Concurrency in Object Oriented Programs 4. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter

Size: px
Start display at page:

Download "Concurrency in Object Oriented Programs 4. Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter"

Transcription

1 Concurrency in Object Oriented Programs 4 Object-Oriented Software Development COMP4001 CSE UNSW Sydney Lecturer: John Potter

2 Outline Thread Control Tasks and Task Control Finding and Exploiting Parallelism 2

3 Thread States A thread can be in one of the following states: NEW A thread that has not yet started is in this state. RUNNABLE A thread executing in the Java virtual machine is in this state. BLOCKED A thread that is blocked waiting for a monitor lock is in this state. WAITING A thread that is waiting indefinitely for another thread to perform a particular action is in this state. TIMED_WAITING A thread that is waiting for another thread to perform an action for up to a specified waiting time is in this state. TERMINATED A thread that has exited is in this state. 3

4 Thread Control Manage the schedules of multiple threads Hand information from one thread to another Signal one thread that another thread has finished doing something Methods for inter-thread control and synchronisation are: getpriority, setpriority, join, interrupt yield, sleep (for current thread) wait, notify, notifyall (per object) 4

5 Thread Priorities Runnable threads are scheduled for execution by JVM Priority mechanism is platform dependent Depends on VM (and OS) Programmers can get and set priority for individual objects getpriority() setpriority() The scheduler uses priorities to allocate CPU time ADVICE: Avoid use of priorities May cause liveness problems e.g. via priority inversion Introduces platform dependence Too weak to protect critical sections! Usually sufficient to rely on default priority 5

6 Thread.sleep Put target thread to sleep for a specified time VM guarantees a minimum sleep time Does not give up locks Any held continue to be held while sleeping Should usually release locks before sleep sleep is useful for providing timeouts controlling the speed of applications e.g. specifying framerates for multimedia presentations sleep responds to an interrupt on the thread by exiting, clearing interrupt status and throwing an InterruptedException 6

7 Sleep Example public class Sleep { public static void main(string args[]) throws InterruptedException { final int N = 10; for (int i = N; i > 0; --i) { // Pause for 10, 9,... 1 seconds Thread.sleep(1000 * i); // Awake indicator System.out.print("."); System.out.println(); 7

8 Thread.yield() Causes current thread to pause Gives up the CPU Allows other threads to execute But no guarantee about which order others may run Current thread may just start up again Similar to Thread.sleep(0) Except for throwing of InterruptedExceptions 8

9 object.wait() A method of the Object class Cause current thread to wait Current thread must hold the target object s lock when called release the lock and place thread on wait queue for the lock Resumption occurs if one of following occurs Waiting thread is interrupted resumes, clears interrupt status, and throws InterruptedException Another thread invokes the notify()/notifyall() methods for the target object 9

10 object.notify() or notifyall() Which of these should be called? Unless there is only one condition for an object that may be waited on call notifyall() and re-check the condition for that thread while(!condition) wait(); with try catch InterruptedException handling Only use notify() when you are sure that any thread that might be waiting can make use of the condition causing the notification 10

11 thread.interrupt() Send an indication to a thread that it should stop and do something else useful for external signals Programmers determine exactly how a thread responds to an interrupt Interrupt handling: If thread is currently blocked by wait, sleep or join interrupt status is cleared, InterruptedException is thrown, and thread is resumed otherwise interrupt status of thread is set 11

12 Programming with Interrupts Handle InterruptedException in blocking methods for (int i = 0; i < importantinfo.length; i++) { //Pause for 4 seconds try { Thread.sleep(4000); catch (InterruptedException e) { //We've been interrupted: no more messages. return; System.out.println(importantInfo[i]); 12

13 Interrupt Status Thread.interrupted() tests whether the current thread has been interrupted. The interrupted status of the thread is cleared by this method. So normally programmer must code some interrupt handling whenever this returns true thread.isinterrupted() tests whether this thread has been interrupted. The interrupted status of the thread is unaffected by this method. 13

14 Thread.interrupted() Programmers can explicitly check the interrupt status of thread when no call throws InterruptedException useful for long running methods for (int i = 0; i < inputs.length; i++) { heavycrunch(inputs[i]); if (Thread.interrupted()) { //We've been interrupted: no more crunching. return; 14

15 thread.join() Force the current thread to wait until another thread terminates used to define synchronization points This thread may continue after another thread has done its business It can provide an alternative to use of locks when different threads are strongly interdependent join responds to an interrupt on the thread by exiting, clearing interrupt status and throwing an InterruptedException 15

16 Example of Thread Join Runnable r1 = ; Runnable r2 = ; Thread t1 = new Thread (r1); Thread t2 = new Thread (r2); t1.start(); t2.start(); // other computation. Do not use r1 or r2 t1.join(); // block until t1 is done t2.join(); // block until t2 is done //Now use r1 and r2 holding results of t1 and t2 computations 16

17 Terminating Threads Normal termination run() terminates Abnormal termination Exception that propagates beyond run() method causes thread termination can define uncaught exception handler for individual threads, or accept default System termination Runtime.exit() 17

18 Comments on Thread Control In general, it is advisable not to directly control thread execution Better approach is to rely on a higher level pattern of thread use The Java Concurrency Framework provides a better option Use executors to separate submission of runnable tasks from execution policy 18

19 Outline Thread Control Tasks and Task Control Finding and Exploiting Parallelism 19

20 Organise Task Execution Each task represents a small fraction of the application's processing capacity We should identify sensible task boundaries ideally, tasks should be as independent as possible independence facilitates concurrency Most server applications offer a natural choice of task boundary individual requests as task boundaries usually requests offer both independence and appropriate task sizing 20

21 Executing Tasks Sequentially The simplest way to organise tasks is to execute tasks sequentially in a single thread class SingleThreadWebServer { public static void main(string[] args) throws IOException { ServerSocket socket = new ServerSocket(80); while (true) { Socket connection = socket.accept(); handlerequest(connection); 21

22 Creating Threads for Tasks A more responsive approach is to create a new thread for servicing each request class ThreadPerTaskWebServer { public static void main(string[] args) throws IOException { ServerSocket socket = new ServerSocket(80); while (true) { Socket connection = socket.accept(); Runnable task = new Runnable() { public void run() { handlerequest(connection); ; new Thread(task).start(); 22

23 Consequences of Executing Tasks in Threads Task processing is offloaded from the main thread this enables the main loop to resume waiting for the next incoming connection more quickly Tasks can be processed in parallel this enables multiple requests to be serviced simultaneously Task-handling code must be thread-safe 23

24 Disadvantages of Unbounded Thread Creation Thread life cycle overhead thread creation and teardown are not free Resource consumption active threads consume system resources, especially memory Stability there is a limit on how many threads can be created We need to place some bound on how many threads the application creates 24

25 The Executor Framework We have seen two policies for executing tasks execute tasks sequentially in a single thread execute each task in its own thread Both have serious limitations either poor responsiveness and throughput or poor resource management The third option for thread management use bounded queues to prevent an application from overloading The primary abstraction for task execution in the Java libraries is not Thread, but Executor Since Java 5 25

26 The Executor Interface java.util.concurrent provides a flexible thread pool implementation as part of the Executor framework public interface Executor { void execute(runnable task); Decouple task submission from task execution tasks are represented by Runnable objects Support a wide variety of task execution policies 26

27 Web Server Using Executor class TaskExecutionWebServer { private static final int NTHREADS = 100; private static final Executor exec = Executors.newFixedThreadPool(NTHREADS); public static void main(string[] args) throws IOException { ServerSocket socket = new ServerSocket(80); while (true) { Socket connection = socket.accept(); Runnable task = new Runnable() { public void run() { handlerequest(connection); ; exec.execute(task); 27

28 Implement the Executor Interface Executor interface can be implemented to support different task execution policies public class ThreadPerTaskExecutor implements Executor { public void execute(runnable r) { new Thread(r).start(); public class WithinThreadExecutor implements Executor { public void execute(runnable r) { r.run(); 28

29 Execution Policies An execution policy specifies what, where, when, and how of task execution in what thread will tasks be executed? in what order should tasks be executed? FIFO, LIFO, priority order how many tasks may execute concurrently? how many tasks may be queued pending execution? if a task has to be rejected because the system is overloaded, which task should be selected as the victim, and how should the application be notified? what actions should be taken before or after executing a task? 29

30 Execution Policies Execution policies must deal with resource management issues the optimal policy depends on the available computing resources and your quality-of-service requirements Decoupling task submission from execution has benefits we can easily specify the execution policy and subsequently change it without great difficulty it becomes practical to select an execution policy at deployment time matching to available system resources e.g. number of CPUs 30

31 Threads Pools A thread pool manages a homogeneous pool of worker threads bound to a queue holding tasks waiting to be executed The lifecycle of a worker thread request the next task from the queue execute the task wait for another task 31

32 Creating Thread Pools java.util.concurrent.executors provides static factory methods for creating thread pools see Java API docs newfixedthreadpool return a thread pool with constant size newcachedthreadpool return a thread pool without bound size, but always try to reuse existing threads first newsinglethreadexecutor newscheduledthreadpool 32

33 Advantages of Thread Pools Reuse an existing thread instead of creating a new one reduce overhead of thread creation/teardown Improve responsiveness immediately execute a task without latency associated with thread creation Exploit multiple processors without exhausting resources enough threads to keep processors busy not too many threads to exhaust resources 33

34 ExecutorService Interface ExecutorService interface extends Executor, with methods for lifecycle management: public interface ExecutorService extends Executor { void shutdown(); List<Runnable> shutdownnow(); boolean isshutdown(); boolean isterminated(); boolean awaittermination(long timeout, TimeUnit unit) throws InterruptedException; //... additional convenience methods for task submission 34

35 Web Server with Shutdown class LifecycleWebServer { private final ExecutorService exec =...; public void start() throws IOException { ServerSocket socket = new ServerSocket(80); while (!exec.isshutdown()) { try { Socket conn = socket.accept(); exec.execute(new Runnable() { public void run() { handlerequest(conn); ); catch (RejectedExecutionException e) { if (!exec.isshutdown()) log("task submission rejected", e); 35

36 Web Server with Shutdown public void stop() { exec.shutdown(); void handlerequest(socket connection) { Request req = readrequest(connection); if (isshutdownrequest(req)) stop(); else dispatchrequest(req); 36

37 Outline Thread Control Tasks and Task Control Finding and Exploiting Parallelism 37

38 Case Study: Page Renderer The page-rendering portion of a browser application takes a page of HTML and renders it into an image buffer We will develop several versions that admit different degrees of concurrency Examples are from Java Concurrency in Practice The simplest approach is to process the HTML document sequentially as text markup is encountered, render it into the image buffer as image references are encountered, fetch the image over the network and draw it into the image 38

39 Sequential Page Renderer public class SingleThreadRenderer { void renderpage(charsequence source) { rendertext(source); List<ImageData> imagedata = new ArrayList<ImageData>(); for (ImageInfo imageinfo : scanforimageinfo(source)) imagedata.add(imageinfo.downloadimage()); for (ImageData data : imagedata) renderimage(data); 39

40 Runnable vs Callable Both Runnables and Callables are tasks that can be processed by an Executor Runnable cannot return a value or throw checked exceptions it can only have side effects Callable can return a value and throw an exception public interface Callable<V> { V call() throws Exception 40

41 Callable and Future The lifecycle of a task executed by an Executor has four phases: created, submitted, started, and completed once a task is completed, it stays in that state forever Future represents the lifecycle of a task provide methods to test whether the task has completed or been cancelled, retrieve its result, and cancel the task 41

42 The Future Interface public interface Future<V> { boolean cancel(boolean mayinterruptifrunning); boolean iscancelled(); boolean isdone(); V get() throws InterruptedException, ExecutionException, CancellationException; V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, CancellationException, TimeoutException; 42

43 ExecutorService Interface (ctd.) public interface ExecutorService extends Executor { // lifecycle management methods // additional convenience methods for task submission <T> Future<T> submit(callable<t> task); <T> Future<T> submit(runnable task, T result); Future<?> submit(runnable task); <T> List<Future<T>> invokeall(collection<? extends Callable<T>> tasks) <T> List<Future<T>> invokeall(collection<? extends Callable<T>> tasks) long timeout, TimeUnit unit) throws InterruptedException; <T> T invokeany(collection<? extends Callable<T>> tasks) throws InterruptedException, ExecutionException; <T> T invokeany(collection<? extends Callable<T>> tasks, long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; 43

44 Page Renderer with Future Divide page render into two tasks to make it more concurrent one renders the text (largely CPU-bound) one downloads all the images (largely I/O-bound) Callable and Future can help us express the interaction between these cooperating tasks create a Callable to download all the images a future is returned to describe the Callable execution when we need the images, we call Future.get() to wait for the result 44

45 Page Renderer with Future public class FutureRenderer { private final ExecutorService executor =...; void renderpage(charsequence source) { final List<ImageInfo> imageinfos = scanforimageinfo(source); Callable<List<ImageData>> task = new Callable<List<ImageData>>() { public List<ImageData> call() { List<ImageData> result = new ArrayList<ImageData>(); for (ImageInfo imageinfo : imageinfos) result.add(imageinfo.downloadimage()); return result; ; 45

46 Page Renderer with Future Future<List<ImageData>> future = executor.submit(task); rendertext(source); try { List<ImageData> imagedata = future.get(); for (ImageData data : imagedata) renderimage(data); catch (InterruptedException e) { // We don't need the result, so cancel the task too future.cancel(true); catch (ExecutionException e) { throw launderthrowable(e.getcause()); 46

47 Render Page Elements as They Become Available public class Renderer { private final ExecutorService executor; Renderer(ExecutorService executor) { this.executor = executor; void renderpage(charsequence source) { final List<ImageInfo> info = scanforimageinfo(source); CompletionService<ImageData> completionservice = new ExecutorCompletionService<ImageData>(executor); for (final ImageInfo imageinfo : info) completionservice.submit(new Callable<ImageData>() { ); public ImageData call() { return imageinfo.downloadimage(); 47

48 Render Page Elements as They Become Available rendertext(source); try { for (int t = 0, n = info.size(); t < n; t++) { Future<ImageData> f = completionservice.take(); ImageData imagedata = f.get(); renderimage(imagedata); catch (InterruptedException e) { Thread.currentThread().interrupt(); catch (ExecutionException e) { throw launderthrowable(e.getcause()); 48

Parallel Programming Practice

Parallel Programming Practice Parallel Programming Practice Threads and Tasks Susanne Cech Previtali Thomas Gross Last update: 2009-10-29, 09:12 Thread objects java.lang.thread Each thread is associated with an instance of the class

More information

[module lab 1.2] STRUCTURING PROGRAMS IN TASKS

[module lab 1.2] STRUCTURING PROGRAMS IN TASKS v1.0 Sistemi Concorrenti e di Rete LS II Facoltà di Ingegneria - Cesena a.a 2008/2009 [module lab 1.2] STRUCTURING PROGRAMS IN TASKS 1 STRUCTURING CONCURRENT PROGRAMS INTO TASKS Task concept abstract,

More information

Parallel Programming Practice

Parallel Programming Practice Parallel Programming Practice Threads and Tasks Susanne Cech Previtali Thomas Gross Last update: 2009-10-29, 09:12 Thread objects java.lang.thread Each thread is associated with an instance of the class

More information

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci v1.0 20130510 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module lab 3.1] TASK FRAMEWORKS 1 STRUCTURING CONCURRENT PROGRAMS INTO

More information

Final Concurrency. Oleg October 27, 2014

Final Concurrency. Oleg October 27, 2014 Final Concurrency Oleg Šelajev @shelajev oleg@zeroturnaround.com October 27, 2014 Feedbacks Task Executors Fork-Join framework Completable Future Agenda 2 HOMEWORK 4 FEEDBACK THREAD LOCAL VARIABLES TASK

More information

SUMMARY FUTURES CALLABLES CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS

SUMMARY FUTURES CALLABLES CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS SUMMARY CONCURRENT PROGRAMMING THREAD S ADVANCED CONCEPTS Callable tasks Futures Executors Executor services Deadlocks PROGRAMMAZIONE CONCORRENTE E DISTR. Università degli Studi di Padova Dipartimento

More information

[module lab 1.3] CANCELLATION AND SHUTDOWN

[module lab 1.3] CANCELLATION AND SHUTDOWN v1.0 BETA Sistemi Concorrenti e di Rete LS II Facoltà di Ingegneria - Cesena a.a 2008/2009 [module lab 1.3] CANCELLATION AND SHUTDOWN 1 STOPPING THREADS AND TASKS An activity is cancellable if external

More information

Concurrency Utilities: JSR-166

Concurrency Utilities: JSR-166 Concurrency Concurrency Utilities: JSR-166 Enables development of simple yet powerful multi-threaded applications > Like Collection provides rich data structure handling capability Beat C performance in

More information

The Java ExecutorService (Part 1)

The Java ExecutorService (Part 1) The Java ExecutorService (Part 1) Douglas C. Schmidt d.schmidt@vanderbilt.edu www.dre.vanderbilt.edu/~schmidt Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA Learning

More information

Charlie Garrod Bogdan Vasilescu

Charlie Garrod Bogdan Vasilescu Principles of So3ware Construc9on: Objects, Design, and Concurrency Part 4: Concurrency Introduc9on to concurrency, part 4 Design paderns and frameworks for concurrency Charlie Garrod Bogdan Vasilescu

More information

Outline. Command Pattern. Examples. Goal & Applications Motivation (undo / redo) Structure & participants Sequence diagram

Outline. Command Pattern. Examples. Goal & Applications Motivation (undo / redo) Structure & participants Sequence diagram Outline Command Pattern Goal & Applications Motivation (undo / redo) Structure & participants Sequence diagram Examples javax.swing.action java.util.timer java.util.concurrent.executorservice Callable

More information

CONCURRENT API AND PARALLEL PROGRAMMING

CONCURRENT API AND PARALLEL PROGRAMMING MODULE 11 CONCURRENT API AND PARALLEL PROGRAMMING Module 11.A THREAD MODEL: RUNNABLE, CALLABLE, FUTURE, FUTURETASK Threads > What are threads? Threads are a virtual CPU. > The three parts of at thread

More information

CS 159: Parallel Processing

CS 159: Parallel Processing Outline: Concurrency using Java CS 159: Parallel Processing Spring 2007 Processes vs Threads Thread basics Synchronization Locks Examples Avoiding problems Immutable objects Atomic operations High"level

More information

Lecture 03: Thread API (continue)

Lecture 03: Thread API (continue) Lecture 03: Thread API (continue) SSC2 Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 03 1 Recap Extending Thread or implementing Runnable Thread terminology Stopping Threads

More information

Thread Pools SE 441. Prof. Bullinger

Thread Pools SE 441. Prof. Bullinger Thread Pools SE 441 Prof. Bullinger Thread Pools Thread Pool Limitations Sizing Thread Pools ThreadPoolExecutor Queuing Tasks Parallelizing Loops Thread Pool Limitations Task Dependencies Different types

More information

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: concurrency Outline Java threads thread implementation sleep, interrupt, and join threads that return values Thread synchronization

More information

Threads Chate Patanothai

Threads Chate Patanothai Threads Chate Patanothai Objectives Knowing thread: 3W1H Create separate threads Control the execution of a thread Communicate between threads Protect shared data C. Patanothai Threads 2 What are threads?

More information

UNIT V CONCURRENT PROGRAMMING

UNIT V CONCURRENT PROGRAMMING UNIT V CONCURRENT PROGRAMMING Multi-Threading: Java provides built-in support for multithreaded programming. A multithreaded program contains two or more parts that can run concurrently. Each part of such

More information

CMSC 132: Object-Oriented Programming II. Threads in Java

CMSC 132: Object-Oriented Programming II. Threads in Java CMSC 132: Object-Oriented Programming II Threads in Java 1 Problem Multiple tasks for computer Draw & display images on screen Check keyboard & mouse input Send & receive data on network Read & write files

More information

SUMMARY INTRODUCTION CONCURRENT PROGRAMMING THREAD S BASICS. Introduction Thread basics. Thread states. Sequence diagrams

SUMMARY INTRODUCTION CONCURRENT PROGRAMMING THREAD S BASICS. Introduction Thread basics. Thread states. Sequence diagrams SUMMARY CONCURRENT PROGRAMMING THREAD S BASICS PROGRAMMAZIONE CONCORRENTE E DISTR. Introduction Thread basics Thread properties Thread states Thread interruption Sequence diagrams Università degli Studi

More information

CST242 Concurrency Page 1

CST242 Concurrency Page 1 CST242 Concurrency Page 1 1 2 3 4 5 6 7 9 Concurrency CST242 Concurrent Processing (Page 1) Only computers with multiple processors can truly execute multiple instructions concurrently On single-processor

More information

COMP 213. Advanced Object-oriented Programming. Lecture 23. Shared Variables and Synchronization

COMP 213. Advanced Object-oriented Programming. Lecture 23. Shared Variables and Synchronization COMP 213 Advanced Object-oriented Programming Lecture 23 Shared Variables and Synchronization Communicating Threads In the previous lecture, we saw an example of a multi-threaded program where three threads

More information

Charlie Garrod Michael Hilton

Charlie Garrod Michael Hilton Principles of So3ware Construc9on: Objects, Design, and Concurrency Part 5: Concurrency Introduc9on to concurrency, part 4 Concurrency frameworks Charlie Garrod Michael Hilton School of Computer Science

More information

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Java Threads. Written by John Bell for CS 342, Spring 2018

Java Threads. Written by John Bell for CS 342, Spring 2018 Java Threads Written by John Bell for CS 342, Spring 2018 Based on chapter 9 of Learning Java, Fourth Edition by Niemeyer and Leuck, and other sources. Processes A process is an instance of a running program.

More information

7. MULTITHREDED PROGRAMMING

7. MULTITHREDED PROGRAMMING 7. MULTITHREDED PROGRAMMING What is thread? A thread is a single sequential flow of control within a program. Thread is a path of the execution in a program. Muti-Threading: Executing more than one thread

More information

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007 CMSC 433 Programming Language Technologies and Paradigms Spring 2007 Threads and Synchronization May 8, 2007 Computation Abstractions t1 t1 t4 t2 t1 t2 t5 t3 p1 p2 p3 p4 CPU 1 CPU 2 A computer Processes

More information

CONCURRENCY IN JAVA Course Parallel Computing

CONCURRENCY IN JAVA Course Parallel Computing CONCURRENCY IN JAVA Course Parallel Computing Wolfgang Schreiner Research Institute for Symbolic Computation (RISC) Wolfgang.Schreiner@risc.jku.at http://www.risc.jku.at Java on a NUMA Architecture Loading

More information

Multi-threading in Java. Jeff HUANG

Multi-threading in Java. Jeff HUANG Multi-threading in Java Jeff HUANG Software Engineering Group @HKUST Do you use them? 2 Do u know their internals? 3 Let s see File DB How can they service so many clients simultaneously? l 4 Multi-threading

More information

Chapter 32 Multithreading and Parallel Programming

Chapter 32 Multithreading and Parallel Programming Chapter 32 Multithreading and Parallel Programming 1 Objectives To get an overview of multithreading ( 32.2). To develop task classes by implementing the Runnable interface ( 32.3). To create threads to

More information

Note: Each loop has 5 iterations in the ThreeLoopTest program.

Note: Each loop has 5 iterations in the ThreeLoopTest program. Lecture 23 Multithreading Introduction Multithreading is the ability to do multiple things at once with in the same application. It provides finer granularity of concurrency. A thread sometimes called

More information

Java Threads. COMP 585 Noteset #2 1

Java Threads. COMP 585 Noteset #2 1 Java Threads The topic of threads overlaps the boundary between software development and operation systems. Words like process, task, and thread may mean different things depending on the author and the

More information

Only one thread can own a specific monitor

Only one thread can own a specific monitor Java 5 Notes Threads inherit their priority and daemon properties from their creating threads The method thread.join() blocks and waits until the thread completes running A thread can have a name for identification

More information

Threads Questions Important Questions

Threads Questions Important Questions Threads Questions Important Questions https://dzone.com/articles/threads-top-80-interview https://www.journaldev.com/1162/java-multithreading-concurrency-interviewquestions-answers https://www.javatpoint.com/java-multithreading-interview-questions

More information

JSR 236 Status Jan 28, 2013

JSR 236 Status Jan 28, 2013 JSR 236 Status Jan 28, 2013 Anthony Lai Agenda Introduction Overview Current Status 2 Introduction Provides asynchronous capabilities to Java EE application components, using extension

More information

Java Threads. Introduction to Java Threads

Java Threads. Introduction to Java Threads Java Threads Resources Java Threads by Scott Oaks & Henry Wong (O Reilly) API docs http://download.oracle.com/javase/6/docs/api/ java.lang.thread, java.lang.runnable java.lang.object, java.util.concurrent

More information

Multithreaded Programming

Multithreaded Programming Multithreaded Programming Multithreaded programming basics Concurrency is the ability to run multiple parts of the program in parallel. In Concurrent programming, there are two units of execution: Processes

More information

Basics of. Multithreading in Java

Basics of. Multithreading in Java Basics of programming 3 Multithreading in Java Thread basics Motivation in most cases sequential (single threaded) applications are not adequate it s easier to decompose tasks into separate instruction

More information

COMP31212: Concurrency A Review of Java Concurrency. Giles Reger

COMP31212: Concurrency A Review of Java Concurrency. Giles Reger COMP31212: Concurrency A Review of Java Concurrency Giles Reger Outline What are Java Threads? In Java, concurrency is achieved by Threads A Java Thread object is just an object on the heap, like any other

More information

CS 351 Design of Large Programs Threads and Concurrency

CS 351 Design of Large Programs Threads and Concurrency CS 351 Design of Large Programs Threads and Concurrency Brooke Chenoweth University of New Mexico Spring 2018 Concurrency in Java Java has basic concurrency support built into the language. Also has high-level

More information

CMSC 433 Programming Language Technologies and Paradigms. Concurrency

CMSC 433 Programming Language Technologies and Paradigms. Concurrency CMSC 433 Programming Language Technologies and Paradigms Concurrency What is Concurrency? Simple definition Sequential programs have one thread of control Concurrent programs have many Concurrency vs.

More information

Multithreading and Interactive Programs

Multithreading and Interactive Programs Multithreading and Interactive Programs CS160: User Interfaces John Canny. This time Multithreading for interactivity need and risks Some design patterns for multithreaded programs Debugging multithreaded

More information

Animation Part 2: MoveableShape interface & Multithreading

Animation Part 2: MoveableShape interface & Multithreading Animation Part 2: MoveableShape interface & Multithreading MoveableShape Interface In the previous example, an image was drawn, then redrawn in another location Since the actions described above can apply

More information

Simpler, Faster, Better: Concurrency Utilities in JDK Software Version 5.0

Simpler, Faster, Better: Concurrency Utilities in JDK Software Version 5.0 Simpler, Faster, Better: Concurrency Utilities in JDK Software Version 5.0 Brian Goetz Principal Consultant, Quiotix Corp David Holmes Staff Engineer, Sun Microsystems, Inc. TS-4915 2006 JavaOne SM Conference

More information

Advanced Programming Methods. Lecture 6 - Concurrency in Java (1)

Advanced Programming Methods. Lecture 6 - Concurrency in Java (1) Advanced Programming Methods Lecture 6 - Concurrency in Java (1) Overview Introduction Java threads Java.util.concurrent References NOTE: The slides are based on the following free tutorials. You may want

More information

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling Multithreaded Programming Topics Multi Threaded Programming What are threads? How to make the classes threadable; Extending threads;

More information

Unit - IV Multi-Threading

Unit - IV Multi-Threading Unit - IV Multi-Threading 1 Uni Processing In the early days of computer only one program will occupy the memory. The second program must be in waiting. The second program will be entered whenever first

More information

Overview. Processes vs. Threads. Computation Abstractions. CMSC 433, Fall Michael Hicks 1

Overview. Processes vs. Threads. Computation Abstractions. CMSC 433, Fall Michael Hicks 1 CMSC 433 Programming Language Technologies and Paradigms Spring 2003 Threads and Synchronization April 1, 2003 Overview What are threads? Thread scheduling, data races, and synchronization Thread mechanisms

More information

Multithreaded Programming Part II. CSE 219 Stony Brook University, Department of Computer Science

Multithreaded Programming Part II. CSE 219 Stony Brook University, Department of Computer Science Multithreaded Programming Part II CSE 219 Stony Brook University, Thread Scheduling In a Java application, main is a thread on its own Once multiple threads are made Runnable the thread scheduler of the

More information

COMP 322: Fundamentals of Parallel Programming

COMP 322: Fundamentals of Parallel Programming COMP 322: Fundamentals of Parallel Programming https://wiki.rice.edu/confluence/display/parprog/comp322 Lecture 28: Java Threads (contd), synchronized statement Vivek Sarkar Department of Computer Science

More information

Principles of Software Construction: Objects, Design, and Concurrency. Concurrency: More Design Tradeoffs School of Computer Science

Principles of Software Construction: Objects, Design, and Concurrency. Concurrency: More Design Tradeoffs School of Computer Science Principles of Software Construction: Objects, Design, and Concurrency Concurrency: More Design Tradeoffs Christian Kästner Bogdan Vasilescu School of Computer Science 1 2 So far on concurrency Primitives

More information

CS11 Java. Fall Lecture 7

CS11 Java. Fall Lecture 7 CS11 Java Fall 2006-2007 Lecture 7 Today s Topics All about Java Threads Some Lab 7 tips Java Threading Recap A program can use multiple threads to do several things at once A thread can have local (non-shared)

More information

Object Oriented Programming. Week 10 Part 1 Threads

Object Oriented Programming. Week 10 Part 1 Threads Object Oriented Programming Week 10 Part 1 Threads Lecture Concurrency, Multitasking, Process and Threads Thread Priority and State Java Multithreading Extending the Thread Class Defining a Class that

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Threads Synchronization Refers to mechanisms allowing a programmer to control the execution order of some operations across different threads in a concurrent

More information

Multitasking. Multitasking allows several activities to occur concurrently on the computer Levels of multitasking: Process based multitasking

Multitasking. Multitasking allows several activities to occur concurrently on the computer Levels of multitasking: Process based multitasking Java Thread Multitasking Multitasking allows several activities to occur concurrently on the computer Levels of multitasking: Process based multitasking Allows programs (processes) to run concurrently

More information

-Aditya Bhave CSCI-5448 Graduate Presentation

-Aditya Bhave CSCI-5448 Graduate Presentation -Aditya Bhave CSCI-5448 Graduate Presentation 04-01-2011 MSEE at CU finishing up in Summer 11 Work full time at Alticast Inc Background in Embedded Systems Media Processing Middleware Cable TV industry

More information

Multithreading using Java. Dr. Ferdin Joe John Joseph

Multithreading using Java. Dr. Ferdin Joe John Joseph Multithreading using Java Dr. Ferdin Joe John Joseph 1 Agenda Introduction Thread Applications Defining Threads Java Threads and States Priorities Accessing Shared Resources Synchronisation Assignment

More information

Concurrent Programming. Copyright 2017 by Robert M. Dondero, Ph.D. Princeton University

Concurrent Programming. Copyright 2017 by Robert M. Dondero, Ph.D. Princeton University Concurrent Programming Copyright 2017 by Robert M. Dondero, Ph.D. Princeton University 1 Objectives You will learn/review: What a process is How to fork and wait for processes What a thread is How to spawn

More information

Advanced Concepts of Programming

Advanced Concepts of Programming Berne University of Applied Sciences E. Benoist / E. Dubuis January 2005 1 Multithreading in Java Java provides the programmer with built-in threading capabilities The programmer can create and manipulate

More information

Introduction to Java Threads

Introduction to Java Threads Object-Oriented Programming Introduction to Java Threads RIT CS 1 "Concurrent" Execution Here s what could happen when you run this Java program and launch 3 instances on a single CPU architecture. The

More information

Concurrent Programming using Threads

Concurrent Programming using Threads Concurrent Programming using Threads Threads are a control mechanism that enable you to write concurrent programs. You can think of a thread in an object-oriented language as a special kind of system object

More information

CS193k, Stanford Handout #8. Threads 3

CS193k, Stanford Handout #8. Threads 3 CS193k, Stanford Handout #8 Spring, 2000-01 Nick Parlante Threads 3 t.join() Wait for finish We block until the receiver thread exits its run(). Use this to wait for another thread to finish. The current

More information

Module - 4 Multi-Threaded Programming

Module - 4 Multi-Threaded Programming Terminologies Module - 4 Multi-Threaded Programming Process: A program under execution is called as process. Thread: A smallest component of a process that can be executed independently. OR A thread is

More information

Unit 4. Thread class & Runnable Interface. Inter Thread Communication

Unit 4. Thread class & Runnable Interface. Inter Thread Communication Unit 4 Thread class & Runnable Interface. Inter Thread Communication 1 Multithreaded Programming Java provides built-in support for multithreaded programming. A multithreaded program contains two or more

More information

G52CON: Concepts of Concurrency

G52CON: Concepts of Concurrency G52CON: Concepts of Concurrency Lecture 2 Processes & Threads Natasha Alechina School of Computer Science nza@cs.nott.ac.uk Outline of this lecture Java implementations of concurrency process and threads

More information

What is a thread anyway?

What is a thread anyway? Concurrency in Java What is a thread anyway? Smallest sequence of instructions that can be managed independently by a scheduler There can be multiple threads within a process Threads can execute concurrently

More information

CS 556 Distributed Systems

CS 556 Distributed Systems CS 556 Distributed Systems Tutorial on 4 Oct 2002 Threads A thread is a lightweight process a single sequential flow of execution within a program Threads make possible the implementation of programs that

More information

Multithreading. Introduction and Basics. Classical Model. New Model. Summary. Multithreading Basics Problems with Multithreading

Multithreading. Introduction and Basics. Classical Model. New Model. Summary. Multithreading Basics Problems with Multithreading Multithreading Introduction and Basics Multithreading Basics Problems with Multithreading Classical Model Synchronization Threads und Swing New Model Executors and Futures Synchronization Concurrent Collections

More information

CSCI 201L Written Exam #1 Fall % of course grade

CSCI 201L Written Exam #1 Fall % of course grade Final Score /15 Name SOLUTION ID Extra Credit /0.5 Lecture Section (circle one): TTh 8:00-9:20 TTh 9:30-10:50 TTh 11:00-12:20 CSCI 201L Written Exam #1 Fall 2017 15% of course grade The exam is one hour

More information

Programming in Java

Programming in Java 320341 Programming in Java Fall Semester 2014 Lecture 11: Introduction to Concurrency Instructor: Slides: Jürgen Schönwälder Bendick Mahleko Introduction Multithreaded Programs - A program represents separate,

More information

Chapter 8 Applying Thread Pools. Magnus Andersson

Chapter 8 Applying Thread Pools. Magnus Andersson Chapter 8 Applying Thread Pools Magnus Andersson Execution policies Not all task are suitable for all execution policies Dependent task Task exploiting thread confinement Response time sensitive tasks

More information

Threads. Definitions. Process Creation. Process. Thread Example. Thread. From Volume II

Threads. Definitions. Process Creation. Process. Thread Example. Thread. From Volume II Definitions A glossary Threads From Volume II Copyright 1998-2002 Delroy A. Brinkerhoff. All Rights Reserved. Threads Slide 1 of 30 PMultitasking: (concurrent ramming, multiramming) the illusion of running

More information

Principles of Software Construction: Concurrency, Part 2

Principles of Software Construction: Concurrency, Part 2 Principles of Software Construction: Concurrency, Part 2 Josh Bloch Charlie Garrod School of Computer Science 1 Administrivia Homework 5a due now Homework 5 framework goals: Functionally correct Well documented

More information

[module lab 2.2] GUI FRAMEWORKS & CONCURRENCY

[module lab 2.2] GUI FRAMEWORKS & CONCURRENCY v1.0 BETA Sistemi Concorrenti e di Rete LS II Facoltà di Ingegneria - Cesena a.a 2008/2009 [module lab 2.2] GUI FRAMEWORKS & CONCURRENCY 1 GUI FRAMEWORKS & CONCURRENCY Once upon a time GUI applications

More information

Network Programming COSC 1176/1179. Lecture 6 Concurrent Programming (2)

Network Programming COSC 1176/1179. Lecture 6 Concurrent Programming (2) Network Programming COSC 1176/1179 Lecture 6 Concurrent Programming (2) Threads Recall from last week Every line of Java code is part of a thread There can be one or more threads running in parallel Each

More information

Overview of Java Threads (Part 2)

Overview of Java Threads (Part 2) Overview of Java Threads (Part 2) Douglas C. Schmidt d.schmidt@vanderbilt.edu www.dre.vanderbilt.edu/~schmidt Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA Learning

More information

Info 408 Distributed Applications Programming Exercise sheet nb. 4

Info 408 Distributed Applications Programming Exercise sheet nb. 4 Lebanese University Info 408 Faculty of Science 2017-2018 Section I 1 Custom Connections Info 408 Distributed Applications Programming Exercise sheet nb. 4 When accessing a server represented by an RMI

More information

Produced by. Design Patterns. MSc in Computer Science. Eamonn de Leastar

Produced by. Design Patterns. MSc in Computer Science. Eamonn de Leastar Design Patterns MSc in Computer Science Produced by Eamonn de Leastar (edeleastar@wit.ie)! Department of Computing, Maths & Physics Waterford Institute of Technology http://www.wit.ie http://elearning.wit.ie

More information

Principles of Software Construction: Objects, Design and Concurrency. The Perils of Concurrency, part 4 Can't live with it. Can't live without it.

Principles of Software Construction: Objects, Design and Concurrency. The Perils of Concurrency, part 4 Can't live with it. Can't live without it. Principles of Software Construction: Objects, Design and Concurrency 15-214 toad The Perils of Concurrency, part 4 Can't live with it. Can't live without it. Fall 2012 Jonathan Aldrich Charlie Garrod School

More information

The Java FutureTask. Douglas C. Schmidt

The Java FutureTask. Douglas C. Schmidt The Java FutureTask Douglas C. Schmidt d.schmidt@vanderbilt.edu www.dre.vanderbilt.edu/~schmidt Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA Learning Objectives

More information

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems : Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks on either

More information

Principles of Software Construction: Objects, Design, and Concurrency. The Perils of Concurrency, Part 3 Can't live with it. Can't live without it.

Principles of Software Construction: Objects, Design, and Concurrency. The Perils of Concurrency, Part 3 Can't live with it. Can't live without it. Principles of Software Construction: Objects, Design, and Concurrency The Perils of Concurrency, Part 3 Can't live with it. Can't live without it. Fall 2014 Charlie Garrod Jonathan Aldrich School of Computer

More information

Contents. 6-1 Copyright (c) N. Afshartous

Contents. 6-1 Copyright (c) N. Afshartous Contents 1. Classes and Objects 2. Inheritance 3. Interfaces 4. Exceptions and Error Handling 5. Intro to Concurrency 6. Concurrency in Java 7. Graphics and Animation 8. Applets 6-1 Copyright (c) 1999-2004

More information

Advanced Programming Concurrency

Advanced Programming Concurrency Advanced Programming Concurrency Concurrent Programming Until now, a program was a sequence of operations, executing one after another. In a concurrent program, several sequences of operations may execute

More information

Threads & Timers. CSE260, Computer Science B: Honors Stony Brook University

Threads & Timers. CSE260, Computer Science B: Honors Stony Brook University Threads & Timers CSE260, Computer Science B: Honors Stony Brook University http://www.cs.stonybrook.edu/~cse260 Multi-tasking When you re working, how many different applications do you have open at one

More information

Java s Implementation of Concurrency, and how to use it in our applications.

Java s Implementation of Concurrency, and how to use it in our applications. Java s Implementation of Concurrency, and how to use it in our applications. 1 An application running on a single CPU often appears to perform many tasks at the same time. For example, a streaming audio/video

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE

COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE PREVIOUS COURSE CONTENT Input/Output Streams Text Files Byte Files RandomAcessFile Exceptions Serialization NIO COURSE CONTENT Threads Threads lifecycle Thread

More information

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads

Chapter 4: Threads. Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Overview Multithreading Models Thread Libraries Threading Issues Operating System Examples Windows XP Threads Linux Threads Chapter 4: Threads Objectives To introduce the notion of a

More information

Unit III Rupali Sherekar 2017

Unit III Rupali Sherekar 2017 Unit III Exceptions An exception is an abnormal condition that arises in a code sequence at run time. In other words, an exception is a run-time error. In computer languages that do not support exception

More information

Buch gefunden? Im Blackboard eingetragen? Abgabe 1. Übung: , 23:59

Buch gefunden? Im Blackboard eingetragen? Abgabe 1. Übung: , 23:59 Buch gefunden? Im Blackboard eingetragen? Abgabe 1. Übung: 09.04., 23:59 1 www.msproteomics.org Ver teil tes Rechnen und Parallelprogrammierung: Introduction to Multi-Threading in Java Based on the book

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 12 More Client-Server Programming Winter 2019 Reading: References at end of Lecture 1 Introduction So far, Looked at client-server programs with Java Sockets TCP and

More information

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages The Dining Philosophers Problem CMSC 0: Organization of Programming Languages Threads Classic Concurrency Problems Philosophers either eat or think They must have two forks to eat Can only use forks on

More information

Concurrent Computing CSCI 201 Principles of Software Development

Concurrent Computing CSCI 201 Principles of Software Development Concurrent Computing CSCI 201 Principles of Software Development Jeffrey Miller, Ph.D. jeffrey.miller@usc.edu Outline Threads Multi-Threaded Code CPU Scheduling Program USC CSCI 201L Thread Overview Looking

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem CMSC 330: Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks

More information

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit Threads Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multitasking Thread-based multitasking Multitasking

More information

Paradigmas de Computação Paralela

Paradigmas de Computação Paralela Paradigmas de Computação Paralela Concurrent/Parallel Programming in OO /Java João Luís Ferreira Sobral jls@... Specification of concurrency/parallelism Benefits from concurrent programming Programs that

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information