference between processes and threads? 2-c) [3 pts] What is the CPU context of a process? Briefly describe what the operating system does to perform a context switch (assume an operating system with a UNIX-like process model, i.e. without threads). Page 3/20

4 2-d) [4 pts] There are 3 types of events (at the instruction set level) that can trigger a context switch. Name them and give a short definition for each. 2-e) [3 pts] In a computer system with virtual memory a user program has the illusion of being alone in memory. Where in memory is the operating system program to which control is transferred when one of the events that trigger a context switch occurs? How is that operating system program protected? Page 4/20

5 B. CPU scheduling [15 points] 3) [15 pts] Suppose we have the following processes and their associated CPU running times. All the processes arrive in alphabetical order at time 0. Process ID CPU running time A 20 B 50 C 30 D 40 E 30 3-a) [4 pts] Show the scheduling order for these processes under 4 policies: First Come First Served (FCFS), Shortest Job First (SJF), Round-Robin (RR) with time slice quantum = 10, and Shortest Remaining Time First (SRTF). Assume that context-switch overhead is 2, and that there is a context switch to launch the first process and a context switch when the last process terminates. Use the table below for your answer. Give the ID of the process executed each time slot (quantum) You can omit the ID when it is the same as in the previous time slot. Time Slot (quantum number) FCFS SJF RR SRTF Page 5/20

6 3-b)[4 pts] For each process in each schedule above, indicate the waiting time (WT) and the completion time (CT). Note that the waiting time is the total time spent waiting in ready queue, while the completion time is the total time from arrival to completion. (Fill out the table below) Scheduler Process A Process B Process C Process D Process E FCFS WT CT SJF WT CT RR WT CT SRTF WT CT 3-c) [2 pts] With a context switch overhead of 2, is a quantum of 10 a good choice for Round Robin scheduling? Why or why not? 3-d) [3 pts] In this problem, we have so far ignored I/O. Real applications alternate between waiting for I/O (or other events) and CPU time bursts. The CPU time burst of a process is the time between blocking on I/O operations or other events. The CPU time burst is hard to determine before runtime. Describe one way to dynamically predict (at runtime) the CPU time burst of a process. Page 6/20

7 3-e) [2 pts] Suppose that a scheduling algorithm favours those processes that have used the least CPU time in the recent past. Why will this algorithm favour I/O-bound processes and yet not permanently starve CPU-bound processes? C. Synchronization (21 points) 4) [12 pts] Mutual exclusion consists in ensuring that only one thread does a particular thing at a time. That is, one thread excludes the others while doing its task (this task is a critical section of the thread and threads have to synchronize to access critical sections). Changing a shared variable, updating a table, writing a file are examples of tasks that have to be performed in a mutually exclusive way. 4-a) [2 pts] One way to implement mutual exclusion on a mono-processor system is to provide user programs with system calls to acquire and release locks managed by the operating system. Suppose a thread is running in a critical section: meaning that it has acquired all the locks through proper arbitration. Can it get context-switched? Why or why not? Page 7/20

8 4-b) [2 pts] Another way to provide mutual exclusion on a mono-processor system is to provide the user with a system call to disable interrupts and a system call to enable interrupts. List two problems with this approach. 4-c) [3 pts] Some processors have atomic instructions to read and modify a variable in memory (eg. test and set, swap) which can be used to implement spinlocks. With spinlocks, threads spin in a loop (busy waiting) until the lock is freed. In class, we motivated the use of blocking locks and semaphores as an improvement over spinlocks because busy waiting can be very inefficient in terms of processor utilization. However, spinlocks are not always less efficient than blocking locks. Briefly describe a scenario where spinlocks would be more efficient than blocking locks. Page 8/20

9 4-d) [3 pts] Briefly explain how one can implement mutual exclusion to a critical section without busy-waiting using interrupts disabling and enabling and a lock variable in kernel. When are interrupts disabled and re-enabled? 4-e) [2 pts] Briefly explain how semaphores can be used to implement mutual exclusion access to critical sections. 5) [9 pts] Monitors are language constructs. A monitor has internal state variables, zero or more condition variables for managing concurrent access to shared data, together with operations that are guaranteed to be mutually exclusive. The compiler, with the help of system calls provided by the operating system, insures that threads acquire the lock associated to the monitor at the entry of a monitor s operation and release the lock when they leave a monitor operation or block inside a monitor operation. When resumed, a thread blocked inside a monitor operation has to re-acquire the monitor s lock. A monitor has also an initialization operation, init(), executed once (at monitor creation). A condition variable can be seen as a queue of threads waiting for something inside a critical section. There are 2 operations that can be performed on a condition variable c: - c.wait() put the calling thread on the queue c - c.signal() remove one and only one thread from the queue c (no operation if the queue is empty). The scheduling of the queue is implementation dependent. Page 9/20

10 A key idea with monitors is that they make it possible for a thread to go to sleep inside critical section by atomically releasing the lock to monitor at the time the thread goes to sleep. An important issue is then: which of the signaler and the awaken waiter gets the lock to monitor? - In Hoare-style monitors: the signaler gives the lock and processor to the awaken waiter and the awaken waiter runs immediately. Waiter gives the lock and processor back to signaler when waiter exits critical section or waiter waits again. - In Mesa-style (most real operating systems): signaler keeps lock and processor, and waiter is placed on ready queue with no special priority. 5-a) [2 pts] Briefly compare Hoare-style and Mesa-style monitors. 5-b) [7 pts] A rendez-vous monitor It is sometimes useful to allow N threads to rendez-vous. That is, each thread has a meeting point in its own code, and no thread can go beyond its meeting point before all the N participating threads have arrived at their respective meeting points. This is usually called a synchronization barrier. In lab 2, we studied barrier implementation using semaphores. This problem deals with barrier implementation using a monitor. 5-b-i) [5 pts] Design a Mesa-style monitor rendezvous with 1 operation, arrived(). To achieve barrier synchronization N Threads use a rendezvous monitor as follows: - when the program is loaded for execution, the monitor initialization operation init is executed with N (the number of thread participating in the rendez-vous) as parameter. - each thread s program is as follows : //code before the meeting point rendezvous.arrived() //the thread is at its meeting point //code beyond the meeting point Page 10/20

11 When a thread calls rendezvous.arrived(), it is blocked until all the N participating threads have called rendezvous.arrived(). Your solution should work and avoid deadlock for any number of participating threads as far as they use the monitor rendezvous as indicated above. Explain your design for full credit (Do not forget to describe the internal state variables of the monitor and the code for initialization operation). Page 11/20

12 Answer to question 5-b-i (continued) 5-b-ii) [2 pts] Is it possible write a simpler solution using a Hoare-style monitor? Why or why not? D. Virtual Memory [26 points] 6) [8 pts] 6-a) [2 pts] What is a virtual address? What is the address space of a process? Page 12/20

13 6-b) [4 pts] Briefly explain what a page fault is and how it is handled by the operating system. 6-c) [2 pts] What are translation look-aside buffers (TLBs)? Why are TLB important? 7 [10 pts] Assume a machine with 64-bit virtual addresses and a memory addressing with segments that are paged. Each process can have up to 64K (2 16 ) segments, and page size is 64 K bytes. The segment tables and page tables are stored in main memory, and the processor has a segment register that contains the address of the process s segment table. The segment tables and page tables can start at any byte address. If valid, each segment table entry (STE) points to a page table, and each page table entry (PTE) points to a page in physical memory. Each PTE has also: a read-enable bit, a write-enable bit, a reference bit (set on each reference to the page), and a dirty bit (set each time the reference to the page is a write). The machine can support physical memories up to 64 gigabytes (2 36 ). Page 13/20

14 7-a) [5 pts] Draw a diagram of the machine s address translation system. Show how the pieces of the virtual address are used to reference each of the tables, and to generate the physical address. Give the size of each field, where it is used, and where it comes from. Also indicate where page faults or memory protection violation traps will be indicated. 7-b) [2 pts] How large (in bytes) is a full-sized segment table? Page 14/20

15 7-c) [2 pts] Is it a good idea to add a limit field in STE s? Why or why not? Should this limit field be in units of bytes or pages? 7-d) [1 pt] Considering only the memory addressing system described in this problem (no TLB is used), what needs to be saved and restored on context switch? (Assume a UNIX like process model without threads) 8 [8 pts] 8-a) [4 pts] The LRU (Least Recently Used) page replacement replaces the page that has not been used for the longest period of time. Explain why LRU implementations are not conceivable without hardware assistance beyond the standard TLB. Briefly explain how LRU can be approximated (be explicit and describe the hardware support which is necessary). Page 15/20

16 8-b) [4 pts] What is the working set of a process? Describe a way to approximate the working set of a process and how to use it to detect and avoid thrashing (ie detect and avoid system performance degradation due to too many swapping-out and swapping-in of pages). E. File systems [8 points] 9) [8 pts] 9-a) [2 pts] Which component of disk access time is the disk scheduling algorithm trying to minimize? 9-b) [6 pts] Consider the following 3 file descriptor structures: contiguous allocation, linked list allocation, and Unix multilevel indexed allocation. Each of the structures has its advantages and disadvantages depending on the goals for the operating system and the expected file access patterns. For each of the 2 following situations (9-b-i and 9-b-ii), rank the 3 file descriptor structures in order of preference. Give the justification for your ranking. Page 16/20

17 9-b-i) [3 pts] We have a file system where the most important criteria is the performance of random access to very large files. 9-b-ii) [3pts] We have a file system where the most important criteria is the utilization of the disk capacity (i.e. getting as much file bytes on the disk as possible)? F. I/O systems [8 points] 10) [8 pts] 10-a) [2 pts] What is the difference between an I/O device controller and an I/O device driver? For each of them say if it is or it is not part of the operating system. Page 17/20

18 10-b) [3 pts] The operating system can be notified that an I/O device has completed an operation using two different methods. Name these two I/O completion notification methods and briefly compare them. 10-c) [3 pts] Define Direct Memory Access (DMA). Under what conditions is it useful? End! (You can use the 2 following pages for additional space for your answers) Page 18/20

19 Use this blank page for additional space for your answers. (You should hand in this page even if you do note use it) Page 19/20

20 Use this blank page for additional space for your answers. (You should hand in this page even if you do note use it) Page 20/20

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006

Operating Systems Comprehensive Exam. Spring Student ID # 3/16/2006 Operating Systems Comprehensive Exam Spring 2006 Student ID # 3/16/2006 You must complete all of part I (60%) You must complete two of the three sections in part II (20% each) In Part I, circle or select

More information

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013

Operating Systems Comprehensive Exam. Spring Student ID # 3/20/2013 Operating Systems Comprehensive Exam Spring 2013 Student ID # 3/20/2013 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

Operating Systems Comprehensive Exam. Spring Student ID # 2/17/2011

Operating Systems Comprehensive Exam. Spring Student ID # 2/17/2011 Operating Systems Comprehensive Exam Spring 2011 Student ID # 2/17/2011 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

Operating Systems Comprehensive Exam. Fall Student ID # 10/31/2013

Operating Systems Comprehensive Exam. Fall Student ID # 10/31/2013 Operating Systems Comprehensive Exam Fall 2013 Student ID # 10/31/2013 You must complete all of Section I You must complete two of the problems in Section II If you need more space to answer a question,

More information

COMP SCI 3SH3: Operating System Concepts (Term 2 Winter 2006) Test 2 February 27, 2006; Time: 50 Minutes ;. Questions Instructor: Dr.

COMP SCI 3SH3: Operating System Concepts (Term 2 Winter 2006) Test 2 February 27, 2006; Time: 50 Minutes ;. Questions Instructor: Dr. COMP SCI 3SH3: Operating System Concepts (Term 2 Winter 2006) Test 2 February 27, 2006; Time: 50 Minutes ;. Questions Instructor: Dr. Kamran Sartipi Name: Student ID: Question 1 (Disk Block Allocation):

More information

Sample Questions. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic)

Sample Questions. Amir H. Payberah. Amirkabir University of Technology (Tehran Polytechnic) Sample Questions Amir H. Payberah amir@sics.se Amirkabir University of Technology (Tehran Polytechnic) Amir H. Payberah (Tehran Polytechnic) Sample Questions 1393/8/10 1 / 29 Question 1 Suppose a thread

More information

CPS 110 Midterm. Spring 2011

CPS 110 Midterm. Spring 2011 CPS 110 Midterm Spring 2011 Ola! Greetings from Puerto Rico, where the air is warm and salty and the mojitos are cold and sweet. Please answer all questions for a total of 200 points. Keep it clear and

More information

(b) External fragmentation can happen in a virtual memory paging system.

(b) External fragmentation can happen in a virtual memory paging system. Alexandria University Faculty of Engineering Electrical Engineering - Communications Spring 2015 Final Exam CS333: Operating Systems Wednesday, June 17, 2015 Allowed Time: 3 Hours Maximum: 75 points Note:

More information

Department of Computer applications. [Part I: Medium Answer Type Questions]

Department of Computer applications. [Part I: Medium Answer Type Questions] Department of Computer applications BBDNITM, Lucknow MCA 311: OPERATING SYSTEM [Part I: Medium Answer Type Questions] UNIT 1 Q1. What do you mean by an Operating System? What are the main functions of

More information

COMP 3361: Operating Systems 1 Final Exam Winter 2009

COMP 3361: Operating Systems 1 Final Exam Winter 2009 COMP 3361: Operating Systems 1 Final Exam Winter 2009 Name: Instructions This is an open book exam. The exam is worth 100 points, and each question indicates how many points it is worth. Read the exam

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Midterm Review Ryan Huang 10/12/17 CS 318 Midterm Review 2 Midterm October 17 th Tuesday 9:00-10:20 am at classroom Covers material before virtual memory

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

Midterm Exam. October 20th, Thursday NSC

Midterm Exam. October 20th, Thursday NSC CSE 421/521 - Operating Systems Fall 2011 Lecture - XIV Midterm Review Tevfik Koşar University at Buffalo October 18 th, 2011 1 Midterm Exam October 20th, Thursday 9:30am-10:50am @215 NSC Chapters included

More information

OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions).

OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions). OS 1 st Exam Name Solution St # (Q1) (19 points) True/False. Circle the appropriate choice (there are no trick questions). (a) (b) (c) (d) (e) (f) (g) (h) (i) T_ The two primary purposes of an operating

More information

Operating Systems: Quiz2 December 15, Class: No. Name:

Operating Systems: Quiz2 December 15, Class: No. Name: Operating Systems: Quiz2 December 15, 2006 Class: No. Name: Part I (30%) Multiple Choice Each of the following questions has only one correct answer. Fill the correct one in the blank in front of each

More information

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002

CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization. October 9, 2002 Name: Student Id: General instructions: CMPSCI 377: Operating Systems Exam 1: Processes, Threads, CPU Scheduling and Synchronization October 9, 2002 This examination booklet has 10 pages. Do not forget

More information

CMPS 111 Spring 2003 Midterm Exam May 8, Name: ID:

CMPS 111 Spring 2003 Midterm Exam May 8, Name: ID: CMPS 111 Spring 2003 Midterm Exam May 8, 2003 Name: ID: This is a closed note, closed book exam. There are 20 multiple choice questions and 5 short answer questions. Plan your time accordingly. Part I:

More information

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s)

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) CPU Scheduling The scheduling problem: - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) When do we make decision? 1 / 31 CPU Scheduling new admitted interrupt exit terminated

More information

Techno India Batanagar Department of Computer Science & Engineering. Model Questions. Multiple Choice Questions:

Techno India Batanagar Department of Computer Science & Engineering. Model Questions. Multiple Choice Questions: Techno India Batanagar Department of Computer Science & Engineering Model Questions Subject Name: Operating System Multiple Choice Questions: Subject Code: CS603 1) Shell is the exclusive feature of a)

More information

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s)

CPU Scheduling. The scheduling problem: When do we make decision? - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) 1/32 CPU Scheduling The scheduling problem: - Have K jobs ready to run - Have N 1 CPUs - Which jobs to assign to which CPU(s) When do we make decision? 2/32 CPU Scheduling Scheduling decisions may take

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

( B ) 4. Which is not able to solve the race condition? (A) Test and Set Lock (B) Shared memory (C) Semaphore (D) Monitor

( B ) 4. Which is not able to solve the race condition? (A) Test and Set Lock (B) Shared memory (C) Semaphore (D) Monitor CS 540 - Operating Systems - Final Exam - Name: Date: Monday, May 12, 2003 Part 1: (80 + 8 (bonus) points - 4 points for each problem) ( C ) 1. In an operating system a utility which reads commands from

More information

Midterm Exam Solutions Amy Murphy 28 February 2001

Midterm Exam Solutions Amy Murphy 28 February 2001 University of Rochester Midterm Exam Solutions Amy Murphy 8 February 00 Computer Systems (CSC/56) Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify all

More information

Midterm I October 11 th, 2006 CS162: Operating Systems and Systems Programming

Midterm I October 11 th, 2006 CS162: Operating Systems and Systems Programming University of California, Berkeley College of Engineering Computer Science Division EECS Fall 2006 John Kubiatowicz Midterm I October 11 th, 2006 CS162: Operating Systems and Systems Programming Your Name:

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad COMPUTER SCIENCE AND ENGINEERING QUESTION BANK OPERATING SYSTEMS

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad COMPUTER SCIENCE AND ENGINEERING QUESTION BANK OPERATING SYSTEMS INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING QUESTION BANK Title Code Regulation Structure Coordinator Team of Instructors OPERATING SYSTEMS A50510

More information

Operating System Review Part

Operating System Review Part Operating System Review Part CMSC 602 Operating Systems Ju Wang, 2003 Fall Virginia Commonwealth University Review Outline Definition Memory Management Objective Paging Scheme Virtual Memory System and

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 INFORMATION TECHNOLOGY TUTORIAL QUESTION BANK Course Name Course Code Class Branch OPERATING SYSTEMS ACS007 IV Semester

More information

May 19, Answer pieces in italics were not required to receive full points.

May 19, Answer pieces in italics were not required to receive full points. (2 pts) Name: (2 pts) User Id: CMPSCI 377: Operating Systems Final Exam May 19, 2003 Answer pieces in italics were not required to receive full points. Problem Topic Max Grade 0-4 1 Memory 30 2 Disk Support

More information

Suggested Solutions (Midterm Exam October 27, 2005)

Suggested Solutions (Midterm Exam October 27, 2005) Suggested Solutions (Midterm Exam October 27, 2005) 1 Short Questions (4 points) Answer the following questions (True or False). Use exactly one sentence to describe why you choose your answer. Without

More information

COS 318: Midterm Exam (October 23, 2012) (80 Minutes)

COS 318: Midterm Exam (October 23, 2012) (80 Minutes) COS 318: Midterm Exam (October 23, 2012) (80 Minutes) Name: This exam is closed-book, closed-notes. 1 single-sided 8.5x11 sheet of notes is permitted. No calculators, laptop, palmtop computers are allowed

More information

Midterm I October 12 th, 2005 CS162: Operating Systems and Systems Programming

Midterm I October 12 th, 2005 CS162: Operating Systems and Systems Programming University of California, Berkeley College of Engineering Computer Science Division EECS Fall 2005 John Kubiatowicz Midterm I October 12 th, 2005 CS162: Operating Systems and Systems Programming Your Name:

More information

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU

B. V. Patel Institute of Business Management, Computer &Information Technology, UTU BCA-3 rd Semester 030010304-Fundamentals Of Operating Systems Unit: 1 Introduction Short Answer Questions : 1. State two ways of process communication. 2. State any two uses of operating system according

More information

1995 Paper 10 Question 7

1995 Paper 10 Question 7 995 Paper 0 Question 7 Why are multiple buffers often used between producing and consuming processes? Describe the operation of a semaphore. What is the difference between a counting semaphore and a binary

More information

Chendu College of Engineering & Technology

Chendu College of Engineering & Technology Chendu College of Engineering & Technology (Approved by AICTE, New Delhi and Affiliated to Anna University) Zamin Endathur, Madurantakam, Kancheepuram District 603311 +91-44-27540091/92 www.ccet.org.in

More information

(MCQZ-CS604 Operating Systems)

(MCQZ-CS604 Operating Systems) command to resume the execution of a suspended job in the foreground fg (Page 68) bg jobs kill commands in Linux is used to copy file is cp (Page 30) mv mkdir The process id returned to the child process

More information

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2015

AC59/AT59/AC110/AT110 OPERATING SYSTEMS & SYSTEMS SOFTWARE DEC 2015 Q.2 a. Explain the following systems: (9) i. Batch processing systems ii. Time sharing systems iii. Real-time operating systems b. Draw the process state diagram. (3) c. What resources are used when a

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Title Course Code Regulation Course Structure Course Coordinator

More information

Chapter 2 Processes and Threads. Interprocess Communication Race Conditions

Chapter 2 Processes and Threads. Interprocess Communication Race Conditions Chapter 2 Processes and Threads [ ] 2.3 Interprocess communication 2.4 Classical IPC problems 2.5 Scheduling 85 Interprocess Communication Race Conditions Two processes want to access shared memory at

More information

Mid Term from Feb-2005 to Nov 2012 CS604- Operating System

Mid Term from Feb-2005 to Nov 2012 CS604- Operating System Mid Term from Feb-2005 to Nov 2012 CS604- Operating System Latest Solved from Mid term Papers Resource Person Hina 1-The problem with priority scheduling algorithm is. Deadlock Starvation (Page# 84) Aging

More information

Problem Set: Processes

Problem Set: Processes Lecture Notes on Operating Systems Problem Set: Processes 1. Answer yes/no, and provide a brief explanation. (a) Can two processes be concurrently executing the same program executable? (b) Can two running

More information

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ!

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ! Last Class: CPU Scheduling! Scheduling Algorithms: FCFS Round Robin SJF Multilevel Feedback Queues Lottery Scheduling Review questions: How does each work? Advantages? Disadvantages? Lecture 7, page 1

More information

CSE 120 Principles of Operating Systems Spring 2017

CSE 120 Principles of Operating Systems Spring 2017 CSE 120 Principles of Operating Systems Spring 2017 Lecture 5: Scheduling Administrivia Homework #1 due tomorrow Homework #2 out tomorrow October 20, 2015 CSE 120 Lecture 8 Scheduling and Deadlock 2 Scheduling

More information

* What are the different states for a task in an OS?

* What are the different states for a task in an OS? * Kernel, Services, Libraries, Application: define the 4 terms, and their roles. The kernel is a computer program that manages input/output requests from software, and translates them into data processing

More information

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable

What s An OS? Cyclic Executive. Interrupts. Advantages Simple implementation Low overhead Very predictable What s An OS? Provides environment for executing programs Process abstraction for multitasking/concurrency scheduling Hardware abstraction layer (device drivers) File systems Communication Do we need an

More information

CS4411 Intro. to Operating Systems Exam 2 Fall 2009

CS4411 Intro. to Operating Systems Exam 2 Fall 2009 CS4411 Intro. to Operating Systems Exam 2 { Fall 2009 1 CS4411 Intro. to Operating Systems Exam 2 Fall 2009 150 points { 8 pages Name: Most of the following questions only require short answers. Usually

More information

Operating Systems (Classroom Practice Booklet Solutions)

Operating Systems (Classroom Practice Booklet Solutions) Operating Systems (Classroom Practice Booklet Solutions) 1. Process Management I 1. Ans: (c) 2. Ans: (c) 3. Ans: (a) Sol: Software Interrupt is generated as a result of execution of a privileged instruction.

More information

Unit In a time - sharing operating system, when the time slot given to a process is completed, the process goes from the RUNNING state to the

Unit In a time - sharing operating system, when the time slot given to a process is completed, the process goes from the RUNNING state to the Unit - 5 1. In a time - sharing operating system, when the time slot given to a process is completed, the process goes from the RUNNING state to the (A) BLOCKED state (B) READY state (C) SUSPENDED state

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Fall 2016 Lecture 8: Scheduling and Deadlock Geoffrey M. Voelker Administrivia Thursday Friday Monday Homework #2 due at start of class Review material for midterm

More information

QUESTION BANK UNIT I

QUESTION BANK UNIT I QUESTION BANK Subject Name: Operating Systems UNIT I 1) Differentiate between tightly coupled systems and loosely coupled systems. 2) Define OS 3) What are the differences between Batch OS and Multiprogramming?

More information

CPSC/ECE 3220 Summer 2017 Exam 2

CPSC/ECE 3220 Summer 2017 Exam 2 CPSC/ECE 3220 Summer 2017 Exam 2 Name: Part 1: Word Bank Write one of the words or terms from the following list into the blank appearing to the left of the appropriate definition. Note that there are

More information

FCM 710: Architecture of Secure Operating Systems

FCM 710: Architecture of Secure Operating Systems FCM 710: Architecture of Secure Operating Systems Practice Exam, Spring 2010 Email your answer to ssengupta@jjay.cuny.edu March 16, 2010 Instructor: Shamik Sengupta Multiple-Choice 1. operating systems

More information

MC7204 OPERATING SYSTEMS

MC7204 OPERATING SYSTEMS MC7204 OPERATING SYSTEMS QUESTION BANK UNIT I INTRODUCTION 9 Introduction Types of operating systems operating systems structures Systems components operating systems services System calls Systems programs

More information

Final Exam Preparation Questions

Final Exam Preparation Questions EECS 678 Spring 2013 Final Exam Preparation Questions 1 Chapter 6 1. What is a critical section? What are the three conditions to be ensured by any solution to the critical section problem? 2. The following

More information

Exam Guide COMPSCI 386

Exam Guide COMPSCI 386 FOUNDATIONS We discussed in broad terms the three primary responsibilities of an operating system. Describe each. What is a process? What is a thread? What parts of a process are shared by threads? What

More information

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far.

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Midterm Exam Reviews ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Particular attentions on the following: System call, system kernel Thread/process, thread vs process

More information

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems

University of Waterloo Midterm Examination Model Solution CS350 Operating Systems University of Waterloo Midterm Examination Model Solution CS350 Operating Systems Fall, 2003 1. (10 total marks) Suppose that two processes, a and b, are running in a uniprocessor system. a has three threads.

More information

Chapter 5: CPU Scheduling

Chapter 5: CPU Scheduling Chapter 5: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Thread Scheduling Multiple-Processor Scheduling Operating Systems Examples Algorithm Evaluation Chapter 5: CPU Scheduling

More information

CSE 120. Fall Lecture 8: Scheduling and Deadlock. Keith Marzullo

CSE 120. Fall Lecture 8: Scheduling and Deadlock. Keith Marzullo CSE 120 Principles of Operating Systems Fall 2007 Lecture 8: Scheduling and Deadlock Keith Marzullo Aministrivia Homework 2 due now Next lecture: midterm review Next Tuesday: midterm 2 Scheduling Overview

More information

Operating Systems. Lecture Process Scheduling. Golestan University. Hossein Momeni

Operating Systems. Lecture Process Scheduling. Golestan University. Hossein Momeni Operating Systems Lecture 2.2 - Process Scheduling Golestan University Hossein Momeni momeni@iust.ac.ir Scheduling What is scheduling? Goals Mechanisms Scheduling on batch systems Scheduling on interactive

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT I

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT I DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year and Semester : II / IV Subject Code : CS6401 Subject Name : Operating System Degree and Branch : B.E CSE UNIT I 1. Define system process 2. What is an

More information

SAMPLE MIDTERM QUESTIONS

SAMPLE MIDTERM QUESTIONS SAMPLE MIDTERM QUESTIONS CS 143A Notes: 1. These questions are just for you to have some questions to practice. 2. There is no guarantee that there will be any similarities between these questions and

More information

Midterm Exam #2 Solutions October 25, 2016 CS162 Operating Systems

Midterm Exam #2 Solutions October 25, 2016 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS all 2016 Anthony D. Joseph Midterm Exam #2 Solutions October 25, 2016 CS162 Operating Systems Your Name: SID AND

More information

KEY CENG 334. Midterm. Question 1. Question 2. Question 3. Question 4. Question 5. Question 6. Total. Name, SURNAME and ID

KEY CENG 334. Midterm. Question 1. Question 2. Question 3. Question 4. Question 5. Question 6. Total. Name, SURNAME and ID 00 11 00 11 01 01 01 01 01 01 00 11 00 11 Name, SURNAME and ID Middle East Technical University Department of Computer Engineering KEY CENG 334 Section 2 and 3 Spring 2010-2011 Midterm Duration: 120 minutes.

More information

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 3 Solution

EECE.4810/EECE.5730: Operating Systems Spring 2017 Homework 3 Solution 1. (16 points) Consider the following set of processes, with the length of the CPU-burst time given in milliseconds: Process Burst Priority P1 20 4 P2 5 3 P3 30 2 P4 2 3 P5 5 1 a. (12 points) Assume the

More information

Properties of Processes

Properties of Processes CPU Scheduling Properties of Processes CPU I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait. CPU burst distribution: CPU Scheduler Selects from among the processes that

More information

CS350: Final Exam Review

CS350: Final Exam Review University of Waterloo CS350: Final Exam Review Gwynneth Leece, Andrew Song, Rebecca Putinski Winter, 2010 Intro, Threads & Concurrency What are the three views of an operating system? Describe them. Define

More information

CSC 716 Advanced Operating System Fall 2007 Exam 1. Answer all the questions. The maximum credit for each question is as shown.

CSC 716 Advanced Operating System Fall 2007 Exam 1. Answer all the questions. The maximum credit for each question is as shown. CSC 716 Advanced Operating System Fall 2007 Exam 1 Answer all the questions. The maximum credit for each question is as shown. 1. (15) Multiple Choice(3 points for each): 1) Which of the following statement

More information

CSI3131 Final Exam Review

CSI3131 Final Exam Review CSI3131 Final Exam Review Final Exam: When: April 24, 2015 2:00 PM Where: SMD 425 File Systems I/O Hard Drive Virtual Memory Swap Memory Storage and I/O Introduction CSI3131 Topics Process Computing Systems

More information

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5

OPERATING SYSTEMS CS3502 Spring Processor Scheduling. Chapter 5 OPERATING SYSTEMS CS3502 Spring 2018 Processor Scheduling Chapter 5 Goals of Processor Scheduling Scheduling is the sharing of the CPU among the processes in the ready queue The critical activities are:

More information

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009

Lecture 17: Threads and Scheduling. Thursday, 05 Nov 2009 CS211: Programming and Operating Systems Lecture 17: Threads and Scheduling Thursday, 05 Nov 2009 CS211 Lecture 17: Threads and Scheduling 1/22 Today 1 Introduction to threads Advantages of threads 2 User

More information

CS450 OPERATING SYSTEMS FINAL EXAM ANSWER KEY

CS450 OPERATING SYSTEMS FINAL EXAM ANSWER KEY CS450 OPERATING SYSTEMS FINAL EXAM KEY 1. Provide Java class definitions for each of the components of a monitor. Include specifications for local data and methods (names and arguments, not implementation);

More information

COMP 300E Operating Systems Fall Semester 2011 Midterm Examination SAMPLE. Name: Student ID:

COMP 300E Operating Systems Fall Semester 2011 Midterm Examination SAMPLE. Name: Student ID: COMP 300E Operating Systems Fall Semester 2011 Midterm Examination SAMPLE Time/Date: 5:30 6:30 pm Oct 19, 2011 (Wed) Name: Student ID: 1. Short Q&A 1.1 Explain the convoy effect with FCFS scheduling algorithm.

More information

Chapter 6: CPU Scheduling

Chapter 6: CPU Scheduling Chapter 6: CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling

More information

CLASS: II YEAR / IV SEMESTER CSE SUBJECT CODE AND NAME: CS6401 OPERATING SYSTEMS UNIT I OPERATING SYSTEMS OVERVIEW

CLASS: II YEAR / IV SEMESTER CSE SUBJECT CODE AND NAME: CS6401 OPERATING SYSTEMS UNIT I OPERATING SYSTEMS OVERVIEW CLASS: II YEAR / IV SEMESTER CSE SUBJECT CODE AND NAME: CS6401 OPERATING SYSTEMS SYLLABUS UNIT I OPERATING SYSTEMS OVERVIEW Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory

More information

Lecture 7: CVs & Scheduling

Lecture 7: CVs & Scheduling Lecture 7: CVs & Scheduling CSE 120: Principles of Operating Systems Alex C. Snoeren HW 2 Due 10/17 Monitors A monitor is a programming language construct that controls access to shared data Synchronization

More information

Homework Assignment #5

Homework Assignment #5 Homework Assignment #5 Question 1: Scheduling a) Which of the following scheduling algorithms could result in starvation? For those algorithms that could result in starvation, describe a situation in which

More information

CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation

CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation CS604 - Operating System Solved Subjective Midterm Papers For Midterm Exam Preparation The given code is as following; boolean flag[2]; int turn; do { flag[i]=true; turn=j; while(flag[j] && turn==j); critical

More information

Remaining Contemplation Questions

Remaining Contemplation Questions Process Synchronisation Remaining Contemplation Questions 1. The first known correct software solution to the critical-section problem for two processes was developed by Dekker. The two processes, P0 and

More information

CPU Scheduling. CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections )

CPU Scheduling. CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections ) CPU Scheduling CSE 2431: Introduction to Operating Systems Reading: Chapter 6, [OSC] (except Sections 6.7.2 6.8) 1 Contents Why Scheduling? Basic Concepts of Scheduling Scheduling Criteria A Basic Scheduling

More information

Last Class: Deadlocks. Today

Last Class: Deadlocks. Today Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

Two hours. Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 25th January 2013 Time: 14:00-16:00

Two hours. Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 25th January 2013 Time: 14:00-16:00 Two hours Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Operating Systems Date: Friday 25th January 2013 Time: 14:00-16:00 Please answer Question ONE and any TWO other

More information

8: Scheduling. Scheduling. Mark Handley

8: Scheduling. Scheduling. Mark Handley 8: Scheduling Mark Handley Scheduling On a multiprocessing system, more than one process may be available to run. The task of deciding which process to run next is called scheduling, and is performed by

More information

Midterm Exam Amy Murphy 6 March 2002

Midterm Exam Amy Murphy 6 March 2002 University of Rochester Midterm Exam Amy Murphy 6 March 2002 Computer Systems (CSC2/456) Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify all of your

More information

FCM 710: Architecture of Secure Operating Systems

FCM 710: Architecture of Secure Operating Systems FCM 710: Architecture of Secure Operating Systems Practice Exam, Spring 2010 Email your answer to ssengupta@jjay.cuny.edu March 16, 2010 Instructor: Shamik Sengupta This is a sample question pool for your

More information

Operating Systems EDA092, DIT 400 Exam

Operating Systems EDA092, DIT 400 Exam Chalmers University of Technology and Gothenburg University Operating Systems EDA092, DIT 400 Exam 2015-04-14 Date, Time, Place: Tuesday 2015/04/14, 14:00 18:00, Väg och vatten -salar Course Responsible:

More information

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo

CSE 421/521 - Operating Systems Fall Lecture - XXV. Final Review. University at Buffalo CSE 421/521 - Operating Systems Fall 2014 Lecture - XXV Final Review Tevfik Koşar University at Buffalo December 2nd, 2014 1 Final Exam December 4th, Thursday 11:00am - 12:20pm Room: 110 Knox Chapters

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

Operating Systems Prof. Allan Gottlieb Practice Final Exam Page 1 Name

Operating Systems Prof. Allan Gottlieb Practice Final Exam Page 1 Name Operating Systems Prof. Allan Gottlieb Practice Final Exam Page 1 Name PLEASE WRITE YOUR NAME ON ALL SHEETS. Please start your answer for each question on the sheet where the question appears. You may

More information

Stanford University Computer Science Department CS 140 Midterm Exam Dawson Engler Winter 1999

Stanford University Computer Science Department CS 140 Midterm Exam Dawson Engler Winter 1999 Stanford University Computer Science Department CS 140 Midterm Exam Dawson Engler Winter 1999 Name: Please initial the bottom left corner of each page. This is an open-book exam. You have 50 minutes to

More information

Last Class: Processes

Last Class: Processes Last Class: Processes A process is the unit of execution. Processes are represented as Process Control Blocks in the OS PCBs contain process state, scheduling and memory management information, etc A process

More information

CPSC/ECE 3220 Summer 2018 Exam 2 No Electronics.

CPSC/ECE 3220 Summer 2018 Exam 2 No Electronics. CPSC/ECE 3220 Summer 2018 Exam 2 No Electronics. Name: Write one of the words or terms from the following list into the blank appearing to the left of the appropriate definition. Note that there are more

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 8: Semaphores, Monitors, & Condition Variables 8.0 Main Points: Definition of semaphores Example of use

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

COMP 3361: Operating Systems 1 Midterm Winter 2009

COMP 3361: Operating Systems 1 Midterm Winter 2009 COMP 3361: Operating Systems 1 Midterm Winter 2009 Name: Instructions This is an open book exam. The exam is worth 100 points, and each question indicates how many points it is worth. Read the exam from

More information

CHAPTER NO - 1 : Introduction:

CHAPTER NO - 1 : Introduction: Sr. No L.J. Institute of Engineering & Technology Semester: IV (26) Subject Name: Operating System Subject Code:21402 Faculties: Prof. Saurin Dave CHAPTER NO - 1 : Introduction: TOPIC:1 Basics of Operating

More information

CPU Scheduling Algorithms

CPU Scheduling Algorithms CPU Scheduling Algorithms Notice: The slides for this lecture have been largely based on those accompanying the textbook Operating Systems Concepts with Java, by Silberschatz, Galvin, and Gagne (2007).

More information

Midterm I October 18 th, 2010 CS162: Operating Systems and Systems Programming

Midterm I October 18 th, 2010 CS162: Operating Systems and Systems Programming Fall 2010 University of California, Berkeley College of Engineering Computer Science Division EECS John Kubiatowicz Midterm I October 18 th, 2010 CS162: Operating Systems and Systems Programming Your Name:

More information

OS Assignment II. The process of executing multiple threads simultaneously is known as multithreading.

OS Assignment II. The process of executing multiple threads simultaneously is known as multithreading. OS Assignment II 1. A. Provide two programming examples of multithreading giving improved performance over a single-threaded solution. The process of executing multiple threads simultaneously is known

More information

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total

STUDENT NAME: STUDENT ID: Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Total University of Minnesota Department of Computer Science CSci 5103 - Fall 2016 (Instructor: Tripathi) Midterm Exam 1 Date: October 17, 2016 (4:00 5:15 pm) (Time: 75 minutes) Total Points 100 This exam contains

More information