Introduction to Concurrent Programming

Size: px
Start display at page:

Download "Introduction to Concurrent Programming"

Transcription

1 Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας Introduction to Concurrent Programming Based on the companion slides for the book The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit, 2008

2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

3 From the New York Times SAN FRANCISCO, 7 May Intel said on Friday that it was scrapping its development of two microprocessors, a move that is a shift in the company's business strategy. Introduction to Concurrent Programming 2

4 Moore s Law Transistor count still rising Clock speed flattening sharply Introduction to Concurrent Programming 3

5 Your Old Desktop: A Uniprocesor cpu memory Introduction to Concurrent Programming 4

6 Till recently in the Enterprise: The Shared Memory Multiprocessor (SMP) cache cache Bus cache Bus shared memory Introduction to Concurrent Programming 5

7 On Your New Desktop: The Multicore processor (CMP) All on the same chip cache cache cache Bus Bus shared memory Sun T2000 Niagara Introduction to Concurrent Programming 6

8 Multicores Are Here Intel's Intel ups ante with 4-core chip. New microprocessor, due this year, will be faster, use less electricity... [San Fran Chronicle] AMD will launch a dual-core version of its Opteron server processor at an event in New York on April 21. [PC World] Sun s Niagara will have eight cores, each core capable of running 4 threads in parallel, for 32 concurrently running threads.. [The Inquierer] Introduction to Concurrent Programming 7

9 Why do we care? Time no longer cures software bloat The free ride is over When you double your program s path length You can t just wait 6 months Your software must somehow exploit twice as much concurrency Introduction to Concurrent Programming 8

10 Traditional Scaling Process Speedup 1.8x 3.6x 7x User code Traditional Uniprocessor Time: Moore s law Introduction to Concurrent Programming 9

11 Multicore Scaling Process Speedup 1.8x 3.6x 7x User code Multicore Unfortunately, not so simple Introduction to Concurrent Programming 10

12 Real-World Scaling Process Speedup 1.8x 2x 2.9x User code Multicore Parallelization and Synchronization require great care Introduction to Concurrent Programming 11

13 Sequential Computation thread memory object object Introduction to Concurrent Programming 12

14 Concurrent Computation threads memory object object Introduction to Concurrent Programming 13

15 Asynchrony Sudden unpredictable delays Cache misses (short) Page faults (long) Scheduling quantum used up (really long) Introduction to Concurrent Programming 14

16 Model Summary Multiple threads Sometimes called processes Single shared memory Objects live in memory Unpredictable asynchronous delays Introduction to Concurrent Programming 15

17 Road Map We are going to focus on principles first, then practice Start with idealized models Look at simplistic problems Emphasize correctness over pragmatism Correctness may be theoretical, but incorrectness has practical impact Introduction to Concurrent Programming 16

18 Concurrency Jargon Hardware Processors, cores Software Threads, processes Sometimes OK to confuse them, sometimes not Introduction to Concurrent Programming 17

19 Parallel Primality Testing Challenge Print primes from 1 to Given Ten-processor multiprocessor One thread per processor Goal Get ten-fold speedup (or close) Introduction to Concurrent Programming 18

20 Load Balancing P 0 P 1 P 9 Split the work evenly Each thread tests range of 10 9 Introduction to Concurrent Programming 19

21 Procedure for Thread i void primeprint { int i = ThreadID.get(); // IDs in {0..9} for (j = i* , j < (i+1)*10 9 ; j++) { if (isprime(j)) print(j); } } Introduction to Concurrent Programming 20

22 Issues Higher ranges have fewer primes Yet larger numbers harder to test Thread workloads Uneven Hard to predict rejected Need dynamic load balancing Introduction to Concurrent Programming 21

23 Shared Counter each thread takes a number 17 Introduction to Concurrent Programming 22

24 Procedure for Thread i int counter = new Counter(1); void primeprint { long j = 0; while (j < ) { j = counter.getandincrement(); if (isprime(j)) print(j); } } Introduction to Concurrent Programming 23

25 Procedure for Thread i Counter counter = new Counter(1); void primeprint { long j = 0; while (j < ) { j = counter.getandincrement(); } } if (isprime(j)) print(j); Shared counter object Introduction to Concurrent Programming 24

26 Where Things Reside int counter = new Counter(1); void primeprint { long j = 0; while (j < ) { j = counter.getandincrement(); if (isprime(j)) print(j); } } code Local variables cache cache Bus cache Bus 1 shared memory shared counter Introduction to Concurrent Programming 25

27 Procedure for Thread i Counter counter = new Counter(1); void primeprint { Stop when every long j = 0; value taken while (j < ) { j = counter.getandincrement(); if (isprime(j)) print(j); } } Introduction to Concurrent Programming 26

28 Procedure for Thread i Counter counter = new Counter(1); void primeprint { long j = 0; while (j < ) { j = counter.getandincrement(); if (isprime(j)) print(j); } } Increment & return each new value Introduction to Concurrent Programming 27

29 Counter Implementation public class Counter { private long value; } public long getandincrement() { return value++; } OK for single thread, not for concurrent threads Introduction to Concurrent Programming 28

30 What It Means public class Counter { private long value; } public long getandincrement() { return value++; temp = value; } value = value + 1; return temp; Introduction to Concurrent Programming 29

31 Not so good Value read 1 write 2 read 2 write 3 read 1 write 2 time Introduction to Concurrent Programming 30

32 Is this problem inherent? read write write read If we could only glue reads and writes Introduction to Concurrent Programming 31

33 Challenge public class Counter { private long value; } public long getandincrement() { temp = value; value = temp + 1; return temp; } Make these steps atomic (indivisible) Introduction to Concurrent Programming 32

34 Hardware Solution public class Counter { private long value; public long getandincrement() { temp = value; value = temp + 1; return temp; } } ReadModifyWrite() instruction Introduction to Concurrent Programming 33

35 An Aside: Java public class Counter { private long value; } public long getandincrement() { synchronized { temp = value; value = temp + 1; } return temp; } Synchronized block Introduction to Concurrent Programming 34

36 An Aside: Java public class Counter { private long value; } public long getandincrement() { synchronized { temp = value; value = temp + 1; } return temp; } Mutual Exclusion Introduction to Concurrent Programming 35

37 Mutual Exclusion or Alice & Bob share a pond A B Introduction to Concurrent Programming 36

38 Alice has a pet A B Introduction to Concurrent Programming 37

39 Bob has a pet A B Introduction to Concurrent Programming 38

40 The Problem A B The pets don t get along Introduction to Concurrent Programming 39

41 Formalizing the Problem Two types of formal properties in asynchronous computation: Safety Properties Nothing bad happens ever Liveness Properties Something good happens eventually Introduction to Concurrent Programming 40

42 Formalizing our Problem Mutual Exclusion Both pets never in pond simultaneously This is a safety property No Deadlock if only one wants in, it gets in if both want in, one gets in. This is a liveness property Introduction to Concurrent Programming 41

43 Simple Protocol Idea Just look at the pond Gotcha Trees obscure the view Introduction to Concurrent Programming 42

44 Interpretation Threads can t see what other threads are doing Explicit communication required for coordination Introduction to Concurrent Programming 43

45 Mobile Phone Protocol Idea Bob sends SMS to Alice (or vice-versa) Gotcha Bob takes shower Alice recharges battery Bob out shopping for pet food Introduction to Concurrent Programming 44

46 Interpretation Message-passing doesn t work Recipient might not be Listening There at all Communication must be Persistent (like writing) Not transient (like speaking) Introduction to Concurrent Programming 45

47 Can Protocol cola cola Introduction to Concurrent Programming 46

48 Bob conveys a bit A B cola Introduction to Concurrent Programming 47

49 Bob conveys a bit A B cola Introduction to Concurrent Programming 48

50 Can Protocol Idea Cans on Alice s windowsill Strings lead to Bob s house Bob pulls strings, knocks over cans Gotcha Cans cannot be reused Bob runs out of cans Introduction to Concurrent Programming 49

51 Interpretation Cannot solve mutual exclusion with interrupts Sender sets fixed bit in receiver s space Receiver resets bit when ready Requires unbounded number of interrupt bits Introduction to Concurrent Programming 50

52 Flag Protocol A B Introduction to Concurrent Programming 51

53 Alice s Protocol (sort of) A B Introduction to Concurrent Programming 52

54 Bob s Protocol (sort of) A B Introduction to Concurrent Programming 53

55 Alice s Protocol Raise flag Wait until Bob s flag is down Unleash pet Lower flag when pet returns Introduction to Concurrent Programming 54

56 Bob s Protocol Raise flag Wait until Alice s flag is down Unleash pet Lower flag when pet returns danger! Introduction to Concurrent Programming 55

57 Bob s Protocol (2 nd try) Bob defers Raise flag to Alice While Alice s flag is up Lower flag Wait for Alice s flag to go down Raise flag Unleash pet Lower flag when pet returns Introduction to Concurrent Programming 56

58 The Flag Principle Raise the flag Look at other s flag Flag Principle: If each raises and looks, then Last to look must see both flags up Introduction to Concurrent Programming 57

59 Proof of Mutual Exclusion Assume both pets in pond Derive a contradiction By reasoning backwards Consider the last time Alice and Bob each looked before letting the pets in Without loss of generality assume Alice was the last to look Introduction to Concurrent Programming 58

60 Proof Bob last raised flag Alice last raised her flag Alice s last look Bob s last looked time QED Alice must have Introduction seen to Concurrent Bob s Programming flag. A contradiction 59

61 Proof of No Deadlock If only one pet wants in, it gets in. Deadlock requires both continually trying to get in. If Bob sees Alice s flag, he gives her priority (a gentleman ) QED Introduction to Concurrent Programming 60

62 Remarks Protocol is unfair Bob s pet might never get in Protocol uses waiting If Bob is eaten by his pet, Alice s pet might never get in Introduction to Concurrent Programming 61

63 Moral of Story Mutual Exclusion cannot be solved by transient communication (mobile phones) interrupts (cans) It can be solved by one-bit shared variables that can be read or written Introduction to Concurrent Programming 62

64 The Arbiter Problem (an aside) Pick a point Pick a point Introduction to Concurrent Programming 63

65 The Fable Continues Alice and Bob fall in love & marry Then they fall out of love & divorce She gets the pets (who now get along fine with each other) He has to feed them Leading to a new coordination problem: Producer-Consumer Introduction to Concurrent Programming 64

66 Bob Puts Food in the Pond A Introduction to Concurrent Programming 65

67 Alice releases her pets to Feed mmm mmm B Introduction to Concurrent Programming 66

68 Producer/Consumer Alice and Bob can t meet Each has restraining order on other So he puts food in the pond And later, she releases the pets Avoid Releasing pets when there s no food Putting out food if uneaten food remains Introduction to Concurrent Programming 67

69 Producer/Consumer Need a mechanism so that Bob lets Alice know when food has been put out Alice lets Bob know when to put out more food Introduction to Concurrent Programming 68

70 Surprise Solution A B cola Introduction to Concurrent Programming 69

71 Bob puts food in Pond A B cola Introduction to Concurrent Programming 70

72 Bob knocks over Can A B cola Introduction to Concurrent Programming 71

73 Alice Releases Pets A yum yum B cola Introduction to Concurrent Programming 72

74 Alice Resets Can when Pets are Fed A B cola Introduction to Concurrent Programming 73

75 Pseudocode while (true) { while (can.isup()){}; pet.release(); Bob s code pet.recapture(); can.reset(); } while (true) { while (can.isdown()){}; pond.stockwithfood(); can.knockover(); } Alice s code Introduction to Concurrent Programming 74

76 Correctness Mutual Exclusion Pets and Bob never together in pond No Starvation safety liveness if Bob always willing to feed, and pets always famished, then pets eat infinitely often. Producer/Consumer The pets never enter pond unless there is food, and Bob never provides food if there is unconsumed food. safety Introduction to Concurrent Programming 75

77 Could Also Solve Using Flags A B Introduction to Concurrent Programming 76

78 Waiting Both solutions use waiting while(mumble){} Waiting is problematic If one participant is delayed So is everyone else But delays are common & unpredictable Introduction to Concurrent Programming 77

79 The Fable drags on Bob and Alice still have issues But they need to communicate So they agree to use billboards Introduction to Concurrent Programming 78

80 Billboards are Large B A 3 C 1 3 D 2 E 1 Letter Tiles From Scrabble box Introduction to Concurrent Programming 79

81 Write One Letter at a Time W 4 A 1 S 1 H4 A 1 B 3 C 3 D 2 E 1 Introduction to Concurrent Programming 80

82 To post a message W A S H T H E C A R whe w Introduction to Concurrent Programming 81

83 Let s send another message L S E L L L A V A 1 A M P3 3 S 1 Introduction to Concurrent Programming 82

84 Uh-Oh S 1 E 1 L 1 L 1 T 1 H 4 E 1 C A R L 1 OK Introduction to Concurrent Programming 83

85 Readers/Writers Devise a protocol so that Writer writes one letter at a time Reader reads one letter at a time Reader sees Old message or new message No mixed messages Introduction to Concurrent Programming 84

86 Readers/Writers (cont d) Easy with mutual exclusion But mutual exclusion requires waiting One waits for the other Everyone executes sequentially Remarkably We can solve R/W without mutual exclusion Introduction to Concurrent Programming 85

87 Why do we care? We want as much of the code as possible to execute concurrently (in parallel) A larger sequential part implies reduced performance Amdahl s law: this relation is not linear Introduction to Concurrent Programming 86

88 Amdahl s Law Speedup = OldExecutionTime NewExecutionTime of computation given n CPUs instead of 1 Introduction to Concurrent Programming 87

89 Amdahl s Law Sequential fraction Speedup = Number of processors 1 1 p + p n Parallel fraction Introduction to Concurrent Programming 88

90 Example Ten processors 60% concurrent, 40% sequential How close to 10-fold speedup? Speedup=2.17= Introduction to Concurrent Programming 89

91 Example Ten processors 80% concurrent, 20% sequential How close to 10-fold speedup? Speedup=3.57= Introduction to Concurrent Programming 90

92 Example Ten processors 90% concurrent, 10% sequential How close to 10-fold speedup? Speedup=5.26= Introduction to Concurrent Programming 91

93 Example Ten processors 99% concurrent, 01% sequential How close to 10-fold speedup? Speedup=9.17= Introduction to Concurrent Programming 92

94 The Moral Making good use of our multiple processors (cores) means Finding ways to effectively parallelize our code Minimize sequential parts Reduce idle time: time in which threads wait without work Introduction to Concurrent Programming 93

95 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

Introduction to Concurrent Programming

Introduction to Concurrent Programming Introduction to Concurrent Programming Based on the companion slides for the book The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit, 2008 From the New York Times SAN FRANCISCO, 7 May

More information

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Introduction Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Moore s Law Transistor count still rising Clock speed flattening sharply Art of Multiprocessor Programming

More information

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit. Art of Multiprocessor Programming

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit. Art of Multiprocessor Programming Introduction Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Art of Multiprocessor Programming Moore s Law Transistor count still rising Clock speed flattening

More information

Programming Paradigms for Concurrency Introduction

Programming Paradigms for Concurrency Introduction Programming Paradigms for Concurrency Introduction Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University Moore

More information

COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009

COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009 COMP 322: Principles of Parallel Programming Lecture 11: Parallel Programming Issues (Chapter 6) Fall 2009 Vivek Sarkar Department of Computer Science Rice University vsarkar@rice.edu COMP 322 Lecture

More information

Introduction to Multiprocessor Synchronization

Introduction to Multiprocessor Synchronization Introduction to Multiprocessor Synchronization Maurice Herlihy http://cs.brown.edu/courses/cs176/lectures.shtml Moore's Law Transistor count still rising Clock speed flattening sharply Art of Multiprocessor

More information

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Introduction. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Introduction Companion slides for The by Maurice Herlihy & Nir Shavit Moore s Law Transistor count still rising Clock speed flattening sharply 2 Moore s Law (in practice) 3 Nearly Extinct: the Uniprocesor

More information

Introduction. Chapter 1

Introduction. Chapter 1 Chapter 1 Introduction Every year, processors get faster and cheaper: processor speeds double roughly every two years. This remarkable rate of improvement will probably continue for a while, but eventually,

More information

Υλοποίηση γλωσσών συναρτησιακού προγραμματισμού

Υλοποίηση γλωσσών συναρτησιακού προγραμματισμού Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γλώσσες Προγραμματισμού ΙΙ Διδάσκοντες: Νικόλαος Παπασπύρου, Κωστής Σαγώνας

More information

ARM Compiler and assembly on QEMU

ARM Compiler and assembly on QEMU School of Electrical and Computer Engineering N.T.U.A. Embedded System Design Dimitrios Soudris ARM Compiler and assembly on QEMU Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

More information

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Principles of Concurrency and Parallelism Lecture 7: Mutual Exclusion 2/16/12 slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Time Absolute, true and mathematical time, of

More information

Locks Chapter 4. Overview. Introduction Spin Locks. Queue locks. Roger Wattenhofer. Test-and-Set & Test-and-Test-and-Set Backoff lock

Locks Chapter 4. Overview. Introduction Spin Locks. Queue locks. Roger Wattenhofer. Test-and-Set & Test-and-Test-and-Set Backoff lock Locks Chapter 4 Roger Wattenhofer ETH Zurich Distributed Computing www.disco.ethz.ch Overview Introduction Spin Locks Test-and-Set & Test-and-Test-and-Set Backoff lock Queue locks 4/2 1 Introduction: From

More information

Introduction to Concurrency and Multicore Programming. Slides adapted from Art of Multicore Programming by Herlihy and Shavit

Introduction to Concurrency and Multicore Programming. Slides adapted from Art of Multicore Programming by Herlihy and Shavit Introduction to Concurrency and Multicore Programming Slides adapted from Art of Multicore Programming by Herlihy and Shavit Overview Introduction Mutual Exclusion Linearizability Concurrent Data Structure

More information

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Spin Locks and Contention Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Real world concurrency Understanding hardware architecture What is contention How to

More information

Locking. Part 2, Chapter 11. Roger Wattenhofer. ETH Zurich Distributed Computing

Locking. Part 2, Chapter 11. Roger Wattenhofer. ETH Zurich Distributed Computing Locking Part 2, Chapter 11 Roger Wattenhofer ETH Zurich Distributed Computing www.disco.ethz.ch Overview Introduction Spin Locks Test-and-Set & Test-and-Test-and-Set Backoff lock Queue locks 11/2 Introduction:

More information

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0;

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0; 1 Solution: a lock (a/k/a mutex) class BasicLock { public: virtual void lock() =0; virtual void unlock() =0; ; 2 Using a lock class Counter { public: int get_and_inc() { lock_.lock(); int old = count_;

More information

Spin Locks and Contention

Spin Locks and Contention Spin Locks and Contention Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified for Software1 students by Lior Wolf and Mati Shomrat Kinds of Architectures

More information

Linked Lists: Locking, Lock-Free, and Beyond. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Linked Lists: Locking, Lock-Free, and Beyond. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Linked Lists: Locking, Lock-Free, and Beyond Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Objects Adding threads should not lower throughput Contention

More information

Programming Paradigms for Concurrency Lecture 3 Concurrent Objects

Programming Paradigms for Concurrency Lecture 3 Concurrent Objects Programming Paradigms for Concurrency Lecture 3 Concurrent Objects Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University

More information

Mutual Exclusion. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Mutual Exclusion. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Mutual Exclusion Companion slides for The by Maurice Herlihy & Nir Shavit Mutual Exclusion Today we will try to formalize our understanding of mutual exclusion We will also use the opportunity to show

More information

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Spin Locks and Contention. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Spin Locks and Contention Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Focus so far: Correctness and Progress Models Accurate (we never lied to you) But idealized

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

THREADS & CONCURRENCY

THREADS & CONCURRENCY 27/04/2018 Sorry for the delay in getting slides for today 2 Another reason for the delay: Yesterday: 63 posts on the course Piazza yesterday. A7: If you received 100 for correctness (perhaps minus a late

More information

Computer Architecture

Computer Architecture Jens Teubner Computer Architecture Summer 2016 1 Computer Architecture Jens Teubner, TU Dortmund jens.teubner@cs.tu-dortmund.de Summer 2016 Jens Teubner Computer Architecture Summer 2016 83 Part III Multi-Core

More information

An Introduction to Parallel Programming

An Introduction to Parallel Programming An Introduction to Parallel Programming Ing. Andrea Marongiu (a.marongiu@unibo.it) Includes slides from Multicore Programming Primer course at Massachusetts Institute of Technology (MIT) by Prof. SamanAmarasinghe

More information

Multiprocessors & Thread Level Parallelism

Multiprocessors & Thread Level Parallelism Multiprocessors & Thread Level Parallelism COE 403 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Introduction

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Multi-core Architectures. Dr. Yingwu Zhu

Multi-core Architectures. Dr. Yingwu Zhu Multi-core Architectures Dr. Yingwu Zhu What is parallel computing? Using multiple processors in parallel to solve problems more quickly than with a single processor Examples of parallel computing A cluster

More information

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems : Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks on either

More information

Concurrent Computing

Concurrent Computing Concurrent Computing Introduction SE205, P1, 2017 Administrivia Language: (fr)anglais? Lectures: Fridays (15.09-03.11), 13:30-16:45, Amphi Grenat Web page: https://se205.wp.imt.fr/ Exam: 03.11, 15:15-16:45

More information

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages The Dining Philosophers Problem CMSC 0: Organization of Programming Languages Threads Classic Concurrency Problems Philosophers either eat or think They must have two forks to eat Can only use forks on

More information

Spin Locks and Contention. Companion slides for Chapter 7 The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Spin Locks and Contention. Companion slides for Chapter 7 The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Spin Locks and Contention Companion slides for Chapter 7 The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Focus so far: Correctness and Progress Models Accurate (we never lied to you)

More information

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem CMSC 330: Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion

Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion Programming Paradigms for Concurrency Lecture 2 - Mutual Exclusion Based on companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Modified by Thomas Wies New York University

More information

Concurrent Objects. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Concurrent Objects. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Objects Companion slides for The by Maurice Herlihy & Nir Shavit Concurrent Computation memory object object 2 Objectivism What is a concurrent object? How do we describe one? How do we implement

More information

Chapter 5: Thread-Level Parallelism Part 1

Chapter 5: Thread-Level Parallelism Part 1 Chapter 5: Thread-Level Parallelism Part 1 Introduction What is a parallel or multiprocessor system? Why parallel architecture? Performance potential Flynn classification Communication models Architectures

More information

Online Course Evaluation. What we will do in the last week?

Online Course Evaluation. What we will do in the last week? Online Course Evaluation Please fill in the online form The link will expire on April 30 (next Monday) So far 10 students have filled in the online form Thank you if you completed it. 1 What we will do

More information

Process Management And Synchronization

Process Management And Synchronization Process Management And Synchronization In a single processor multiprogramming system the processor switches between the various jobs until to finish the execution of all jobs. These jobs will share the

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Kernel Synchronization I. Changwoo Min

Kernel Synchronization I. Changwoo Min 1 Kernel Synchronization I Changwoo Min 2 Summary of last lectures Tools: building, exploring, and debugging Linux kernel Core kernel infrastructure syscall, module, kernel data structures Process management

More information

Design and Evaluation of Scalable Software

Design and Evaluation of Scalable Software Design and Evaluation of Scalable Software Damian Dechev 1,2 1: University of Central Florida, CSE S3 Lab, http://cse.eecs.ucf.edu Orlando, FL 2: Sandia Labs, Livermore, CA Traditional Scaling Process

More information

CPSC/ECE 3220 Fall 2017 Exam Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts.

CPSC/ECE 3220 Fall 2017 Exam Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts. CPSC/ECE 3220 Fall 2017 Exam 1 Name: 1. Give the definition (note: not the roles) for an operating system as stated in the textbook. (2 pts.) Referee / Illusionist / Glue. Circle only one of R, I, or G.

More information

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013

Lecture 13: Memory Consistency. + a Course-So-Far Review. Parallel Computer Architecture and Programming CMU , Spring 2013 Lecture 13: Memory Consistency + a Course-So-Far Review Parallel Computer Architecture and Programming Today: what you should know Understand the motivation for relaxed consistency models Understand the

More information

Other consistency models

Other consistency models Last time: Symmetric multiprocessing (SMP) Lecture 25: Synchronization primitives Computer Architecture and Systems Programming (252-0061-00) CPU 0 CPU 1 CPU 2 CPU 3 Timothy Roscoe Herbstsemester 2012

More information

Synchronization in Concurrent Programming. Amit Gupta

Synchronization in Concurrent Programming. Amit Gupta Synchronization in Concurrent Programming Amit Gupta Announcements Project 1 grades are out on blackboard. Detailed Grade sheets to be distributed after class. Project 2 grades should be out by next Thursday.

More information

COL 380: Introduc1on to Parallel & Distributed Programming. Lecture 1 Course Overview + Introduc1on to Concurrency. Subodh Sharma

COL 380: Introduc1on to Parallel & Distributed Programming. Lecture 1 Course Overview + Introduc1on to Concurrency. Subodh Sharma COL 380: Introduc1on to Parallel & Distributed Programming Lecture 1 Course Overview + Introduc1on to Concurrency Subodh Sharma Indian Ins1tute of Technology Delhi Credits Material derived from Peter Pacheco:

More information

Principles of Software Construction: Objects, Design, and Concurrency. The Perils of Concurrency Can't live with it. Cant live without it.

Principles of Software Construction: Objects, Design, and Concurrency. The Perils of Concurrency Can't live with it. Cant live without it. Principles of Software Construction: Objects, Design, and Concurrency The Perils of Concurrency Can't live with it. Cant live without it. Spring 2014 Charlie Garrod Christian Kästner School of Computer

More information

What We'll Cover Today

What We'll Cover Today Mutual Exclusion Acknowledgement: Slides adopted from the companion slides for the book "The Art of Mul>processor Programming" by Maurice Herlihy and Nir Shavit What We'll Cover Today Chapter 2 of: Digital

More information

Concurrency Terminology

Concurrency Terminology Lesson 1 Concurrency Ch 1 [BenA 06] Terminology Concurrency in Systems Problem Examples Solution Considerations 1 Concurrency Terminology Process, thread tavallinen ohjelma Ordinary program Sequential

More information

Programming at Scale: Concurrency

Programming at Scale: Concurrency Programming at Scale: Concurrency 1 Goal: Building Fast, Scalable Software How do we speed up software? 2 What is scalability? A system is scalable if it can easily adapt to increased (or reduced) demand

More information

CSE 392/CS 378: High-performance Computing - Principles and Practice

CSE 392/CS 378: High-performance Computing - Principles and Practice CSE 392/CS 378: High-performance Computing - Principles and Practice Parallel Computer Architectures A Conceptual Introduction for Software Developers Jim Browne browne@cs.utexas.edu Parallel Computer

More information

Concurrent Skip Lists. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit

Concurrent Skip Lists. Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit Concurrent Skip Lists Companion slides for The by Maurice Herlihy & Nir Shavit Set Object Interface Collection of elements No duplicates Methods add() a new element remove() an element contains() if element

More information

Parallel Processing: Performance Limits & Synchronization

Parallel Processing: Performance Limits & Synchronization Parallel Processing: Performance Limits & Synchronization Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. May 8, 2018 L22-1 Administrivia Quiz 3: Thursday 7:30-9:30pm, room 50-340

More information

Operating Systems. Synchronization

Operating Systems. Synchronization Operating Systems Fall 2014 Synchronization Myungjin Lee myungjin.lee@ed.ac.uk 1 Temporal relations Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions

More information

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4

10/17/ Gribble, Lazowska, Levy, Zahorjan 2. 10/17/ Gribble, Lazowska, Levy, Zahorjan 4 Temporal relations CSE 451: Operating Systems Autumn 2010 Module 7 Synchronization Instructions executed by a single thread are totally ordered A < B < C < Absent synchronization, instructions executed

More information

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2

Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Lecture 3: Processes Agenda Process Concept Process Scheduling Operations on Processes Interprocess Communication 3.2 Process in General 3.3 Process Concept Process is an active program in execution; process

More information

The Art of Parallel Processing

The Art of Parallel Processing The Art of Parallel Processing Ahmad Siavashi April 2017 The Software Crisis As long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a

More information

Midterm Exam March 13, 2013 CS162 Operating Systems

Midterm Exam March 13, 2013 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2013 Anthony D. Joseph Midterm Exam March 13, 2013 CS162 Operating Systems Your Name: SID AND 162 Login:

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework and numa control Examples

More information

CS 136: Advanced Architecture. Review of Caches

CS 136: Advanced Architecture. Review of Caches 1 / 30 CS 136: Advanced Architecture Review of Caches 2 / 30 Why Caches? Introduction Basic goal: Size of cheapest memory... At speed of most expensive Locality makes it work Temporal locality: If you

More information

Εισαγωγή στον Προγραμματισμό Introduction to Programming

Εισαγωγή στον Προγραμματισμό Introduction to Programming ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εισαγωγή στον Προγραμματισμό Introduction to Programming Διάλεξη 9: Ροή Εισόδου/Εξόδου Γ. Παπαγιαννάκης Άδειες Χρήσης - Το παρόν εκπαιδευτικό υλικό υπόκειται στην

More information

THREADS AND CONCURRENCY

THREADS AND CONCURRENCY THREADS AND CONCURRENCY Lecture 22 CS2110 Spring 2013 Graphs summary 2 Dijkstra: given a vertex v, finds shortest path from v to x for each vertex x in the graph Key idea: maintain a 5-part invariant on

More information

Computer Architecture Crash course

Computer Architecture Crash course Computer Architecture Crash course Frédéric Haziza Department of Computer Systems Uppsala University Summer 2008 Conclusions The multicore era is already here cost of parallelism is dropping

More information

Multi-core Architectures. Dr. Yingwu Zhu

Multi-core Architectures. Dr. Yingwu Zhu Multi-core Architectures Dr. Yingwu Zhu Outline Parallel computing? Multi-core architectures Memory hierarchy Vs. SMT Cache coherence What is parallel computing? Using multiple processors in parallel to

More information

Lesson 1. Concurrency. Terminology Concurrency in Systems Problem Examples Copyright Teemu Kerola 2009

Lesson 1. Concurrency. Terminology Concurrency in Systems Problem Examples Copyright Teemu Kerola 2009 Lesson 1 Concurrency Ch1[B [BenA A06] Terminology Concurrency in Systems Problem Examples Solution Considerations 1 Concurrency Terminology Process, thread Ordinary program tavallinen ohjelma Sequential

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Lecture 10: Multi-Object Synchronization

Lecture 10: Multi-Object Synchronization CS 422/522 Design & Implementation of Operating Systems Lecture 10: Multi-Object Synchronization Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Parallel Programming: Background Information

Parallel Programming: Background Information 1 Parallel Programming: Background Information Mike Bailey mjb@cs.oregonstate.edu parallel.background.pptx Three Reasons to Study Parallel Programming 2 1. Increase performance: do more work in the same

More information

Concurrency: Mutual Exclusion and Synchronization

Concurrency: Mutual Exclusion and Synchronization Concurrency: Mutual Exclusion and Synchronization 1 Needs of Processes Allocation of processor time Allocation and sharing resources Communication among processes Synchronization of multiple processes

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

Introduction to Concurrency (Processes, Threads, Interrupts, etc.)

Introduction to Concurrency (Processes, Threads, Interrupts, etc.) Introduction to Concurrency (Processes, Threads, Interrupts, etc.) CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed.,

More information

CS377P Programming for Performance Multicore Performance Multithreading

CS377P Programming for Performance Multicore Performance Multithreading CS377P Programming for Performance Multicore Performance Multithreading Sreepathi Pai UTCS October 14, 2015 Outline 1 Multiprocessor Systems 2 Programming Models for Multicore 3 Multithreading and POSIX

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

1. Introduction to Concurrent Programming

1. Introduction to Concurrent Programming 1. Introduction to Concurrent Programming A concurrent program contains two or more threads that execute concurrently and work together to perform some task. When a program is executed, the operating system

More information

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Issues in Parallel Processing. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Issues in Parallel Processing Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Introduction Goal: connecting multiple computers to get higher performance

More information

Chapter 6: Synchronization. Chapter 6: Synchronization. 6.1 Background. Part Three - Process Coordination. Consumer. Producer. 6.

Chapter 6: Synchronization. Chapter 6: Synchronization. 6.1 Background. Part Three - Process Coordination. Consumer. Producer. 6. Part Three - Process Coordination Chapter 6: Synchronization 6.1 Background Concurrent access to shared data may result in data inconsistency Maintaining data consistency requires mechanisms to ensure

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information

Advanced Topic: Efficient Synchronization

Advanced Topic: Efficient Synchronization Advanced Topic: Efficient Synchronization Multi-Object Programs What happens when we try to synchronize across multiple objects in a large program? Each object with its own lock, condition variables Is

More information

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Multi-Core. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Multi-Core Prof. Yanjing Li University of Chicago Administrative Stuff! Lab 4 " Due: 11:49pm, Saturday " Two late days with penalty! Exam I " Grades out on

More information

Lecture notes for CS Chapter 4 11/27/18

Lecture notes for CS Chapter 4 11/27/18 Chapter 5: Thread-Level arallelism art 1 Introduction What is a parallel or multiprocessor system? Why parallel architecture? erformance potential Flynn classification Communication models Architectures

More information

CS370 Operating Systems Midterm Review

CS370 Operating Systems Midterm Review CS370 Operating Systems Midterm Review Yashwant K Malaiya Fall 2015 Slides based on Text by Silberschatz, Galvin, Gagne 1 1 What is an Operating System? An OS is a program that acts an intermediary between

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization?

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization? Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions:» What are race conditions?»

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Chapter 6: Synchronization 6.1 Background 6.2 The Critical-Section Problem 6.3 Peterson s Solution 6.4 Synchronization Hardware 6.5 Mutex Locks 6.6 Semaphores 6.7 Classic

More information

Exploring different level of parallelism Instruction-level parallelism (ILP): how many of the operations/instructions in a computer program can be performed simultaneously 1. e = a + b 2. f = c + d 3.

More information

Cache Coherence and Atomic Operations in Hardware

Cache Coherence and Atomic Operations in Hardware Cache Coherence and Atomic Operations in Hardware Previously, we introduced multi-core parallelism. Today we ll look at 2 things: 1. Cache coherence 2. Instruction support for synchronization. And some

More information

Copyright 2010, Elsevier Inc. All rights Reserved

Copyright 2010, Elsevier Inc. All rights Reserved An Introduction to Parallel Programming Peter Pacheco Chapter 1 Why Parallel Computing? 1 Roadmap Why we need ever-increasing performance. Why we re building parallel systems. Why we need to write parallel

More information

Concurrent Preliminaries

Concurrent Preliminaries Concurrent Preliminaries Sagi Katorza Tel Aviv University 09/12/2014 1 Outline Hardware infrastructure Hardware primitives Mutual exclusion Work sharing and termination detection Concurrent data structures

More information

Agenda. Lecture. Next discussion papers. Bottom-up motivation Shared memory primitives Shared memory synchronization Barriers and locks

Agenda. Lecture. Next discussion papers. Bottom-up motivation Shared memory primitives Shared memory synchronization Barriers and locks Agenda Lecture Bottom-up motivation Shared memory primitives Shared memory synchronization Barriers and locks Next discussion papers Selecting Locking Primitives for Parallel Programming Selecting Locking

More information

THREADS & CONCURRENCY

THREADS & CONCURRENCY 4/26/16 Announcements BRING YOUR CORNELL ID TO THE PRELIM. 2 You need it to get in THREADS & CONCURRENCY Prelim 2 is next Tonight BRING YOUR CORNELL ID! A7 is due Thursday. Our Heap.java: on Piazza (A7

More information

SPIN, PETERSON AND BAKERY LOCKS

SPIN, PETERSON AND BAKERY LOCKS Concurrent Programs reasoning about their execution proving correctness start by considering execution sequences CS4021/4521 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College

More information

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL Whatever can go wrong will go wrong. attributed to Edward A. Murphy Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL 251 Literature Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

More information

Week 7. Concurrent Programming: Thread Synchronization. CS 180 Sunil Prabhakar Department of Computer Science Purdue University

Week 7. Concurrent Programming: Thread Synchronization. CS 180 Sunil Prabhakar Department of Computer Science Purdue University Week 7 Concurrent Programming: Thread Synchronization CS 180 Sunil Prabhakar Department of Computer Science Purdue University Announcements Exam 1 tonight 6:30 pm - 7:30 pm MTHW 210 2 Outcomes Understand

More information

Now we are going to speak about the CPU, the Central Processing Unit.

Now we are going to speak about the CPU, the Central Processing Unit. Now we are going to speak about the CPU, the Central Processing Unit. The central processing unit or CPU is the component that executes the instructions of the program that is stored in the computer s

More information

Coherence and Consistency

Coherence and Consistency Coherence and Consistency 30 The Meaning of Programs An ISA is a programming language To be useful, programs written in it must have meaning or semantics Any sequence of instructions must have a meaning.

More information

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28)

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28) Lecture Topics Today: Concurrency (Stallings, chapter 5.1-5.4, 5.7) Next: Exam #1 1 Announcements Self-Study Exercise #5 Project #3 (due 9/28) Project #4 (due 10/12) 2 Exam #1 Tuesday, 10/3 during lecture

More information