Outline. TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2. Administration. A new kind of complexity. The Pintos boot process

Size: px
Start display at page:

Download "Outline. TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2. Administration. A new kind of complexity. The Pintos boot process"

Transcription

1 TDDC47 Lesson 1: Pintos labs Assignments 0, 1, 2 Jordi Cucurull, Mikael Asplund 2010 Administration Introduction to Pintos Scheduler Interrupts Synchronisation General description of labs Lab 1 Lab 2 Outline Some slides by Mattias Eriksson and Viacheslav Izosimov Administration Sign up in Webreg (link on course page) Two groups (A, B) Labs done in pairs Examination Before 9 th December!!! Report with the code Individual test demonstration The solution you present must be yours! Plagiarism is considered a serious offence. A new kind of complexity Relatively large piece of software. New kind of complexity. Manage your changes (version control). Read a lot! You will spend more time trying to understand than writing code manual source < 1000 LOC Your programs so far? 5-10 KLOC Pintos. >100 KLOC Most real systems. What is Pintos? Pintos is an educational OS Developed at Stanford Works on x86 hardware Pintos is clean and well documented C Your task: add functionality to Pintos The name Pintos is a play on words (mexican food) Pinto beans The Pintos boot process You boot pintos like this: pintos --qemu -- run alarm-single Perl script that runs pintos in a simulator Arguments to the run script loader.s: Assembler code that loads kernel Arguments passed straight to the kernel threads/init.c, main(): initializes Pintos subsystems run_actions(): runs tasks given on kernel command line 1

2 Mechanism that manages the threads of the system. Possible thread states: Ready: Prepared and waiting to run Dying Running: Running in the CPU Blocked: Sleeping and waiting to wake up Create Dying: Execution finished Threads organised in queues The scheduler Ready Schedule Wake up Finish Interrupts CPU normally operates in fetch-execute cycle Fetch the next instruction Execute this instruction Sometimes things happen where we must temporarily stop this cycle e.g. user input (mouse, keyboard), or a clock tick Blocked Sleep Running Interrupts Interrupt: signal that makes the operating system to stop the fetch-execute cycle: Save state (PC,...) Jump to interrupt handler (kernel) Restore state Jump back and continue fetch-execute cycle Internal interrupts caused by software Interrupts in Pintos invalid memory access (seg. fault) division by 0 system calls External interrupts comes from outside the CPU keyboard serial port system timer, every clock tick Ext. interrupts can be delayed intr_disable(); ->synchronization! Example with Threads Thread 1 Interrupt context in Pintos Handler of external interrupt not allowed to block: Sleep, sema_down, or lock_acquire Timer interrupt Thread 2 One time unit is a tick Every 4 th tick threads are forced to yield Default in Pintos: 100 ticks per second Consider the following scenario: Thread x is running in the kernel Thread x enters a critical region: lock_acquire(l) External interrupt occurs; it will be handled in the kernel running as x Interrupt handler does lock_acquire(l) DEADLOCK: L will never be released. 2

3 The critical section problem Critical Section: Segment of code present in several processes the execution of which is mutually exclusive. Properties: Mutual exclusion: If a process is executing in its critical section, no other processes can be executing in their critical sections. Progress: Only processes waiting to enter the critical section and the ones leaving it can decide on the next process that will enter it. And this cannot be postponed indefinitely. Bounded waiting: There is a bound in the number of times a process can enter the critical section after another process has requested to enter in it. Synchronisation Pintos has 3 basic synchronization primitives Sempahores Locks Conditions Semaphores Semaphore s: shared integer variable two atomic operations to modify s: sema_down(s) and sema_up(s) Sometimes called P() and V() Initialize s to 5 function use_car() { sema_down(s); enter_car(); leave_car(); sema_up(s); Example: At most five passengers in the car Semaphores in Pintos void sema_down (struct semaphore *sema) { enum intr_level old_level; Disabling interrupts -> no thread switching old_level = intr_disable (); while (sema->value == 0) { list_push_back ( cur_thread ); thread_block (); sema->value--; intr_set_level (old_level); value 0 is a red light Semaphores in Pintos void sema_up (struct semaphore *sema) { enum intr_level old_level; old_level = intr_disable (); if (!list_empty (&sema->waiters)){ thread_unblock (list_pop_front(...) ); sema->value++; intr_set_level (old_level); value >0 is a green light Locks Similar to a binary semaphore Either locked (0) or unlocked (1) Only the locker can unlock it The locker has the key Advantage: Good to use for mutual exclusion Recall: semaphores can be upped by anyone. Essential for security, for example, access to the shared data, arrays, lists, and etc. 3

4 Conditions Queuing mechanism on top of Locks Prevents deadlock situations by temporarily allowing someone else in the critical region: lock_acquire(l);... //Must wait for something to happen cond_wait(c,l); //Waiting inside crit. sec.... lock_release(l); Example: Fixed size synchronized list. writing when internal buffer is full reading when internal buffer is empty General Description of Labs Lab 0: Introduction and installation Introductory lab Environment Debugging Lab 1: Threads, interrupts and synchronization First real lab Threads Interrupts Timer General Description of Labs Lab 2: Scheduling The pintos scheduler Priority scheduling Interaction with locks semaphores condition variables Lab 00 Debug a small program debugthis.c with ddd after compiling it with gcc -g. Create a linked list (example solution is available). If you are having much problems with this lab you should focus on learning C before you proceed. I suggest the book known as K&R (Kernighan & Ritchie, The C Programming language). First contact with Threads Interrupts Scheduling Lab 1 Your task: implement the function timer_sleep(int64_t ticks) Current solution (busy waiting) is not acceptable: int64_t start = timer_ticks (); while (timer_elapsed (start) < ticks) { thread_yield (); //Wasting CPU-cycles! Pintos kernel Lab 1: Pintos kernel overview Synchronization primitives File system Timer User programs System call Interrupt handlers syscall, timer, kbd, etc Drivers Hardware Page table Scheduler Threads LAB1 4

5 Lab1: Thread states ing puts a thread back in the ready queue Ready threads are scheduled by the kernel Sleeping threads should be blocked Blocked Wake up Ready Sleep int64_t start = timer_ticks (); while (timer_elapsed (start) < ticks) { thread_yield (); //Wasting CPU-cycles! Schedule Running Example with Threads Timer interrupt Thread 2 Thread 1 One time unit is a tick Every 4 th tick threads are forced to yield Default in Pintos: 100 ticks per second Lab1: hint (another use of semaphores) A good way to wake someone up: // A global pointer struct semaphore *sleeper; // SLEEPER thread: struct semaphore s; sema_init(&s,0); sleeper = &s; sema_down(&s); //zzz.. // WAKER sema_up(sleeper); Hint: extend so that sleeper is list of semaphores and wakeup times! Pintos list Pintos has a clever doubly linked list (see lib/kernel/list.h) Example: you need a list of struct foo items Add a struct list_elem to foo struct foo{... //data struct list_elem elem; ; struct list foo_list; init_list(&foo_list); for (e = list_begin (&foo_list); e!= list_end (&foo_list); e = list_next (e)) { struct foo *cur_foo = list_entry(e, struct foo, elem);... //use cur_foo... foo are not put into the list, the list is attached to foo Run the tests alarm-single alarm-multiple alarm-simultaneous alarm-zero alarm-negative Lab1 --- Testing gmake SIMULATOR=--qemu check Must pass all these tests! Run individual tests like this: make tests/threads/alarm-simultaneous.result Important!! Tests will also pass before you do any modifications Printing debug messages can make tests to fail Pintos kernel Lab 2: Pintos kernel overview Synchronization primitives File system Timer User programs System call Interrupt handlers syscall, timer, kbd, etc Drivers Hardware Page table Scheduler Threads LAB2 5

6 Lab 2: Priority Scheduling Modification of the Pintos scheduler to introduce priority scheduling Execute threads with highest priority. Awake blocked threads in order of priority. Your task: Modify code related to: Scheduler Semaphores Condition variables Lab2: Thread states and queues ing puts the running thread back to the ready queue Ready threads are scheduled by the kernel scheduler Sleeping threads are blocked and and wake up by the synchronisation primitives Wake up Ready Create Schedule Blocked Sleep Running Lab2: Requirements The running thread must yield CPU when: A new thread with higher priority is introduced in the ready list. The running thread lowers its priority below other waiting threads. If several threads have the same priority a round robin order must be followed. Threads block by a synchronisation primitive must be awaken in order of priority. Lab2: Implementation thread.c Two methods are already implemented: void thread_set_priority(int priority) : Sets the priority of the thread int thread_get_priority() : Gets the priority of the thread The priority is stored as integer in variable priority PRI_DEFAULT(31): Default priority PRI_MIN(0) PRI_MAX(63): Range of available priorities The scheduler is implemented by method schedule() It selects new thread to run and does context switching. You have to understand and modify it. The method to make a thread to yield the CPU is void thread_yield() Lab2: Implementation synch.c Synchronisation primitives that you will modify void sema_up (struct semaphore *sema) void sema_down (struct semaphore *sema) void cond_wait (struct condition *cond, struct lock *lock) void cond_signal (struct condition *cond, struct lock *lock UNUSED) Run the tests alarm-priority priority-change priority-fifo priority-preempt priority-sema priority-condvar Lab2: Testing gmake SIMULATOR=--qemu check Must pass all these tests! Run individual tests like this: make tests/threads/priority-change.result Important!!! Printing debug messages can make tests to fail 6

7 Subversion svn up #get latest version from repository svn commit #record changes in repository svn st #show which files are modified and new svn diff #show difference between working copy and most recently checked in revision svn -r 17 diff #same, but compared to revision 17 svn -r 17 -x -wp diff #ignore changes in whitespace and include context information svn log #show commit log svn -v log #also list which files are modified Debugging tips Read Appendix E in the documentation. ASSERT(mypointer!= NULL). Bytes in memory that have been freed are set to 0xcc If a pointer == 0xcccccccc something probably freed the memory. If you get a Kernel Panic use the backtrace tool... The backtrace tool 7

TDDB Lesson 2 Introduction to Pintos Assignments (1) and 2

TDDB Lesson 2 Introduction to Pintos Assignments (1) and 2 TDDB68 2015 Lesson 2 Introduction to Pintos Assignments (1) and 2 Erik Hansson erik.hansson@liu.se Most slides by Mattias Eriksson 2009-2010 and Viacheslav Izosimov 2007-2008. Outline Administration Introduction

More information

TDDB68 Lesson 1 Introduction to Pintos Assignments 00, 0, 1, 2

TDDB68 Lesson 1 Introduction to Pintos Assignments 00, 0, 1, 2 TDDB68 Lesson 1 Introduction to Pintos Assignments 00, 0, 1, 2 Mattias Eriksson 2010 mater@ida.liu.se Some slides by Viacheslav Izosimov 2007-2008 Outline Administration Introduction to Pintos Important

More information

Friday, September 23, Pintos

Friday, September 23, Pintos Pintos Kernel structure UNIX-like Monolithic Unithreading, multiprogramming No virtual memory Bare-bones file system Preemptible Threads New thread == new context Sort of a miniprogram Runs until return

More information

TDDB Lesson 3 Pintos Assignments (2), 3 & 4. Erik Hansson

TDDB Lesson 3 Pintos Assignments (2), 3 & 4. Erik Hansson TDDB68 2015 Lesson 3 Pintos Assignments (2), 3 & 4 Erik Hansson erik.hansson@liu.se Most slides by Mattias Eriksson 2009-2010 and Viacheslav Izosimov 2007-2008 Remember Pass assignments on time to get

More information

김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현

김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현 Project Teams Team Name WINOS Prime Megatron Members 고경민 *, 홍종목, 유상훈 이경준, 김종석 *, 이현수 이태훈 *, 선우석, 오동근 닥코딩박재영*, 이경욱, 박병규 5분대기조박지용, 정종균, 김대호 * 김주남, 우병일, 최종은 *, Nick 박주호, 박진영 *, 안세건, 이대현 1 Project 1: Threads

More information

TDDB Lesson 2 Pintos Assignments (2), 3 & 4. Erik Hansson

TDDB Lesson 2 Pintos Assignments (2), 3 & 4. Erik Hansson TDDB68 2013 Lesson 2 Pintos Assignments (2), 3 & 4 Erik Hansson erik.hansson@liu.se Most slides by Mattias Eriksson 2009-2010 and Viacheslav Izosimov 2007-2008 Instead of Motivation Some of you should

More information

Project 1: Threads. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University

Project 1: Threads. Jin-Soo Kim ( Computer Systems Laboratory Sungkyunkwan University Project 1: Threads Jin-Soo Kim ( jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu # of addr spaces: Pintos Kernel (1) The current Pintos kernel There is only

More information

Section 7: Scheduling and Fairness

Section 7: Scheduling and Fairness March 1-2, 2018 Contents 1 Warmup 2 2 Vocabulary 2 3 Problems 3 3.1 Scheduling............................................. 3 3.2 Simple Priority Scheduler.................................... 4 3.2.1 Fairness..........................................

More information

CS140 Discussion Section 1 April 2014

CS140 Discussion Section 1 April 2014 CS140 Discussion Section 1 April 2014 Outline For Today Project Advice / Info Jumpstarting Project 1 Using Pintos Alarm Clock Priority Scheduling & Priority Donation Advanced Scheduler Semaphores 50% of

More information

CS Computer Systems. Project 1: Threads in Pintos

CS Computer Systems. Project 1: Threads in Pintos CS 5600 Computer Systems Project 1: Threads in Pintos Getting Started With Pintos What does Pintos Include? Threads in Pintos Project 1 2 What is Pintos? Pintos is a teaching operating system from Stanford

More information

Pintos: Threads Project. Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li

Pintos: Threads Project. Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li Pintos: Threads Project Slides by: Vijay Kumar Updated by Godmar Back Presented by: Min Li Introduction to Pintos Simple OS for the 80x86 architecture Capable of running on real hardware We use bochs,

More information

cs 140 project 1: threads 9 January 2015

cs 140 project 1: threads 9 January 2015 cs 140 project 1: threads 9 January 2015 git The basics: git clone git add git commit git branch git merge git stash git pull git push git rebase git Some guidelines & ideas: Write helpful commit and stash

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Lecture 7: Semaphores and Monitors Ryan Huang Higher-Level Synchronization We looked at using locks to provide mutual exclusion Locks work, but they have

More information

TDDB68. Lesson 1. Simon Ståhlberg

TDDB68. Lesson 1. Simon Ståhlberg TDDB68 Lesson 1 Simon Ståhlberg Contents General information about the labs Overview of the labs Memory layout of C programs ("Lab 00") General information about Pintos System calls Lab 1 Debugging Administration

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 7: Semaphores and Monitors Ryan Huang Slides adapted from Geoff Voelker s lectures Administrivia HW2 is out Do the exercise to check your understanding

More information

CS 140. Lab 1 - Threads

CS 140. Lab 1 - Threads CS 140 Lab 1 - Threads setup lab 1 git general setup lab 1 git general Getting started with pintos http://www.scs.stanford.edu/14wics140/pintos/pintos_1.html Get the Source set your path set path = ( /usr/class/cs140/`uname

More information

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ!

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ! Last Class: CPU Scheduling! Scheduling Algorithms: FCFS Round Robin SJF Multilevel Feedback Queues Lottery Scheduling Review questions: How does each work? Advantages? Disadvantages? Lecture 7, page 1

More information

ProgOS UE. Daniel Prokesch, Denise Ratasich. basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel

ProgOS UE. Daniel Prokesch, Denise Ratasich. basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel 1/50 Daniel Prokesch, Denise Ratasich basierend auf Slides von Benedikt Huber, Roland Kammerer, Bernhard Frömel Institut für Technische Informatik Technische Universität Wien - 182.710 Programmierung von

More information

Systèmes d Exploitation Avancés

Systèmes d Exploitation Avancés Systèmes d Exploitation Avancés Instructor: Pablo Oliveira ISTY Instructor: Pablo Oliveira (ISTY) Systèmes d Exploitation Avancés 1 / 32 Review : Thread package API tid thread create (void (*fn) (void

More information

Today: Synchronization. Recap: Synchronization

Today: Synchronization. Recap: Synchronization Today: Synchronization Synchronization Mutual exclusion Critical sections Example: Too Much Milk Locks Synchronization primitives are required to ensure that only one thread executes in a critical section

More information

Operating Systems (1DT020 & 1TT802)

Operating Systems (1DT020 & 1TT802) Uppsala University Department of Information Technology Name: Perso. no: Operating Systems (1DT020 & 1TT802) 2009-05-27 This is a closed book exam. Calculators are not allowed. Answers should be written

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2017 Midterm Review Ryan Huang 10/12/17 CS 318 Midterm Review 2 Midterm October 17 th Tuesday 9:00-10:20 am at classroom Covers material before virtual memory

More information

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION

OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION OPERATING SYSTEMS ASSIGNMENT 2 SIGNALS, USER LEVEL THREADS AND SYNCHRONIZATION Responsible TAs: Vadim Levit & Benny Lutati Introduction In this assignment we will extend xv6 to support a simple signal

More information

Learning Outcomes. Concurrency and Synchronisation. Textbook. Concurrency Example. Inter- Thread and Process Communication. Sections & 2.

Learning Outcomes. Concurrency and Synchronisation. Textbook. Concurrency Example. Inter- Thread and Process Communication. Sections & 2. Learning Outcomes Concurrency and Synchronisation Understand concurrency is an issue in operating systems and multithreaded applications Know the concept of a critical region. Understand how mutual exclusion

More information

Operating Systems, Assignment 2 Threads and Synchronization

Operating Systems, Assignment 2 Threads and Synchronization Operating Systems, Assignment 2 Threads and Synchronization Responsible TA's: Zohar and Matan Assignment overview The assignment consists of the following parts: 1) Kernel-level threads package 2) Synchronization

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 2018 Midterm Review Midterm in class on Monday Covers material through scheduling and deadlock Based upon lecture material and modules of the book indicated on

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Concurrency and Synchronisation

Concurrency and Synchronisation Concurrency and Synchronisation 1 Learning Outcomes Understand concurrency is an issue in operating systems and multithreaded applications Know the concept of a critical region. Understand how mutual exclusion

More information

TDDB68 Lesson 2 Pintos Assignments 3 & 4. Mattias Eriksson 2010 (or

TDDB68 Lesson 2 Pintos Assignments 3 & 4. Mattias Eriksson 2010 (or TDDB68 Lesson 2 Pintos Assignments 3 & 4 Mattias Eriksson 2010 mater@ida.liu.se (or mattias.eriksson@liu.se) some slides by Viacheslav Izosimov 2007-2008 Instead of Motivation Plan for something like this:

More information

Review: Thread package API

Review: Thread package API Review: Thread package API tid thread_create (void (*fn) (void *), void *arg); - Create a new thread that calls fn with arg void thread_exit (); void thread_join (tid thread); The execution of multiple

More information

Synchronization 1. Synchronization

Synchronization 1. Synchronization Synchronization 1 Synchronization key concepts critical sections, mutual exclusion, test-and-set, spinlocks, blocking and blocking locks, semaphores, condition variables, deadlocks reading Three Easy Pieces:

More information

Concurrency and Synchronisation

Concurrency and Synchronisation Concurrency and Synchronisation 1 Sections 2.3 & 2.4 Textbook 2 Making Single-Threaded Code Multithreaded Conflicts between threads over the use of a global variable 3 Inter- Thread and Process Communication

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 8: Semaphores, Monitors, & Condition Variables CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2004 Lecture 8: Semaphores, Monitors, & Condition Variables 8.0 Main Points: Definition of semaphores Example of use

More information

CS 162 Project 1: Threads

CS 162 Project 1: Threads CS 162 Design Document Due: Friday, February 19, 2016 Code Due: Friday, March 4, 2016 Final Report Due: Monday, March 7, 2016 Contents 1 Your task 3 1.1 Task 1: Efficient Alarm Clock..................................

More information

Midterm Exam #1 February 28, 2018 CS162 Operating Systems

Midterm Exam #1 February 28, 2018 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2018 Anthony D. Joseph and Jonathan Ragan-Kelley Midterm Exam #1 February 28, 2018 CS162 Operating Systems

More information

C09: Process Synchronization

C09: Process Synchronization CISC 7310X C09: Process Synchronization Hui Chen Department of Computer & Information Science CUNY Brooklyn College 3/29/2018 CUNY Brooklyn College 1 Outline Race condition and critical regions The bounded

More information

Project-1 Discussion

Project-1 Discussion CSE 421/521 - Operating Systems Fall 2014 Lecture - VI Project-1 Discussion Tevfik Koşar University at Buffalo September 11 th, 2014 1 Pintos Projects 1. Threads

More information

ArdOS The Arduino Operating System Reference Guide Contents

ArdOS The Arduino Operating System Reference Guide Contents ArdOS The Arduino Operating System Reference Guide Contents 1. Introduction... 2 2. Error Handling... 2 3. Initialization and Startup... 2 3.1 Initializing and Starting ArdOS... 2 4. Task Creation... 3

More information

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois Condition Variables CS 241 Prof. Brighten Godfrey March 16, 2012 University of Illinois 1 Synchronization primitives Mutex locks Used for exclusive access to a shared resource (critical section) Operations:

More information

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control

Interrupts and Time. Real-Time Systems, Lecture 5. Martina Maggio 28 January Lund University, Department of Automatic Control Interrupts and Time Real-Time Systems, Lecture 5 Martina Maggio 28 January 2016 Lund University, Department of Automatic Control Content [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts

More information

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Process Synchronization: Semaphores. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Process Synchronization: Semaphores CSSE 332 Operating Systems Rose-Hulman Institute of Technology Critical-section problem solution 1. Mutual Exclusion - If process Pi is executing in its critical section,

More information

CS 140 Midterm Examination Winter Quarter, 2012

CS 140 Midterm Examination Winter Quarter, 2012 CS 140 Midterm Examination Winter Quarter, 2012 You have 1.5 hours (90 minutes) for this examination; the number of points for each question indicates roughly how many minutes you should spend on that

More information

CSCI 350: Pintos Guide Written by: Stephen Tsung-Han Sher November 5, 2016

CSCI 350: Pintos Guide Written by: Stephen Tsung-Han Sher November 5, 2016 CSCI 350: Pintos Guide Written by: Stephen Tsung-Han Sher November 5, 2016 Introduction This guide serves to help you along the projects of Pintos for CSCI 350. The aim of this document is to minimize

More information

Process & Thread Management II. Queues. Sleep() and Sleep Queues CIS 657

Process & Thread Management II. Queues. Sleep() and Sleep Queues CIS 657 Process & Thread Management II CIS 657 Queues Run queues: hold threads ready to execute Not a single ready queue; 64 queues All threads in same queue are treated as same priority Sleep queues: hold threads

More information

Process & Thread Management II CIS 657

Process & Thread Management II CIS 657 Process & Thread Management II CIS 657 Queues Run queues: hold threads ready to execute Not a single ready queue; 64 queues All threads in same queue are treated as same priority Sleep queues: hold threads

More information

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts

Interrupts and Time. Interrupts. Content. Real-Time Systems, Lecture 5. External Communication. Interrupts. Interrupts Content Interrupts and Time Real-Time Systems, Lecture 5 [Real-Time Control System: Chapter 5] 1. Interrupts 2. Clock Interrupts Martina Maggio 25 January 2017 Lund University, Department of Automatic

More information

Lecture #7: Implementing Mutual Exclusion

Lecture #7: Implementing Mutual Exclusion Lecture #7: Implementing Mutual Exclusion Review -- 1 min Solution #3 to too much milk works, but it is really unsatisfactory: 1) Really complicated even for this simple example, hard to convince yourself

More information

Review: Processes. A process is an instance of a running program. POSIX Thread APIs:

Review: Processes. A process is an instance of a running program. POSIX Thread APIs: Review: Processes A process is an instance of a running program - A thread is an execution context - Process can have one or more threads - Threads share address space (code, data, heap), open files -

More information

Introduction to Operating Systems

Introduction to Operating Systems Introduction to Operating Systems Lecture 4: Process Synchronization MING GAO SE@ecnu (for course related communications) mgao@sei.ecnu.edu.cn Mar. 18, 2015 Outline 1 The synchronization problem 2 A roadmap

More information

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018

SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T A N D S P R I N G 2018 SYNCHRONIZATION M O D E R N O P E R A T I N G S Y S T E M S R E A D 2. 3 E X C E P T 2. 3. 8 A N D 2. 3. 1 0 S P R I N G 2018 INTER-PROCESS COMMUNICATION 1. How a process pass information to another process

More information

Midterm Exam #2 April 20, 2016 CS162 Operating Systems

Midterm Exam #2 April 20, 2016 CS162 Operating Systems University of California, Berkeley College of Engineering Computer Science Division EECS Spring 2016 Anthony D. Joseph Midterm Exam #2 April 20, 2016 CS162 Operating Systems Your Name: SID AND 162 Login:

More information

CSCI 350 Pintos Intro. Mark Redekopp

CSCI 350 Pintos Intro. Mark Redekopp 1 CSCI 350 Pintos Intro Mark Redekopp 2 Resources Pintos Resources https://web.stanford.edu/class/cs140/projects/pintos/pintos.html#sec_top Skip Stanford related setup in section 1.1 and 1.1.1 http://bits.usc.edu/cs350/assignments/pintos_guide_2016_11_13.pdf

More information

Program A. Review: Thread package API. Program B. Program C. Correct answers. Correct answers. Q: Can both critical sections run?

Program A. Review: Thread package API. Program B. Program C. Correct answers. Correct answers. Q: Can both critical sections run? Review: Thread package API tid thread_create (void (*fn) (void *), void *arg); - Create a new thread that calls fn with arg void thread_exit (); void thread_join (tid thread); The execution of multiple

More information

EE458 - Embedded Systems Lecture 8 Semaphores

EE458 - Embedded Systems Lecture 8 Semaphores EE458 - Embedded Systems Lecture 8 Semaphores Outline Introduction to Semaphores Binary and Counting Semaphores Mutexes Typical Applications RTEMS Semaphores References RTC: Chapter 6 CUG: Chapter 9 1

More information

TDDB Lesson 3 Pintos Assignments (2), 3 & 4. Erik Hansson

TDDB Lesson 3 Pintos Assignments (2), 3 & 4. Erik Hansson TDDB68 2016 Lesson 3 Pintos Assignments (2), 3 & 4 Erik Hansson erik.hansson@liu.se Most slides by Mattias Eriksson 2009-2010 and Viacheslav Izosimov 2007-2008 Plan your time Plan your time with your

More information

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann

AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel. Alexander Züpke, Marc Bommert, Daniel Lohmann AUTOBEST: A United AUTOSAR-OS And ARINC 653 Kernel Alexander Züpke, Marc Bommert, Daniel Lohmann alexander.zuepke@hs-rm.de, marc.bommert@hs-rm.de, lohmann@cs.fau.de Motivation Automotive and Avionic industry

More information

Section 7: Wait/Exit, Address Translation

Section 7: Wait/Exit, Address Translation William Liu October 15, 2014 Contents 1 Wait and Exit 2 1.1 Thinking about what you need to do.............................. 2 1.2 Code................................................ 2 2 Vocabulary 4

More information

The Kernel Abstraction

The Kernel Abstraction The Kernel Abstraction Debugging as Engineering Much of your time in this course will be spent debugging In industry, 50% of software dev is debugging Even more for kernel development How do you reduce

More information

Synchronising Threads

Synchronising Threads Synchronising Threads David Chisnall March 1, 2011 First Rule for Maintainable Concurrent Code No data may be both mutable and aliased Harder Problems Data is shared and mutable Access to it must be protected

More information

Review: Program Execution. Memory program code program data program stack containing procedure activation records

Review: Program Execution. Memory program code program data program stack containing procedure activation records Threads and Concurrency 1 Review: Program Execution Registers program counter, stack pointer,... Memory program code program data program stack containing procedure activation records CPU fetches and executes

More information

Synchronization 1. Synchronization

Synchronization 1. Synchronization Synchronization 1 Synchronization key concepts critical sections, mutual exclusion, test-and-set, spinlocks, blocking and blocking locks, semaphores, condition variables, deadlocks reading Three Easy Pieces:

More information

COMP 3430 Robert Guderian

COMP 3430 Robert Guderian Operating Systems COMP 3430 Robert Guderian file:///users/robg/dropbox/teaching/3430-2018/slides/06_concurrency/index.html?print-pdf#/ 1/76 1 Concurrency file:///users/robg/dropbox/teaching/3430-2018/slides/06_concurrency/index.html?print-pdf#/

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Harsha V. Madhyastha Monitors vs. Semaphores Monitors: Custom user-defined conditions Developer must control access to variables Semaphores: Access

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

Reminder from last time

Reminder from last time Concurrent systems Lecture 2: More mutual exclusion, semaphores, and producer-consumer relationships DrRobert N. M. Watson 1 Reminder from last time Definition of a concurrent system Origins of concurrency

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Remaining Contemplation Questions

Remaining Contemplation Questions Process Synchronisation Remaining Contemplation Questions 1. The first known correct software solution to the critical-section problem for two processes was developed by Dekker. The two processes, P0 and

More information

CS-537: Midterm Exam (Fall 2013) Professor McFlub

CS-537: Midterm Exam (Fall 2013) Professor McFlub CS-537: Midterm Exam (Fall 2013) Professor McFlub Please Read All Questions Carefully! There are fourteen (14) total numbered pages. Please put your NAME (mandatory) on THIS page, and this page only. Name:

More information

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Semaphores. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Semaphores Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3052: Introduction to Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Synchronization

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Condition Variables & Semaphores

Condition Variables & Semaphores Condition Variables & Semaphores Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Review: Concurrency Objectives Mutual Exclusion A & B don t run at the same time Solved using locks Ordering

More information

Process Synchronisation (contd.) Operating Systems. Autumn CS4023

Process Synchronisation (contd.) Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) Synchronization Hardware 6.4 (SGG) Many systems provide hardware support for critical section

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Lecture 9: Midterm Review

Lecture 9: Midterm Review Project 1 Due at Midnight Lecture 9: Midterm Review CSE 120: Principles of Operating Systems Alex C. Snoeren Midterm Everything we ve covered is fair game Readings, lectures, homework, and Nachos Yes,

More information

EECS 482 Introduction to Operating Systems

EECS 482 Introduction to Operating Systems EECS 482 Introduction to Operating Systems Winter 2018 Baris Kasikci Slides by: Harsha V. Madhyastha Use of CVs in Project 1 Incorrect use of condition variables: while (cond) { } cv.signal() cv.wait()

More information

Two hours. Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 25th January 2013 Time: 14:00-16:00

Two hours. Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Friday 25th January 2013 Time: 14:00-16:00 Two hours Question ONE is COMPULSORY UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Operating Systems Date: Friday 25th January 2013 Time: 14:00-16:00 Please answer Question ONE and any TWO other

More information

Semaphores in Nachos. Dr. Douglas Niehaus Michael Jantz Dr. Prasad Kulkarni. EECS 678 Nachos Semaphores Lab 1

Semaphores in Nachos. Dr. Douglas Niehaus Michael Jantz Dr. Prasad Kulkarni. EECS 678 Nachos Semaphores Lab 1 Semaphores in Nachos Dr. Douglas Niehaus Michael Jantz Dr. Prasad Kulkarni EECS 678 Nachos Semaphores Lab 1 Introduction In this lab, we will implement a basic blocking semaphore and a queuing semaphore

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 1018 L11 Synchronization Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel feedback queue:

More information

Process Synchronization

Process Synchronization Process Synchronization Concurrent access to shared data in the data section of a multi-thread process, in the shared memory of multiple processes, or in a shared file Although every example in this chapter

More information

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics.

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics. Question 1. (10 points) (Caches) Suppose we have a memory and a direct-mapped cache with the following characteristics. Memory is byte addressable Memory addresses are 16 bits (i.e., the total memory size

More information

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212

Process Synchronisation (contd.) Deadlock. Operating Systems. Spring CS5212 Operating Systems Spring 2009-2010 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) 2 Announcements Presentations: will be held on last teaching week during lectures make a 20-minute

More information

CHAPTER 6: PROCESS SYNCHRONIZATION

CHAPTER 6: PROCESS SYNCHRONIZATION CHAPTER 6: PROCESS SYNCHRONIZATION The slides do not contain all the information and cannot be treated as a study material for Operating System. Please refer the text book for exams. TOPICS Background

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10 MULTITHREADING AND SYNCHRONIZATION CS124 Operating Systems Fall 2017-2018, Lecture 10 2 Critical Sections Race conditions can be avoided by preventing multiple control paths from accessing shared state

More information

Concurrency and Synchronisation. Leonid Ryzhyk

Concurrency and Synchronisation. Leonid Ryzhyk Concurrency and Synchronisation Leonid Ryzhyk Textbook Sections 2.3 & 2.5 2 Concurrency in operating systems Inter-process communication web server SQL request DB Intra-process communication worker thread

More information

CSCI 350: Getting Started with C Written by: Stephen Tsung-Han Sher June 12, 2016

CSCI 350: Getting Started with C Written by: Stephen Tsung-Han Sher June 12, 2016 CSCI 350: Getting Started with C Written by: Stephen Tsung-Han Sher June 12, 2016 Introduction As you have been informed, your work with Pintos will be almost exclusively with C. Since you have taken CSCI-103

More information

Comp 310 Computer Systems and Organization

Comp 310 Computer Systems and Organization Comp 310 Computer Systems and Organization Lecture #10 Process Management (CPU Scheduling & Synchronization) 1 Prof. Joseph Vybihal Announcements Oct 16 Midterm exam (in class) In class review Oct 14 (½

More information

Precept 3: Preemptive Scheduler. COS 318: Fall 2018

Precept 3: Preemptive Scheduler. COS 318: Fall 2018 Precept 3: Preemptive Scheduler COS 318: Fall 2018 Project 3 Schedule Precept: Monday 10/15, 7:30pm (You are here) Design Review: Monday 10/22, 3-7pm Due: Sunday 11/04, 11:55pm Project 3 Overview Goal:

More information

Computer architecture. A simplified model

Computer architecture. A simplified model Computer architecture A simplified model Computers architecture One (or several) CPU(s) Main memory A set of devices (peripherals) Interrupts Direct memory access Computers architecture Memory Keyboard

More information

Timers 1 / 46. Jiffies. Potent and Evil Magic

Timers 1 / 46. Jiffies. Potent and Evil Magic Timers 1 / 46 Jiffies Each timer tick, a variable called jiffies is incremented It is thus (roughly) the number of HZ since system boot A 32-bit counter incremented at 1000 Hz wraps around in about 50

More information

CPS 310 midterm exam #1, 2/19/2016

CPS 310 midterm exam #1, 2/19/2016 CPS 310 midterm exam #1, 2/19/2016 Your name please: NetID: Answer all questions. Please attempt to confine your answers to the boxes provided. For the execution tracing problem (P3) you may wish to use

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

Administrivia. Review: Thread package API. Program B. Program A. Program C. Correct answers. Please ask questions on Google group

Administrivia. Review: Thread package API. Program B. Program A. Program C. Correct answers. Please ask questions on Google group Administrivia Please ask questions on Google group - We ve had several questions that would likely be of interest to more students x86 manuals linked on reference materials page Next week, guest lecturer:

More information

Interprocess Communication and Synchronization

Interprocess Communication and Synchronization Chapter 2 (Second Part) Interprocess Communication and Synchronization Slide Credits: Jonathan Walpole Andrew Tanenbaum 1 Outline Race Conditions Mutual Exclusion and Critical Regions Mutex s Test-And-Set

More information

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008.

CSC Operating Systems Spring Lecture - XII Midterm Review. Tevfik Ko!ar. Louisiana State University. March 4 th, 2008. CSC 4103 - Operating Systems Spring 2008 Lecture - XII Midterm Review Tevfik Ko!ar Louisiana State University March 4 th, 2008 1 I/O Structure After I/O starts, control returns to user program only upon

More information

Implementing Locks. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau)

Implementing Locks. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Implementing Locks Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Lock Implementation Goals We evaluate lock implementations along following lines Correctness Mutual exclusion: only one

More information

CSE306 - Homework2 and Solutions

CSE306 - Homework2 and Solutions CSE306 - Homework2 and Solutions Note: your solutions must contain enough information to enable the instructor to judge whether you understand the material or not. Simple yes/no answers do not count. A

More information

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling.

Background. The Critical-Section Problem Synchronisation Hardware Inefficient Spinning Semaphores Semaphore Examples Scheduling. Background The Critical-Section Problem Background Race Conditions Solution Criteria to Critical-Section Problem Peterson s (Software) Solution Concurrent access to shared data may result in data inconsistency

More information

Page 1. Goals for Today" Atomic Read-Modify-Write instructions" Examples of Read-Modify-Write "

Page 1. Goals for Today Atomic Read-Modify-Write instructions Examples of Read-Modify-Write Goals for Today" CS162 Operating Systems and Systems Programming Lecture 5 Semaphores, Conditional Variables" Atomic instruction sequence Continue with Synchronization Abstractions Semaphores, Monitors

More information