Safety SPL/2010 SPL/20 1

Size: px
Start display at page:

Download "Safety SPL/2010 SPL/20 1"

Transcription

1 Safety 1

2 system designing for concurrent execution environments system: collection of objects and their interactions system properties: Safety - nothing bad ever happens Liveness - anything ever happens at all Correctness - system does what it was meant to Reusability - objects can be reused in several systems without changes to code Performance - intended activity eventually completes 2

3 Safety nothing bad should ever happen to an object - preserve objects consistency object remains consistent? something bad happens? formal definition of safety? type safety multi-threaded safety. 3

4 Type Safety Java - statically typed language: type variable is known at compilation time Type safety: object referenced by variable is of a type compatible with variable type (class, sub-class, interface) compiler verifies type safety for us: assign string value to integer variable (compiler error) 4

5 language constructs for generic code 5

6 get() and add() work and return object of class Object at compilation time type of o is unknown vector collection - as reusable as possible no type safety 6

7 Generics generics - extra argument for standard containers express programmer intention can be used in any class type-safety 7

8 Catching errors as early as possible compile cleanly runtime exception cannot cast Object to Integer compile error _intvec contains only Integers (or extending class) 8

9 Type safety rules Always use generics. Do not use casts, unless you know what you are doing If using casts, always use instanceof to make sure cast type is correct Java 1.5 supports generics warning if you don t use generics with containers respect the compiler warnings and fix them 9

10 Multi-Threaded Safety 10

11 safety preservation: ensuring objects are in consistent states concurrency control: disabling of access due to actions by other threads. 11

12 Multi-Threaded Safety type safety can be checked by compilers multi-threaded safety - design classes carefully: what are pre & post conditions and invariant of the class 12

13 13

14 class Even consistency of class state: even counter at all times operation: increment counter 14

15 Pre/Post-conditions, Invariants Invariant - object property (statement) regarding its internal state hold throughout the lifetime of the object. class Even: internal counter must always remain even counter might be changed during actions on (or by) the object 15

16 Pre/Post-conditions, Invariants Pre/Post conditions (PnPC) statements about internal state of the object hold just before and right after a method invocation (action performed on/by the object) class Even: precondition of add(): counter is even postcondition: counter is even. postcondition: counter has been incremented 16

17 17

18 Consistency and Computation inv, pre, post : object is in consistent state computation is correct what programmer intends method is supposed to achieve. 18

19 system = collection of interconnected objects structured collection 19

20 Object/messages abstract model reminder* sequence of messages received by an object: Receive a message Dispatch the message to a method Execute the body of the method as a reaction Send messages to other objects internal state - fully encapsulated Only object can update its own internal state 20

21 computation = sequence of transitions object is first constructed class constructor responsibility for consistent state (constructor holds). object receives a message = a method is invoked check (not holds computation invalid) method completes check (not holds computation invalid) execution of the method has moved the object from one internal state S i to the next internal state S i+1. 21

22 Formal notation For a given computation, object moves from states S 1, S 2, S n At each transition, condition must hold formally: for all i ) holds. transition S i m >S i+1 object processes message i ) i+1 ) holds 22

23 overall correctness condition for a system of objects is that all objects computations are correct NOTE 1: while a method is executing, no constraint remains enforced. Even counter class: in the middle of the execution of the add() object remains consistent between invocation of methods NOTE 2: what is correct computation for a system of objects? each object s correct computation sequence is only a part 23

24 Dangers of Concurrent Execution code correctness? all computations involving this code are correct in sequential RTE: analyze each method check all potential execution paths make hold in the hybrid execution model? 24

25 25

26 run: Even class is not thread safe 26

27 Investigation at some point in each thread's execution, the thread is preempted by the environment in favor of another thread (either in the same process or a different process) the preemption may take place any time during the execution of the thread 27

28 Investigation add() - performs many more actions than you can see 28

29 Investigation pseudo JVM code: execution of any thread may be interrupted at any line 29

30 Investigation 30

31 After the first thread finishes first add(), counter_ = 2 After the second thread finishes the first add(), counter_ = 5 31

32 Reapair? hold 32

33 Assume that next interleaving of execution between T1 and T2: Assume counter_ = 2 at time t0 T1 executes line 1 and is interrupted. (c == 2 holds) T2 executes line 1 and is interrupted. (c == 2 holds) T1 executes lines 2 and 3 (c == 4 holds holds) T2 executes lines 2 and 3 (c == 4 holds holds) 33

34 same object - shared between 2 threads (T1, T2) object executes the method add() twice state of the object is incremented only once. local constraints (@inv never failed. T1 thinks all is fine. T2 thinks all is fine. your bank account is wrong!!! "something wrong happened" but our formal tools cannot tell us what. 34

35 Global Criterion on Computation Correctness The (finite) concurrent execution of a program is correct iff: object @post end of computation (linearizability): system is in one of the states that could have been reached by a sequential execution sequence of states reached by each object could have been reached by a sequential execution 35

36 example system includes one object with a single integer variable initialized at value 0. object has 2 methods; inc3 adds 3 to the state inc8 adds 8 to the state program includes 2 invocations: inc3 and inc8. sequential executions paths are: (0, 3, 11) or (0, 8, 11). If a concurrent execution leaves the object in state 3 or 8 - overall computation not be correct: missed steps of computation Strong correctness constraint: looks at all possible sequential executions of the program and objects not fool-proof: if(i > 0) i+=8 36

37 Understanding What Went Wrong a class which is correct in a sequential RTE, but incorrect in a concurrent RTE concurrent RTE - extra-effort to ensure correctness 37

38 Understanding What Went Wrong in the hybrid model: smallest steps of the computation are not single method execution instructions executed by the JVM, at the instruction set level 38

39 example: abstract computation system Sequences transitions from object perspective: O1: S11 --m1--> S12 --m2--> S13 O2: S21 --n1--> S22 39

40 example: abstract computation system sequential model RTE: 3 transitions ordered relative to each other into a single execution which object sends which message to whom? If no dependency - all possible interleaving S11 S12 S13 S21 S22 S11 S12 S21 S13 S22 S11 S12 S21 S22 S13 S11 S21 S12 S22 S13 S11 S21 S22 S12 S13 S21 S11 S22 S12 S13 S21 S22 S11 S12 S13 40

41 message n1 is sent by O1 during the execution of m2 If there is a dependency less possible total orderings in the sequential execution additional ordering constraint S22 > S12 S11 S12 S13 S21 S22 S11 S12 S21 S13 S22 S11 S12 S21 S22 S13 S11 S21 S12 S22 S13 41

42 safety in concurrent RTEs: reduce scheduling of primitive state transitions among passive objects serialization constraints among independent transitions 42

43 Safe Concurrent Programming thread-safe: Ingredients Immutability - avoiding state changes: Eliminating the need for some exclusion control by ensuring that methods never modify an object's representation, so that the object cannot enter inconsistent states. 43

44 Safe Concurrent Programming thread-safe: Ingredients Synchronization - dynamically ensuring exclusive access Dynamically ensuring that only one thread at a time can access object state, by protecting objects with locks and related constructs. 44

45 Safe Concurrent Programming thread-safe: Ingredients Containment - Structurally (using design patterns for) ensuring exclusive access Structurally ensuring that only one thread (or only one thread at a time) can ever use a given object, by hiding or restricting access to it. 45

46 Immutable Objects If an object cannot change state, then it can never encounter conflicts or inconsistencies when multiple activities attempt to change its state in incompatible ways! 46

47 most simple and elegant solution for thread safety no thread may change the internal state of the object at the design stage change = re-factoring large parts of code 47

48 48

49 implementation of Even is immutable - new object of this class, its internal state may not change - ever object is always safe, even in concurrent execution environments 49

50 How to create immutable objects Don't provide "setter" methods. Make all fields final and private. Don't allow subclasses to override methods. declare the class as final make the constructor private and construct instances in factory methods. If the instance variables (members) include references to mutable objects, don't allow those objects to be changed: Don't provide methods that modify the mutable objects. Don't share references to the mutable objects. Never store references to external, mutable objects passed to the constructor; if necessary, create copies, and store references to the copies. Similarly, create copies of your internal mutable objects when necessary to avoid returning the originals in your methods. Immutable instance variables are always initialized during construction. 50

51 Immutable objects are possibly applicable when: Object serves as instances of a simple abstract data type representing values. For example: colors, numbers, strings. different classes supporting different usage can be designed, one immutable and the another updatable. java.lang.string is immutable while java.lang.stringbuffer is updatable. benefit of never needing to protect the object outweighs the cost of copying the object each time it needs to be changed. copying technique is popular and is valid. trade-off: readability and execution time Java does not support pass-by-copy for non-scalar types. copy by another assignment. in some RTE (not Java though), the actual copying may be delayed to the moment a change occur to the variable, thus saving execution time in some scenarios. multiple objects representing the same values (for a reason not related to safety) 51

52 helper classes 52

53 Stateless methods Another aspect of immutability are stateless methods. A stateless method is a method that does not change the object state. provide services 53

54 Publish and Escape: behavior and implementation of classes Publish internal state of an object is published if it is accessible from outside the object. Example: a public member. By definition, this member is published as soon as the object is created. Example: a private member to which a reference is returned by a public method call, e.g., a private Vector that is returned in a public getter. published members must be protected be immutable locks 54

55 Publish and Escape: behavior and implementation of classes Escape internal state of an object has escaped if a reference to the internal state of the object is available outside of the object inadvertently. Example: returning a reference to an internal member of an immutable object avoid 'this' to escape during construction of an object (otherwise, other objects could access the object before it has reached a valid state). 55

56 Design Patterns general reusable solution to a commonly occurring problem in software design. description or template for how to solve a problem that can be used in many different situations. 56

57 Example 1: Observer design pattern Object register itself to some event source and be notified each time something happens Example: a vector can notify each time a modification happens (element added/removed). 57

58 EventListenerImpl : object who would like to be notified on events of the EventSource 58

59 'this' of EventListener escaped during construction of the class. danger: exposing an incompletely constructed EventListener object to other threads: Once registered, eventsource can call the onevent() method although the class has not yet been constructed 59

60 60

61 In example 2 'this' escaped implicitly. A reference to the object under construction is being published in this case indirectly where another thread can see it. When creating the new InnerListener it received 'this' of EventListenerImpl2 how would it be able to call the eventreceived method? 61

Synchronization SPL/2010 SPL/20 1

Synchronization SPL/2010 SPL/20 1 Synchronization 1 Overview synchronization mechanisms in modern RTEs concurrency issues places where synchronization is needed structural ways (design patterns) for exclusive access 2 Overview synchronization

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Concurrent Objects and Linearizability

Concurrent Objects and Linearizability Chapter 3 Concurrent Objects and Linearizability 3.1 Specifying Objects An object in languages such as Java and C++ is a container for data. Each object provides a set of methods that are the only way

More information

Unit3: Java in the large. Prepared by: Dr. Abdallah Mohamed, AOU-KW

Unit3: Java in the large. Prepared by: Dr. Abdallah Mohamed, AOU-KW Prepared by: Dr. Abdallah Mohamed, AOU-KW 1 1. Introduction 2. Objects and classes 3. Information hiding 4. Constructors 5. Some examples of Java classes 6. Inheritance revisited 7. The class hierarchy

More information

Rules and syntax for inheritance. The boring stuff

Rules and syntax for inheritance. The boring stuff Rules and syntax for inheritance The boring stuff The compiler adds a call to super() Unless you explicitly call the constructor of the superclass, using super(), the compiler will add such a call for

More information

Advanced concurrent programming in Java Shared objects

Advanced concurrent programming in Java Shared objects Advanced concurrent programming in Java Shared objects Mehmet Ali Arslan 21.10.13 Visibility To see(m) or not to see(m)... 2 There is more to synchronization than just atomicity or critical sessions. Memory

More information

Introduction to Locks. Intrinsic Locks

Introduction to Locks. Intrinsic Locks CMSC 433 Programming Language Technologies and Paradigms Spring 2013 Introduction to Locks Intrinsic Locks Atomic-looking operations Resources created for sequential code make certain assumptions, a large

More information

Chapter 5 Object-Oriented Programming

Chapter 5 Object-Oriented Programming Chapter 5 Object-Oriented Programming Develop code that implements tight encapsulation, loose coupling, and high cohesion Develop code that demonstrates the use of polymorphism Develop code that declares

More information

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers

CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers CS 2112 Lecture 20 Synchronization 5 April 2012 Lecturer: Andrew Myers 1 Critical sections and atomicity We have been seeing that sharing mutable objects between different threads is tricky We need some

More information

Get out, you will, of this bind If, your objects, you have confined

Get out, you will, of this bind If, your objects, you have confined CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREAD SAFETY] Putting the brakes, on impending code breaks Let a reference escape, have you? Misbehave, your code will, out of the blue Get out, you will,

More information

Concurrent Programming

Concurrent Programming Concurrency Concurrent Programming A sequential program has a single thread of control. Its execution is called a process. A concurrent program has multiple threads of control. They may be executed as

More information

Compaq Interview Questions And Answers

Compaq Interview Questions And Answers Part A: Q1. What are the difference between java and C++? Java adopts byte code whereas C++ does not C++ supports destructor whereas java does not support. Multiple inheritance possible in C++ but not

More information

Chapter 4 Defining Classes I

Chapter 4 Defining Classes I Chapter 4 Defining Classes I This chapter introduces the idea that students can create their own classes and therefore their own objects. Introduced is the idea of methods and instance variables as the

More information

Java Threads and intrinsic locks

Java Threads and intrinsic locks Java Threads and intrinsic locks 1. Java and OOP background fundamentals 1.1. Objects, methods and data One significant advantage of OOP (object oriented programming) is data encapsulation. Each object

More information

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES

Exception Handling Introduction. Error-Prevention Tip 13.1 OBJECTIVES 1 2 13 Exception Handling It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all, try something. Franklin Delano Roosevelt O throw away the worser

More information

Advanced MEIC. (Lesson #18)

Advanced MEIC. (Lesson #18) Advanced Programming @ MEIC (Lesson #18) Last class Data races Java Memory Model No out-of-thin-air values Data-race free programs behave as expected Today Finish with the Java Memory Model Introduction

More information

Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Programming in C++ Prof. Partha Pratim Das Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 43 Dynamic Binding (Polymorphism): Part III Welcome to Module

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Casting -Allows a narrowing assignment by asking the Java compiler to "trust us"

Casting -Allows a narrowing assignment by asking the Java compiler to trust us Primitives Integral types: int, short, long, char, byte Floating point types: double, float Boolean types: boolean -passed by value (copied when returned or passed as actual parameters) Arithmetic Operators:

More information

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 Learning from Bad Examples CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 1 Goals Demonstrate techniques to design for shared mutability Build on an example where multiple threads

More information

Contents. Figures. Tables. Examples. Foreword. Preface. 1 Basics of Java Programming 1. xix. xxi. xxiii. xxvii. xxix

Contents. Figures. Tables. Examples. Foreword. Preface. 1 Basics of Java Programming 1. xix. xxi. xxiii. xxvii. xxix PGJC4_JSE8_OCA.book Page ix Monday, June 20, 2016 2:31 PM Contents Figures Tables Examples Foreword Preface xix xxi xxiii xxvii xxix 1 Basics of Java Programming 1 1.1 Introduction 2 1.2 Classes 2 Declaring

More information

Threads SPL/2010 SPL/20 1

Threads SPL/2010 SPL/20 1 Threads 1 Today Processes and Scheduling Threads Abstract Object Models Computation Models Java Support for Threads 2 Process vs. Program processes as the basic unit of execution managed by OS OS as any

More information

CMSC 433 Programming Language Technologies and Paradigms. Spring 2013

CMSC 433 Programming Language Technologies and Paradigms. Spring 2013 CMSC 433 Programming Language Technologies and Paradigms Spring 2013 Encapsulation, Publication, Escape Data Encapsulation One of the approaches in object-oriented programming is to use data encapsulation

More information

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Java Object Oriented Design. CSC207 Fall 2014

Java Object Oriented Design. CSC207 Fall 2014 Java Object Oriented Design CSC207 Fall 2014 Design Problem Design an application where the user can draw different shapes Lines Circles Rectangles Just high level design, don t write any detailed code

More information

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Multithreaded Programming Part II. CSE 219 Stony Brook University, Department of Computer Science

Multithreaded Programming Part II. CSE 219 Stony Brook University, Department of Computer Science Multithreaded Programming Part II CSE 219 Stony Brook University, Thread Scheduling In a Java application, main is a thread on its own Once multiple threads are made Runnable the thread scheduler of the

More information

What are the characteristics of Object Oriented programming language?

What are the characteristics of Object Oriented programming language? What are the various elements of OOP? Following are the various elements of OOP:- Class:- A class is a collection of data and the various operations that can be performed on that data. Object- This is

More information

Shared Mutable State SWEN-220

Shared Mutable State SWEN-220 Shared Mutable State SWEN-220 The Ultimate Culprit - Shared, Mutable State Most of your development has been in imperative languages. The fundamental operation is assignment to change state. Assignable

More information

Weiss Chapter 1 terminology (parenthesized numbers are page numbers)

Weiss Chapter 1 terminology (parenthesized numbers are page numbers) Weiss Chapter 1 terminology (parenthesized numbers are page numbers) assignment operators In Java, used to alter the value of a variable. These operators include =, +=, -=, *=, and /=. (9) autoincrement

More information

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016

Java Memory Model. Jian Cao. Department of Electrical and Computer Engineering Rice University. Sep 22, 2016 Java Memory Model Jian Cao Department of Electrical and Computer Engineering Rice University Sep 22, 2016 Content Introduction Java synchronization mechanism Double-checked locking Out-of-Thin-Air violation

More information

Performance Throughput Utilization of system resources

Performance Throughput Utilization of system resources Concurrency 1. Why concurrent programming?... 2 2. Evolution... 2 3. Definitions... 3 4. Concurrent languages... 5 5. Problems with concurrency... 6 6. Process Interactions... 7 7. Low-level Concurrency

More information

Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming)

Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming) 2014-03-07 Preface Fortgeschrittene objektorientierte Programmierung (Advanced Object-Oriented Programming) Coordinates: Lecturer: Web: Studies: Requirements: No. 185.211, VU, 3 ECTS Franz Puntigam http://www.complang.tuwien.ac.at/franz/foop.html

More information

CSE 374 Programming Concepts & Tools

CSE 374 Programming Concepts & Tools CSE 374 Programming Concepts & Tools Hal Perkins Fall 2017 Lecture 22 Shared-Memory Concurrency 1 Administrivia HW7 due Thursday night, 11 pm (+ late days if you still have any & want to use them) Course

More information

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections

A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency Lecture 5 Programming with Locks and Critical Sections Dan Grossman Last Updated: May 2012 For more information, see http://www.cs.washington.edu/homes/djg/teachingmaterials/

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Configuration Provider: A Pattern for Configuring Threaded Applications

Configuration Provider: A Pattern for Configuring Threaded Applications Configuration Provider: A Pattern for Configuring Threaded Applications Klaus Meffert 1 and Ilka Philippow 2 Technical University Ilmenau plop@klaus-meffert.de 1, ilka.philippow@tu-ilmena.de 2 Abstract

More information

Semantic Analysis. CSE 307 Principles of Programming Languages Stony Brook University

Semantic Analysis. CSE 307 Principles of Programming Languages Stony Brook University Semantic Analysis CSE 307 Principles of Programming Languages Stony Brook University http://www.cs.stonybrook.edu/~cse307 1 Role of Semantic Analysis Syntax vs. Semantics: syntax concerns the form of a

More information

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads.

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Poor co-ordination that exists in threads on JVM is bottleneck

More information

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010

CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections. Tyler Robison Summer 2010 CSE332: Data Abstractions Lecture 23: Programming with Locks and Critical Sections Tyler Robison Summer 2010 1 Concurrency: where are we Done: The semantics of locks Locks in Java Using locks for mutual

More information

System Programming. Practical Session 4: Threads and Concurrency / Safety

System Programming. Practical Session 4: Threads and Concurrency / Safety System Programming Practical Session 4: Threads and Concurrency / Safety Using Threads - All the computer programs you've seen so far were sequential only one thing was performed at any given time - Sometimes

More information

20 Most Important Java Programming Interview Questions. Powered by

20 Most Important Java Programming Interview Questions. Powered by 20 Most Important Java Programming Interview Questions Powered by 1. What's the difference between an interface and an abstract class? An abstract class is a class that is only partially implemented by

More information

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 Favoring Isolated Mutability The Actor Model of Concurrency CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 1 Goals Review the material in Chapter 8 of the Concurrency textbook that

More information

Inheritance and Polymorphism

Inheritance and Polymorphism Inheritance and Polymorphism Inheritance (Continued) Polymorphism Polymorphism by inheritance Polymorphism by interfaces Reading for this lecture: L&L 10.1 10.3 1 Interface Hierarchies Inheritance can

More information

CSE332: Data Abstractions Lecture 19: Mutual Exclusion and Locking

CSE332: Data Abstractions Lecture 19: Mutual Exclusion and Locking CSE332: Data Abstractions Lecture 19: Mutual Exclusion and Locking James Fogarty Winter 2012 Including slides developed in part by Ruth Anderson, James Fogarty, Dan Grossman Banking Example This code is

More information

Program Correctness and Efficiency. Chapter 2

Program Correctness and Efficiency. Chapter 2 Program Correctness and Efficiency Chapter 2 Chapter Objectives To understand the differences between the three categories of program errors To understand the effect of an uncaught exception and why you

More information

G51PGP Programming Paradigms. Lecture 009 Concurrency, exceptions

G51PGP Programming Paradigms. Lecture 009 Concurrency, exceptions G51PGP Programming Paradigms Lecture 009 Concurrency, exceptions 1 Reminder subtype polymorphism public class TestAnimals public static void main(string[] args) Animal[] animals = new Animal[6]; animals[0]

More information

Thirty one Problems in the Semantics of UML 1.3 Dynamics

Thirty one Problems in the Semantics of UML 1.3 Dynamics Thirty one Problems in the Semantics of UML 1.3 Dynamics G. Reggio R.J. Wieringa September 14, 1999 1 Introduction In this discussion paper we list a number of problems we found with the current dynamic

More information

Models of concurrency & synchronization algorithms

Models of concurrency & synchronization algorithms Models of concurrency & synchronization algorithms Lecture 3 of TDA383/DIT390 (Concurrent Programming) Carlo A. Furia Chalmers University of Technology University of Gothenburg SP3 2016/2017 Today s menu

More information

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION

[module 2.2] MODELING CONCURRENT PROGRAM EXECUTION v1.0 20130407 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module 2.2] MODELING CONCURRENT PROGRAM EXECUTION 1 SUMMARY Making

More information

Lecture 17: Sharing Objects in Java

Lecture 17: Sharing Objects in Java COMP 150-CCP Concurrent Programming Lecture 17: Sharing Objects in Java Dr. Richard S. Hall rickhall@cs.tufts.edu Concurrent programming March 25, 2008 Reference The content of this lecture is based on

More information

Chapter 1: Principles of Programming and Software Engineering

Chapter 1: Principles of Programming and Software Engineering Chapter 1: Principles of Programming and Software Engineering Data Abstraction & Problem Solving with C++ Fifth Edition by Frank M. Carrano Software Engineering and Object-Oriented Design Coding without

More information

Type Hierarchy. Lecture 6: OOP, autumn 2003

Type Hierarchy. Lecture 6: OOP, autumn 2003 Type Hierarchy Lecture 6: OOP, autumn 2003 The idea Many types have common behavior => type families share common behavior organized into a hierarchy Most common on the top - supertypes Most specific at

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

Java for Programmers Course (equivalent to SL 275) 36 Contact Hours

Java for Programmers Course (equivalent to SL 275) 36 Contact Hours Java for Programmers Course (equivalent to SL 275) 36 Contact Hours Course Overview This course teaches programmers the skills necessary to create Java programming system applications and satisfies the

More information

Implementing Object Equivalence in Java Using the Template Method Design Pattern

Implementing Object Equivalence in Java Using the Template Method Design Pattern Implementing Object Equivalence in Java Using the Template Method Design Pattern Daniel E. Stevenson and Andrew T. Phillips Computer Science Department University of Wisconsin-Eau Claire Eau Claire, WI

More information

Object Oriented Paradigm

Object Oriented Paradigm Object Oriented Paradigm Ming-Hwa Wang, Ph.D. Department of Computer Engineering Santa Clara University Object Oriented Paradigm/Programming (OOP) similar to Lego, which kids build new toys from assembling

More information

Outline. Java Models for variables Types and type checking, type safety Interpretation vs. compilation. Reasoning about code. CSCI 2600 Spring

Outline. Java Models for variables Types and type checking, type safety Interpretation vs. compilation. Reasoning about code. CSCI 2600 Spring Java Outline Java Models for variables Types and type checking, type safety Interpretation vs. compilation Reasoning about code CSCI 2600 Spring 2017 2 Java Java is a successor to a number of languages,

More information

https://asd-pa.perfplusk12.com/admin/admin_curric_maps_display.aspx?m=5507&c=618&mo=18917&t=191&sy=2012&bl...

https://asd-pa.perfplusk12.com/admin/admin_curric_maps_display.aspx?m=5507&c=618&mo=18917&t=191&sy=2012&bl... Page 1 of 13 Units: - All - Teacher: ProgIIIJavaI, CORE Course: ProgIIIJavaI Year: 2012-13 Intro to Java How is data stored by a computer system? What does a compiler do? What are the advantages of using

More information

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections Thread Safety Today o Confinement o Threadsafe datatypes Required reading Concurrency Wrapper Collections Optional reading The material in this lecture and the next lecture is inspired by an excellent

More information

Chapter 1: Programming Principles

Chapter 1: Programming Principles Chapter 1: Programming Principles Object Oriented Analysis and Design Abstraction and information hiding Object oriented programming principles Unified Modeling Language Software life-cycle models Key

More information

Inheritance -- Introduction

Inheritance -- Introduction Inheritance -- Introduction Another fundamental object-oriented technique is called inheritance, which, when used correctly, supports reuse and enhances software designs Chapter 8 focuses on: the concept

More information

Runtime assertion checking of multithreaded Java programs

Runtime assertion checking of multithreaded Java programs Master Thesis Runtime assertion checking of multithreaded Java programs An extension of the STROBE framework Author: Jorne Kandziora Supervisors: dr. M. Huisman dr. C.M. Bockisch M. Zaharieva-Stojanovski,

More information

Mutating Object State and Implementing Equality

Mutating Object State and Implementing Equality Mutating Object State and Implementing Equality 6.1 Mutating Object State Goals Today we touch the void... (sounds creepy right... see the movie, or read the book, to understand how scary the void can

More information

Java Overview An introduction to the Java Programming Language

Java Overview An introduction to the Java Programming Language Java Overview An introduction to the Java Programming Language Produced by: Eamonn de Leastar (edeleastar@wit.ie) Dr. Siobhan Drohan (sdrohan@wit.ie) Department of Computing and Mathematics http://www.wit.ie/

More information

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview Introduction to Visual Basic and Visual C++ Introduction to Java Lesson 13 Overview I154-1-A A @ Peter Lo 2010 1 I154-1-A A @ Peter Lo 2010 2 Overview JDK Editions Before you can write and run the simple

More information

CST242 Concurrency Page 1

CST242 Concurrency Page 1 CST242 Concurrency Page 1 1 2 3 4 5 6 7 9 Concurrency CST242 Concurrent Processing (Page 1) Only computers with multiple processors can truly execute multiple instructions concurrently On single-processor

More information

Contents. I. Classes, Superclasses, and Subclasses. Topic 04 - Inheritance

Contents. I. Classes, Superclasses, and Subclasses. Topic 04 - Inheritance Contents Topic 04 - Inheritance I. Classes, Superclasses, and Subclasses - Inheritance Hierarchies Controlling Access to Members (public, no modifier, private, protected) Calling constructors of superclass

More information

Topics in Object-Oriented Design Patterns

Topics in Object-Oriented Design Patterns Software design Topics in Object-Oriented Design Patterns Material mainly from the book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; slides originally by Spiros Mancoridis;

More information

Objects Managing a Resource

Objects Managing a Resource Objects Managing a Resource 1 What is a Resource Respects Release/Acquire protocol files (open/close) memory allocation (allocate/free) locks (acquire/release). 2 What is a Resource Objects when constructed,

More information

02 Features of C#, Part 1. Jerry Nixon Microsoft Developer Evangelist Daren May President & Co-founder, Crank211

02 Features of C#, Part 1. Jerry Nixon Microsoft Developer Evangelist Daren May President & Co-founder, Crank211 02 Features of C#, Part 1 Jerry Nixon Microsoft Developer Evangelist Daren May President & Co-founder, Crank211 Module Overview Constructing Complex Types Object Interfaces and Inheritance Generics Constructing

More information

Course Description. Learn To: : Intro to JAVA SE7 and Programming using JAVA SE7. Course Outline ::

Course Description. Learn To: : Intro to JAVA SE7 and Programming using JAVA SE7. Course Outline :: Module Title Duration : Intro to JAVA SE7 and Programming using JAVA SE7 : 9 days Course Description The Java SE 7 Fundamentals course was designed to enable students with little or no programming experience

More information

Index. Index. More information. block statements 66 y 107 Boolean 107 break 55, 68 built-in types 107

Index. Index. More information. block statements 66 y 107 Boolean 107 break 55, 68 built-in types 107 A abbreviations 17 abstract class 105 abstract data types 105 abstract method 105 abstract types 105 abstraction 92, 105 access level 37 package 114 private 115 protected 115 public 115 accessors 24, 105

More information

Points To Remember for SCJP

Points To Remember for SCJP Points To Remember for SCJP www.techfaq360.com The datatype in a switch statement must be convertible to int, i.e., only byte, short, char and int can be used in a switch statement, and the range of the

More information

Absolute C++ Walter Savitch

Absolute C++ Walter Savitch Absolute C++ sixth edition Walter Savitch Global edition This page intentionally left blank Absolute C++, Global Edition Cover Title Page Copyright Page Preface Acknowledgments Brief Contents Contents

More information

Object-Oriented Design

Object-Oriented Design Object-Oriented Design Lecture 14: Design Workflow Department of Computer Engineering Sharif University of Technology 1 UP iterations and workflow Workflows Requirements Analysis Phases Inception Elaboration

More information

CS 159: Parallel Processing

CS 159: Parallel Processing Outline: Concurrency using Java CS 159: Parallel Processing Spring 2007 Processes vs Threads Thread basics Synchronization Locks Examples Avoiding problems Immutable objects Atomic operations High"level

More information

Introduction to Design Patterns

Introduction to Design Patterns Introduction to Design Patterns First, what s a design pattern? a general reusable solution to a commonly occurring problem within a given context in software design It s not a finished design that can

More information

Grafting Functional Support on Top of an Imperative Language

Grafting Functional Support on Top of an Imperative Language Grafting Functional Support on Top of an Imperative Language How D 2.0 implements immutability and functional purity Andrei Alexandrescu Grafting Functional Support on Top of an Imperative Language p.

More information

CS-202 Introduction to Object Oriented Programming

CS-202 Introduction to Object Oriented Programming CS-202 Introduction to Object Oriented Programming California State University, Los Angeles Computer Science Department Lecture III Inheritance and Polymorphism Introduction to Inheritance Introduction

More information

Chapter 6 Introduction to Defining Classes

Chapter 6 Introduction to Defining Classes Introduction to Defining Classes Fundamentals of Java: AP Computer Science Essentials, 4th Edition 1 Objectives Design and implement a simple class from user requirements. Organize a program in terms of

More information

DOWNLOAD PDF CORE JAVA APTITUDE QUESTIONS AND ANSWERS

DOWNLOAD PDF CORE JAVA APTITUDE QUESTIONS AND ANSWERS Chapter 1 : Chapter-wise Java Multiple Choice Questions and Answers Interview MCQs Java Programming questions and answers with explanation for interview, competitive examination and entrance test. Fully

More information

Software Architecture

Software Architecture Software Architecture Lecture 5 Call-Return Systems Rob Pettit George Mason University last class data flow data flow styles batch sequential pipe & filter process control! process control! looping structure

More information

Data Structures (list, dictionary, tuples, sets, strings)

Data Structures (list, dictionary, tuples, sets, strings) Data Structures (list, dictionary, tuples, sets, strings) Lists are enclosed in brackets: l = [1, 2, "a"] (access by index, is mutable sequence) Tuples are enclosed in parentheses: t = (1, 2, "a") (access

More information

The Java Memory Model

The Java Memory Model The Java Memory Model What is it and why would I want one? Jörg Domaschka. ART Group, Institute for Distributed Systems Ulm University, Germany December 14, 2009 public class WhatDoIPrint{ static int x

More information

Type Hierarchy. Comp-303 : Programming Techniques Lecture 9. Alexandre Denault Computer Science McGill University Winter 2004

Type Hierarchy. Comp-303 : Programming Techniques Lecture 9. Alexandre Denault Computer Science McGill University Winter 2004 Type Hierarchy Comp-303 : Programming Techniques Lecture 9 Alexandre Denault Computer Science McGill University Winter 2004 February 16, 2004 Lecture 9 Comp 303 : Programming Techniques Page 1 Last lecture...

More information

The Java Type System (continued)

The Java Type System (continued) Object-Oriented Design Lecture 5 CSU 370 Fall 2007 (Pucella) Friday, Sep 21, 2007 The Java Type System (continued) The Object Class All classes subclass the Object class. (By default, this is the superclass

More information

Thread Synchronization: Foundations. Properties. Safety properties. Edsger s perspective. Nothing bad happens

Thread Synchronization: Foundations. Properties. Safety properties. Edsger s perspective. Nothing bad happens Edsger s perspective Testing can only prove the presence of bugs Thread Synchronization: Foundations Properties Property: a predicate that is evaluated over a run of the program (a trace) every message

More information

Subclass Gist Example: Chess Super Keyword Shadowing Overriding Why? L10 - Polymorphism and Abstract Classes The Four Principles of Object Oriented

Subclass Gist Example: Chess Super Keyword Shadowing Overriding Why? L10 - Polymorphism and Abstract Classes The Four Principles of Object Oriented Table of Contents L01 - Introduction L02 - Strings Some Examples Reserved Characters Operations Immutability Equality Wrappers and Primitives Boxing/Unboxing Boxing Unboxing Formatting L03 - Input and

More information

Programmazione di sistemi multicore

Programmazione di sistemi multicore Programmazione di sistemi multicore A.A. 2015-2016 LECTURE 14 IRENE FINOCCHI http://wwwusers.di.uniroma1.it/~finocchi/ Programming with locks and critical sections MORE BAD INTERLEAVINGS GUIDELINES FOR

More information

Assertions, pre/postconditions

Assertions, pre/postconditions Programming as a contract Assertions, pre/postconditions Assertions: Section 4.2 in Savitch (p. 239) Specifying what each method does q Specify it in a comment before method's header Precondition q What

More information

Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 6

Lethbridge/Laganière 2005 Chapter 9: Architecting and designing software 6 Trying to deal with something big all at once is normally much harder than dealing with a series of smaller things Separate people can work on each part. An individual software engineer can specialize.

More information

15CS45 : OBJECT ORIENTED CONCEPTS

15CS45 : OBJECT ORIENTED CONCEPTS 15CS45 : OBJECT ORIENTED CONCEPTS QUESTION BANK: What do you know about Java? What are the supported platforms by Java Programming Language? List any five features of Java? Why is Java Architectural Neutral?

More information

Reviewing for the Midterm Covers chapters 1 to 5, 7 to 9. Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013

Reviewing for the Midterm Covers chapters 1 to 5, 7 to 9. Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013 Reviewing for the Midterm Covers chapters 1 to 5, 7 to 9 Instructor: Scott Kristjanson CMPT 125/125 SFU Burnaby, Fall 2013 2 Things to Review Review the Class Slides: Key Things to Take Away Do you understand

More information

Top Down Design vs. Modularization

Top Down Design vs. Modularization 6.170 Quiz Review Topics: 1. Decoupling 2. 3. AF & RI 4. Iteration Abstraction & Iterators 5. OMs and Invariants 6. Equality, Copying, Views 7. 8. Design Patterns 9. Subtyping 10. Case Studies Decomposition

More information

Josh Bloch Charlie Garrod Darya Melicher

Josh Bloch Charlie Garrod Darya Melicher Principles of Software Construction: Objects, Design, and Concurrency Concurrency part 2 Synchronization, communication, and liveness Josh Bloch Charlie Garrod Darya Melicher 1 Administrivia Reading due

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information

Client Code - the code that uses the classes under discussion. Coupling - code in one module depends on code in another module

Client Code - the code that uses the classes under discussion. Coupling - code in one module depends on code in another module Basic Class Design Goal of OOP: Reduce complexity of software development by keeping details, and especially changes to details, from spreading throughout the entire program. Actually, the same goal as

More information

Foundations of the C++ Concurrency Memory Model

Foundations of the C++ Concurrency Memory Model Foundations of the C++ Concurrency Memory Model John Mellor-Crummey and Karthik Murthy Department of Computer Science Rice University johnmc@rice.edu COMP 522 27 September 2016 Before C++ Memory Model

More information

Agenda. Objects and classes Encapsulation and information hiding Documentation Packages

Agenda. Objects and classes Encapsulation and information hiding Documentation Packages Preliminaries II 1 Agenda Objects and classes Encapsulation and information hiding Documentation Packages Inheritance Polymorphism Implementation of inheritance in Java Abstract classes Interfaces Generics

More information