Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm

Size: px
Start display at page:

Download "Pre- and post- CS protocols. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7. Other requirements for a mutual exclusion algorithm"

Transcription

1 CS 361 Concurrent programming Drexel University Fall 2004 Lecture 7 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce these notes for their own use. Pre- and post- CS protocols WantToEnterCS(.) Serves as a gatekeeper only lets one thread through at a time. While the first thread through the gate is in the critical section, all the other threads executing WantToEnterCS are prevented from leaving it (the gate is closed). FinishedWithCS( ) Notifies the gatekeeper that the thread in the CS is done; will now let another thread executing WantToEnterCS through. page 1 page 2 Two aspects of the mutual exclusion problem Implementing the pre- and post- protocols Correct iron-clad mutual exclusion (at most one thread in a critical section at a time) Works with any number of threads (1, 2, or more) Using the pre- and post-protocols to correctly provide mutual exclusion where they are needed Other requirements for a mutual exclusion algorithm No deadlock waiting to get into CS Avoidance of starvation in the absence of contention (one thread trying, never gets in). page 3 page 4 Other requirements (not always insisted upon) Avoidance of starvation in the presence of contention Multiple threads trying to get into CS, one thread never gets in No livelock: threads take an excessive amount of time fighting through congestion to get in Fairness: no threads favored repeatedly if there is contention Software providing mutual exclusion In the book s discussion of solutions to the mutual exclusion problem, Hartley assumes Standard load/store register architecture Multiply executing concurrent threads that share data Single or multiple CPUs that may be identical or different in speeds Access to shared variables can be interleaved if two threads get into their critical sections in time. page 5 page 6

2 More assumptions Threads do not halt or crash in their pre/post protocols, or in their critical sections, but may halt or crash outside of critical sections. Hardware support for mutual exclusion Definition of an atomic instruction a machine language instruction that is executed completely without being interruptible no interleaving of other instructions from another thread no context switching no hardware interrupts. page 7 page 8 page 9 Software solutions for mutual exclusion: attempt #1 Use busy waiting. boolean lockflag = false; WantToEnterCS(int I) { // thread #I wants to enter while(lockflag) {; // busy wait // loops until lockflag is false; // hopefully other thread will set this false. lockflag=true; finishedincs(int I) { lockflag = false; What s wrong with this? page 10 Problem: we can have a race condition ThreadA: load lockflag into R Context switch from thread A to B ThreadB: load lockflag into R Compare value: it s false Store true to lockflag Enter critical section Context switch from thread B back to A Thread A: compare R and value: it s false, so proceed Store true to lockflag Enter critical section So both can be in critical section at same time. Attempt #2 Use a turn variable: int turn =0; is either 0 or 1 public void WanttoEnterCS(int i) { while (turn!=i) // go from running back to run queue give someone else a // chance. What s the matter with this? Hint -- what happens if there s only one thread that wants to run? This is Starvation in the absence of contention. public void finishedincs(int i) { turn = other(i); // this sets I to something other than i page 11 page 12

3 Attempt #3 // Use a flag class again. class Flag {public volatile boolean value = false; // In class that handles mutual exclusion.. private Flag[] desirecs = new Flag[2]; // array of flags. for (int I = 0; I<2; I++) desirecs[i] = new Flag(); // initialize with new flag objects while (desirecs[other(i)].value) Thread.currentthread().yield(); // busy wait // set your flag What s wrong with this? Hint: race condition. If both threads execute the while at the same time, neither flag will yet be set, so they will both proceed into the critical section. So there s no mutual exclusion. page 13 page 14 Attempt #4 Exercise page 15 Try fixing flags while (desirecs[other(i)].value) { post-protocol FinishedWithCS same as before This doesn t work as a way of ensuring mutual exclusion. Describe a scenario where the code fails to work properly. Can you find more than one kind of scenario where the code fails? page 16 Attempt #4 Checklist page 17 Try fixing flags while (desirecs[other(i)].value) { post-protocol FinishedWithCS same as before Does this have a starvation in the absence of contention problem? Does this have a mutual exclusion problem? Deadlock? Starvation in the presence of contention? Livelock? page 18

4 Deadlock. What s wrong with this? Deadlock problem with #4 Both threads set their flags at more or less the same time Both threads enter the while loop and see that the other s flag is set. They then busy wait forever. page 19 page 20 Use of volatile setting for flag Book says it s important in how this attempt enforces mutual exclusion. Why? Use of volatile setting for flag Without the volatile setting, both threads could set their flags, but neither would see the other s flag set, so both would enter the CS. page 21 page 22 Attempt #5 while (desirecs[other(i)].value) { desirecs[i].value = false; // back off desirecs[i].value = true; What s wrong with this? Livelock -- both threads back off and try again in lockstep Hartley claims that this livelock is unlikely (certain?) to last forever, due to differences in time slicing and clock speed. So this would be considered almost correct but with an efficiency defect in that the livelock will sometimes slow down entry into the CS. page 23 page 24

5 Dekker s attempt // preprotocol while (desirecs[other(i)].value) { if (turn!=i) { // take turns backing off. desirecs[i].value = false; // back off while (turn!=i) // busy wait desirecs[i].value=true; // end if // end while // postprotocol desirecs[i].value = false; turn = other(i); page 25 page 26 What kinds of problems, if any, does Dekker s algorithm have with Enforcement of mutual exclusion Deadlock/livelock Starvation in the presence of contention Starvation in the absence of contention The semantics of yield() Correctness public static void yield() Causes the currently executing thread object to temporarily pause and allow other threads to execute. Java Language Reference: In some cases, a large number of threads could be waiting on the currently running thread to finish executing before they can start executing. To make the thread scheduler switch from the current running thread to allow others to execute, call the yield() method on the current thread. In order for yield() to work, there must be at least one thread with an equal or higher priority than the current thread.. page 27 While it is sufficient to find a scenario to prove that something doesn t work, To prove that an algorithm is correct, you must show that it works under all possible scenarios. Usually the way that this is done is to show that it is impossible for it to behave incorrectly. This involves insight, using a combination of logic and programming language semantics. page 28 Peterson s attempt (mutual exclusion for two threads) // preprotocol last = other(i); while (desirecs[other(i)].value && last == other(i)) // busy wait // postprotocol desirecs[i].value=false; Proof of correctness Prove that the algorithm enforces mutual exclusion correctly by showing that it is impossible for two threads to be in the critical section simultaneously. doesn t allow deadlock (i.e. it s impossible). doesn t allow starvation in the presence of contention doesn t allow starvation in the absence of contention A separate proof for each point, each done as a proof by contradiction. page 29 page 30

6 Proof by contradiction If you show that assuming p leads you to conclude something which you know to be false, then you are forced to conclude that there are no circumstances when p is true in other words, p must be false all the time. ( p false) p Game plan for proof by contradiction Here, we show that threads following Peterson s algorithm and ending up with a violation of ME must have impossible (false) results from their programming, such as having a variable being both 0 and 1 simultaneously. From this, we conclude that we can t assume that threads following Peterson s algorithm end up violating ME. page 31 page 32

Memory system behavior: volatile variables. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 6. Volatile variables and concurrency

Memory system behavior: volatile variables. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 6. Volatile variables and concurrency CS 361 Concurrent programming Dreel University Fall 2004 Lecture 6 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

CS 361 Concurrent programming Drexel University Fall 2004 Lecture 8. Proof by contradiction. Proof of correctness. Proof of mutual exclusion property

CS 361 Concurrent programming Drexel University Fall 2004 Lecture 8. Proof by contradiction. Proof of correctness. Proof of mutual exclusion property CS 361 Concurrent programming Drexel University Fall 2004 Lecture 8 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

Midterm on next week Tuesday May 4. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 9

Midterm on next week Tuesday May 4. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 9 CS 361 Concurrent programming Drexel University Fall 2004 Lecture 9 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization?

Chapter 6: Process [& Thread] Synchronization. CSCI [4 6] 730 Operating Systems. Why does cooperation require synchronization? Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions:» What are race conditions?»

More information

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA

! Why is synchronization needed? ! Synchronization Language/Definitions: ! How are locks implemented? Maria Hybinette, UGA Chapter 6: Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics! Why is synchronization needed?! Synchronization Language/Definitions:» What are race

More information

CoSc 450: Programming Paradigms. The Critical Section Problem

CoSc 450: Programming Paradigms. The Critical Section Problem CoSc 450: Programming Paradigms 03 The Critical Section Problem Algorithm 3.1: Critical section problem global variables p q local variables local variables loop forever loop forever non-critical section

More information

G52CON: Concepts of Concurrency

G52CON: Concepts of Concurrency G52CON: Concepts of Concurrency Lecture 6: Algorithms for Mutual Natasha Alechina School of Computer Science nza@cs.nott.ac.uk Outline of this lecture mutual exclusion with standard instructions example:

More information

10/17/2011. Cooperating Processes. Synchronization 1. Example: Producer Consumer (3) Example

10/17/2011. Cooperating Processes. Synchronization 1. Example: Producer Consumer (3) Example Cooperating Processes Synchronization 1 Chapter 6.1 4 processes share something (devices such as terminal, keyboard, mouse, etc., or data structures) and can affect each other non deterministic Not exactly

More information

CSCI [4 6] 730 Operating Systems. Example Execution. Process [& Thread] Synchronization. Why does cooperation require synchronization?

CSCI [4 6] 730 Operating Systems. Example Execution. Process [& Thread] Synchronization. Why does cooperation require synchronization? Process [& Thread] Synchronization CSCI [4 6] 730 Operating Systems Synchronization Part 1 : The Basics Why is synchronization needed? Synchronization Language/Definitions: What are race conditions? What

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Quiz on Tuesday April 13. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4. Java facts and questions. Things to try in Java

Quiz on Tuesday April 13. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4. Java facts and questions. Things to try in Java CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

Chapter 5 Asynchronous Concurrent Execution

Chapter 5 Asynchronous Concurrent Execution Chapter 5 Asynchronous Concurrent Execution Outline 5.1 Introduction 5.2 Mutual Exclusion 5.2.1 Java Multithreading Case Study 5.2.2 Critical Sections 5.2.3 Mutual Exclusion Primitives 5.3 Implementing

More information

Models of concurrency & synchronization algorithms

Models of concurrency & synchronization algorithms Models of concurrency & synchronization algorithms Lecture 3 of TDA383/DIT390 (Concurrent Programming) Carlo A. Furia Chalmers University of Technology University of Gothenburg SP3 2016/2017 Today s menu

More information

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles

Chapter 5 Concurrency: Mutual Exclusion. and. Synchronization. Operating Systems: Internals. and. Design Principles Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

Concurrency: Mutual Exclusion and Synchronization. Concurrency

Concurrency: Mutual Exclusion and Synchronization. Concurrency Concurrency: Mutual Exclusion and Synchronization Chapter 5 1 Concurrency Multiple applications Structured applications Operating system structure 2 1 Concurrency 3 Difficulties of Concurrency Sharing

More information

Thread Synchronization: Foundations. Properties. Safety properties. Edsger s perspective. Nothing bad happens

Thread Synchronization: Foundations. Properties. Safety properties. Edsger s perspective. Nothing bad happens Edsger s perspective Testing can only prove the presence of bugs Thread Synchronization: Foundations Properties Property: a predicate that is evaluated over a run of the program (a trace) every message

More information

Mutual Exclusion: Classical Algorithms for Locks

Mutual Exclusion: Classical Algorithms for Locks Mutual Exclusion: Classical Algorithms for Locks John Mellor-Crummey Department of Computer Science Rice University johnmc@cs.rice.edu COMP 422 Lecture 18 21 March 2006 Motivation Ensure that a block of

More information

Chapter 5 Concurrency: Mutual Exclusion and Synchronization

Chapter 5 Concurrency: Mutual Exclusion and Synchronization Operating Systems: Internals and Design Principles Chapter 5 Concurrency: Mutual Exclusion and Synchronization Seventh Edition By William Stallings Designing correct routines for controlling concurrent

More information

PROVING THINGS ABOUT PROGRAMS

PROVING THINGS ABOUT PROGRAMS PROVING THINGS ABOUT CONCURRENT PROGRAMS Lecture 23 CS2110 Fall 2010 Overview 2 Last time we looked at techniques for proving things about recursive algorithms We saw that in general, recursion matches

More information

Lecture 2: Intro to Concurrent Processing. A Model of Concurrent Programming

Lecture 2: Intro to Concurrent Processing. A Model of Concurrent Programming Lecture 2: Intro to Concurrent Processing The SR Language. Correctness and Concurrency. Mutual Exclusion & Critical Sections. Software Solutions to Mutual Exclusion. Dekker s Algorithm. The Bakery Algorithm.

More information

Part III Synchronization Software and Hardware Solutions

Part III Synchronization Software and Hardware Solutions Part III Synchronization Software and Hardware Solutions Spring 2018 Computers are useless. They can only give answers. 1 Pablo Picasso Software Solutions for Two Processes Suppose we have two processes

More information

Fall 2004 CS414 Prelim 1

Fall 2004 CS414 Prelim 1 Fall 2004 CS414 Prelim 1 1. The Sim City Smoking Ban problem: In the Sim-City community Woobish most people smoke, but the laws of Sim City require that non-smokers be protected from passive smoke. So

More information

Lecture 2: Intro to Concurrent Processing

Lecture 2: Intro to Concurrent Processing Lecture 2: Intro to Concurrent Processing The SR Language. Correctness and Concurrency. Mutual Exclusion & Critical Sections. Software Solutions to Mutual Exclusion. Dekker s Algorithm. The Bakery Algorithm.

More information

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 13. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 13 Robert Grimm, New York University 1 Review Last week Exceptions 2 Outline Concurrency Discussion of Final Sources for today s lecture: PLP, 12

More information

Safety and liveness for critical sections

Safety and liveness for critical sections Safety and liveness for critical sections! At most k threads are concurrently in the critical section A. Safety B. Liveness C. Both! A thread that wants to enter the critical section will eventually succeed

More information

Introducing Shared-Memory Concurrency

Introducing Shared-Memory Concurrency Race Conditions and Atomic Blocks November 19, 2007 Why use concurrency? Communicating between threads Concurrency in Java/C Concurrency Computation where multiple things happen at the same time is inherently

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 153 Design of Operating Systems Winter 19 Lecture 7/8: Synchronization (1) Administrivia How is Lab going? Be prepared with questions for this weeks Lab My impression from TAs is that you are on track

More information

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019

CS 31: Introduction to Computer Systems : Threads & Synchronization April 16-18, 2019 CS 31: Introduction to Computer Systems 22-23: Threads & Synchronization April 16-18, 2019 Making Programs Run Faster We all like how fast computers are In the old days (1980 s - 2005): Algorithm too slow?

More information

Mutual Exclusion and Synchronization

Mutual Exclusion and Synchronization Mutual Exclusion and Synchronization Concurrency Defined Single processor multiprogramming system Interleaving of processes Multiprocessor systems Processes run in parallel on different processors Interleaving

More information

Introduction to OS Synchronization MOS 2.3

Introduction to OS Synchronization MOS 2.3 Introduction to OS Synchronization MOS 2.3 Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Introduction to OS 1 Challenge How can we help processes synchronize with each other? E.g., how

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

Thread Synchronization: Too Much Milk

Thread Synchronization: Too Much Milk Thread Synchronization: Too Much Milk 1 Implementing Critical Sections in Software Hard The following example will demonstrate the difficulty of providing mutual exclusion with memory reads and writes

More information

Chapters 5 and 6 Concurrency

Chapters 5 and 6 Concurrency Operating Systems: Internals and Design Principles, 6/E William Stallings Chapters 5 and 6 Concurrency Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Concurrency When several processes/threads

More information

Remaining Contemplation Questions

Remaining Contemplation Questions Process Synchronisation Remaining Contemplation Questions 1. The first known correct software solution to the critical-section problem for two processes was developed by Dekker. The two processes, P0 and

More information

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430

Implementing Mutual Exclusion. Sarah Diesburg Operating Systems CS 3430 Implementing Mutual Exclusion Sarah Diesburg Operating Systems CS 3430 From the Previous Lecture The too much milk example shows that writing concurrent programs directly with load and store instructions

More information

Peterson s Algorithm

Peterson s Algorithm Peterson s Algorithm public void lock() { flag[i] = true; victim = i; while (flag[j] && victim == i) {}; } public void unlock() { flag[i] = false; } 24/03/10 Art of Multiprocessor Programming 1 Mutual

More information

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5

Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Concurrency, Mutual Exclusion and Synchronization C H A P T E R 5 Multiple Processes OS design is concerned with the management of processes and threads: Multiprogramming Multiprocessing Distributed processing

More information

Lecture Topics. Announcements. Today: Concurrency: Mutual Exclusion (Stallings, chapter , 5.7)

Lecture Topics. Announcements. Today: Concurrency: Mutual Exclusion (Stallings, chapter , 5.7) Lecture Topics Today: Concurrency: Mutual Exclusion (Stallings, chapter 5.1-5.4, 5.7) Next: Concurrency: Deadlock and Starvation (Stallings, chapter 6.1, 6.6-6.8) 1 Announcements Self-Study Exercise #5

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 11 Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Multilevel Feedback Queue: Q0, Q1,

More information

Synchronization. Before We Begin. Synchronization. Credit/Debit Problem: Race Condition. CSE 120: Principles of Operating Systems.

Synchronization. Before We Begin. Synchronization. Credit/Debit Problem: Race Condition. CSE 120: Principles of Operating Systems. CSE 120: Principles of Operating Systems Lecture 4 Synchronization January 23, 2006 Prof. Joe Pasquale Department of Computer Science and Engineering University of California, San Diego Before We Begin

More information

Recap. Contents. Reenterancy of synchronized. Explicit Locks: ReentrantLock. Reenterancy of synchronise (ctd) Advanced Thread programming.

Recap. Contents. Reenterancy of synchronized. Explicit Locks: ReentrantLock. Reenterancy of synchronise (ctd) Advanced Thread programming. Lecture 07: Advanced Thread programming Software System Components 2 Behzad Bordbar School of Computer Science, University of Birmingham, UK Recap How to deal with race condition in Java Using synchronised

More information

Do not start the test until instructed to do so!

Do not start the test until instructed to do so! CS 3204 Operating Systems Midterm (Abrams) Spring 2004 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PRO SI M UNI VERSI TY Instructions: Do not start the test until instructed to do so! Print your name

More information

Programming in Parallel COMP755

Programming in Parallel COMP755 Programming in Parallel COMP755 All games have morals; and the game of Snakes and Ladders captures, as no other activity can hope to do, the eternal truth that for every ladder you hope to climb, a snake

More information

CSE 306/506 Operating Systems Concurrency: Mutual Exclusion and Synchronization YoungMin Kwon

CSE 306/506 Operating Systems Concurrency: Mutual Exclusion and Synchronization YoungMin Kwon CSE 306/506 Operating Systems Concurrency: Mutual Exclusion and Synchronization YoungMin Kwon Concurrency Multiprogramming Management of multiple processes within a uniprocessor system Multiprocessing

More information

PROCESS SYNCHRONIZATION

PROCESS SYNCHRONIZATION PROCESS SYNCHRONIZATION Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores Classic Problems of Synchronization Monitors Synchronization

More information

Dr. D. M. Akbar Hussain DE5 Department of Electronic Systems

Dr. D. M. Akbar Hussain DE5 Department of Electronic Systems Concurrency 1 Concurrency Execution of multiple processes. Multi-programming: Management of multiple processes within a uni- processor system, every system has this support, whether big, small or complex.

More information

Concurrent Processes Rab Nawaz Jadoon

Concurrent Processes Rab Nawaz Jadoon Concurrent Processes Rab Nawaz Jadoon DCS COMSATS Institute of Information Technology Assistant Professor COMSATS Lahore Pakistan Operating System Concepts Concurrent Processes If more than one threads

More information

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics.

CSE 410 Final Exam 6/09/09. Suppose we have a memory and a direct-mapped cache with the following characteristics. Question 1. (10 points) (Caches) Suppose we have a memory and a direct-mapped cache with the following characteristics. Memory is byte addressable Memory addresses are 16 bits (i.e., the total memory size

More information

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28)

Lecture Topics. Announcements. Today: Concurrency (Stallings, chapter , 5.7) Next: Exam #1. Self-Study Exercise #5. Project #3 (due 9/28) Lecture Topics Today: Concurrency (Stallings, chapter 5.1-5.4, 5.7) Next: Exam #1 1 Announcements Self-Study Exercise #5 Project #3 (due 9/28) Project #4 (due 10/12) 2 Exam #1 Tuesday, 10/3 during lecture

More information

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018

Deadlock and Monitors. CS439: Principles of Computer Systems September 24, 2018 Deadlock and Monitors CS439: Principles of Computer Systems September 24, 2018 Bringing It All Together Processes Abstraction for protection Define address space Threads Share (and communicate) through

More information

CS 361 Concurrent programming Drexel University Spring 2000 Lecture 14. The dining philosophers problem

CS 361 Concurrent programming Drexel University Spring 2000 Lecture 14. The dining philosophers problem CS 361 Concurrent programming Drexel University Spring 2000 Lecture 14 Bruce Char. All rights reserved by the author. Permission is given to students enrolled in CS361 Spring 2000 to reproduce these notes

More information

Concurrency: Locks. Announcements

Concurrency: Locks. Announcements CS 537 Introduction to Operating Systems UNIVERSITY of WISCONSIN-MADISON Computer Sciences Department Concurrency: Locks Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau Questions answered in this lecture:

More information

Synchronization I. Jo, Heeseung

Synchronization I. Jo, Heeseung Synchronization I Jo, Heeseung Today's Topics Synchronization problem Locks 2 Synchronization Threads cooperate in multithreaded programs To share resources, access shared data structures Also, to coordinate

More information

Synchronization. Before We Begin. Synchronization. Example of a Race Condition. CSE 120: Principles of Operating Systems. Lecture 4.

Synchronization. Before We Begin. Synchronization. Example of a Race Condition. CSE 120: Principles of Operating Systems. Lecture 4. CSE 120: Principles of Operating Systems Lecture 4 Synchronization October 7, 2003 Before We Begin Read Chapter 7 (Process Synchronization) Programming Assignment #1 Due Sunday, October 19, midnight Prof.

More information

ECE 462 Object-Oriented Programming using C++ and Java. Scheduling and Critical Section

ECE 462 Object-Oriented Programming using C++ and Java. Scheduling and Critical Section ECE 462 Object-Oriented Programming g using C++ and Java Scheduling and Critical Section Yung-Hsiang Lu yunglu@purdue.edu d YHL Scheduling and Critical Section 1 Thread States born terminated ready running

More information

G52CON: Concepts of Concurrency

G52CON: Concepts of Concurrency G52CON: Concepts of Concurrency Lecture 11: Semaphores I" Brian Logan School of Computer Science bsl@cs.nott.ac.uk Outline of this lecture" problems with Peterson s algorithm semaphores implementing semaphores

More information

Process Synchronization

Process Synchronization Process Synchronization Concurrent access to shared data may result in data inconsistency Multiple threads in a single process Maintaining data consistency requires mechanisms to ensure the orderly execution

More information

Midterm Exam Amy Murphy 19 March 2003

Midterm Exam Amy Murphy 19 March 2003 University of Rochester Midterm Exam Amy Murphy 19 March 2003 Computer Systems (CSC2/456) Read before beginning: Please write clearly. Illegible answers cannot be graded. Be sure to identify all of your

More information

Chapter 5: Synchronization 1

Chapter 5: Synchronization 1 1 Start of Lecture: January 25, 2014 2 Reminders Assignment 1 is due this Friday at 6:00 p.m. Couple comments about Exercise 1: Thought questions: be honest and sincere about questions you have while reading;

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 7: Synchronization Administrivia Homework 1 Due today by the end of day Hopefully you have started on project 1 by now? Kernel-level threads (preemptable

More information

CS 537 Lecture 11 Locks

CS 537 Lecture 11 Locks CS 537 Lecture 11 Locks Michael Swift 10/17/17 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 1 Concurrency: Locks Questions answered in this lecture: Review: Why threads

More information

Mutual Exclusion. 1 Formal problem definitions. Time notion CSE /17/2015. Outline of this lecture:

Mutual Exclusion. 1 Formal problem definitions. Time notion CSE /17/2015. Outline of this lecture: CSE 539 03/17/2015 Mutual Exclusion Lecture 15 Scribe: Son Dinh Outline of this lecture: 1. Formal problem definitions 2. Solution for 2 threads 3. Solution for n threads 4. Inherent costs of mutual exclusion

More information

Shared Variables and Interference

Shared Variables and Interference Solved Shared Variables and Interference CS 536: Science of Programming, Fall 2018 A. Why Parallel programs can coordinate their work using shared variables, but it s important for threads to not interfere

More information

Operating Systems. Sina Meraji U of T

Operating Systems. Sina Meraji U of T Operating Systems Sina Meraji U of T 1 Announcement Check discussion board for announcements A1 is posted 2 Recap: Process Creation: Unix In Unix, processes are created using fork() int fork() fork() Creates

More information

Operating Systems. Synchronisation Part I

Operating Systems. Synchronisation Part I Operating Systems Synchronisation Part I Process Synchronisation How do processes synchronise their operation to perform a task? Key concepts: Critical sections Mutual exclusion Atomic operations Race

More information

Chapter 6: Process Synchronization

Chapter 6: Process Synchronization Chapter 6: Process Synchronization Objectives Introduce Concept of Critical-Section Problem Hardware and Software Solutions of Critical-Section Problem Concept of Atomic Transaction Operating Systems CS

More information

Today: Synchronization. Recap: Synchronization

Today: Synchronization. Recap: Synchronization Today: Synchronization Synchronization Mutual exclusion Critical sections Example: Too Much Milk Locks Synchronization primitives are required to ensure that only one thread executes in a critical section

More information

CS4411 Intro. to Operating Systems Exam 1 Fall points 10 pages

CS4411 Intro. to Operating Systems Exam 1 Fall points 10 pages CS4411 Intro. to Operating Systems Exam 1 Fall 2005 (October 6, 2005) 1 CS4411 Intro. to Operating Systems Exam 1 Fall 2005 150 points 10 pages Name: Most of the following questions only require very short

More information

The New Java Technology Memory Model

The New Java Technology Memory Model The New Java Technology Memory Model java.sun.com/javaone/sf Jeremy Manson and William Pugh http://www.cs.umd.edu/~pugh 1 Audience Assume you are familiar with basics of Java technology-based threads (

More information

Locks. Dongkun Shin, SKKU

Locks. Dongkun Shin, SKKU Locks 1 Locks: The Basic Idea To implement a critical section A lock variable must be declared A lock variable holds the state of the lock Available (unlocked, free) Acquired (locked, held) Exactly one

More information

CSE 120: Principles of Operating Systems. Lecture 4. Synchronization. October 7, Prof. Joe Pasquale

CSE 120: Principles of Operating Systems. Lecture 4. Synchronization. October 7, Prof. Joe Pasquale CSE 120: Principles of Operating Systems Lecture 4 Synchronization October 7, 2003 Prof. Joe Pasquale Department of Computer Science and Engineering University of California, San Diego 2003 by Joseph Pasquale

More information

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition

Chapter 5: Process Synchronization. Operating System Concepts 9 th Edition Chapter 5: Process Synchronization Silberschatz, Galvin and Gagne 2013 Chapter 5: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Mutex Locks

More information

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit

Lecture 7: Mutual Exclusion 2/16/12. slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Principles of Concurrency and Parallelism Lecture 7: Mutual Exclusion 2/16/12 slides adapted from The Art of Multiprocessor Programming, Herlihy and Shavit Time Absolute, true and mathematical time, of

More information

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q

Coordination 1. To do. Mutual exclusion Election algorithms Next time: Global state. q q q Coordination 1 To do q q q Mutual exclusion Election algorithms Next time: Global state Coordination and agreement in US Congress 1798-2015 Process coordination How can processes coordinate their action?

More information

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Synchronization I. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Synchronization I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Synchronization problem Locks 2 Synchronization Threads cooperate

More information

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs

CSE 451: Operating Systems Winter Lecture 7 Synchronization. Steve Gribble. Synchronization. Threads cooperate in multithreaded programs CSE 451: Operating Systems Winter 2005 Lecture 7 Synchronization Steve Gribble Synchronization Threads cooperate in multithreaded programs to share resources, access shared data structures e.g., threads

More information

The Java Memory Model

The Java Memory Model Jeremy Manson 1, William Pugh 1, and Sarita Adve 2 1 University of Maryland 2 University of Illinois at Urbana-Champaign Presented by John Fisher-Ogden November 22, 2005 Outline Introduction Sequential

More information

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ!

Last Class: CPU Scheduling! Adjusting Priorities in MLFQ! Last Class: CPU Scheduling! Scheduling Algorithms: FCFS Round Robin SJF Multilevel Feedback Queues Lottery Scheduling Review questions: How does each work? Advantages? Disadvantages? Lecture 7, page 1

More information

Last Class: Deadlocks. Today

Last Class: Deadlocks. Today Last Class: Deadlocks Necessary conditions for deadlock: Mutual exclusion Hold and wait No preemption Circular wait Ways of handling deadlock Deadlock detection and recovery Deadlock prevention Deadlock

More information

Synchronization: Semaphores

Synchronization: Semaphores Illinois Institute of Technology Lecture 26 4/25 solved Synchronization: Semaphores CS 536: Science of Programming, Spring 2018 A. Why Avoiding interference, while good, isn t the same as coordinating

More information

Concurrency Race Conditions and Deadlocks

Concurrency Race Conditions and Deadlocks Concurrency Race Conditions and Deadlocks Kartik Gopalan Chapters 2 (2.3) and 6 Tanenbaum s Modern OS Sequential Loosely, doing many things, but one after another E.g. Finish one assignment, then another

More information

THREADS AND CONCURRENCY

THREADS AND CONCURRENCY THREADS AND CONCURRENCY Lecture 22 CS2110 Spring 2013 Graphs summary 2 Dijkstra: given a vertex v, finds shortest path from v to x for each vertex x in the graph Key idea: maintain a 5-part invariant on

More information

Implementing Locks. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau)

Implementing Locks. Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Implementing Locks Nima Honarmand (Based on slides by Prof. Andrea Arpaci-Dusseau) Lock Implementation Goals We evaluate lock implementations along following lines Correctness Mutual exclusion: only one

More information

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018

Lecture. DM510 - Operating Systems, Weekly Notes, Week 11/12, 2018 Lecture In the lecture on March 13 we will mainly discuss Chapter 6 (Process Scheduling). Examples will be be shown for the simulation of the Dining Philosopher problem, a solution with monitors will also

More information

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules

Concurrency Control. Synchronization. Brief Preview of Scheduling. Motivating Example. Motivating Example (Cont d) Interleaved Schedules Brief Preview of Scheduling Concurrency Control Nan Niu (nn@cs.toronto.edu) CSC309 -- Summer 2008 Multiple threads ready to run Some mechanism for switching between them Context switches Some policy for

More information

Concurrency and Synchronization. CS 447 Monday 3:30-5:00 Tuesday 2:00-3:30 Prof. R K Joshi CSE, IIT Bombay

Concurrency and Synchronization. CS 447 Monday 3:30-5:00 Tuesday 2:00-3:30 Prof. R K Joshi CSE, IIT Bombay Concurrency and Synchronization CS 447 Monday 3:30-5:00 Tuesday 2:00-3:30 Prof. R K Joshi CSE, IIT Bombay Interleaving in a multiprogamming environment A scenario Observe the interleaving of execution

More information

The concept of concurrency is fundamental to all these areas.

The concept of concurrency is fundamental to all these areas. Chapter 5 Concurrency(I) The central themes of OS are all concerned with the management of processes and threads: such as multiprogramming, multiprocessing, and distributed processing. The concept of concurrency

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

CPSC 261 Midterm 2 Thursday March 17 th, 2016

CPSC 261 Midterm 2 Thursday March 17 th, 2016 CPSC 261 Midterm 2 Thursday March 17 th, 2016 [9] 1. Multiple choices [5] (a) Among the following terms, circle all of those that refer to a responsibility of a thread scheduler: Solution : Avoiding deadlocks

More information

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II)

SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II) SSC - Concurrency and Multi-threading Java multithreading programming - Synchronisation (II) Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics

More information

CSE 153 Design of Operating Systems Fall 2018

CSE 153 Design of Operating Systems Fall 2018 CSE 153 Design of Operating Systems Fall 2018 Lecture 5: Threads/Synchronization Implementing threads l Kernel Level Threads l u u All thread operations are implemented in the kernel The OS schedules all

More information

Motivation of Threads. Preview. Motivation of Threads. Motivation of Threads. Motivation of Threads. Motivation of Threads 9/12/2018.

Motivation of Threads. Preview. Motivation of Threads. Motivation of Threads. Motivation of Threads. Motivation of Threads 9/12/2018. Preview Motivation of Thread Thread Implementation User s space Kernel s space Inter-Process Communication Race Condition Mutual Exclusion Solutions with Busy Waiting Disabling Interrupt Lock Variable

More information

Operating Systems EDA092, DIT 400 Exam

Operating Systems EDA092, DIT 400 Exam Chalmers University of Technology and Gothenburg University Operating Systems EDA092, DIT 400 Exam 2015-04-14 Date, Time, Place: Tuesday 2015/04/14, 14:00 18:00, Väg och vatten -salar Course Responsible:

More information

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10

MULTITHREADING AND SYNCHRONIZATION. CS124 Operating Systems Fall , Lecture 10 MULTITHREADING AND SYNCHRONIZATION CS124 Operating Systems Fall 2017-2018, Lecture 10 2 Critical Sections Race conditions can be avoided by preventing multiple control paths from accessing shared state

More information

UNIX Input/Output Buffering

UNIX Input/Output Buffering UNIX Input/Output Buffering When a C/C++ program begins execution, the operating system environment is responsible for opening three files and providing file pointers to them: stdout standard output stderr

More information

SSC - Concurrency and Multi-threading Advanced topics about liveness

SSC - Concurrency and Multi-threading Advanced topics about liveness SSC - Concurrency and Multi-threading Advanced topics about liveness Shan He School for Computational Science University of Birmingham Module 06-19321: SSC Outline Outline of Topics Review what we learned

More information

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements

System Correctness. EEC 421/521: Software Engineering. System Correctness. The Problem at Hand. A system is correct when it meets its requirements System Correctness EEC 421/521: Software Engineering A Whirlwind Intro to Software Model Checking A system is correct when it meets its requirements a design without requirements cannot be right or wrong,

More information

Threads. Concurrency. What it is. Lecture Notes Week 2. Figure 1: Multi-Threading. Figure 2: Multi-Threading

Threads. Concurrency. What it is. Lecture Notes Week 2. Figure 1: Multi-Threading. Figure 2: Multi-Threading Threads Figure 1: Multi-Threading Figure 2: Multi-Threading Concurrency What it is 1. Two or more threads of control access a shared resource. Scheduler operation must be taken into account fetch-decode-execute-check

More information

What is a Thread? Why Multicore? What is a Thread? But a fast computer runs hot THREADS AND CONCURRENCY. Concurrency (aka Multitasking)

What is a Thread? Why Multicore? What is a Thread? But a fast computer runs hot THREADS AND CONCURRENCY. Concurrency (aka Multitasking) What is a Thread? 2 THREADS AND CONCURRENCY A separate process that can perform a computational task independently and concurrently with other threads Most programs have only one thread GUIs have a separate

More information