Erlang. Functional Concurrent Distributed Soft real-time OTP (fault-tolerance, hot code update ) Open. Check the source code of generic behaviours

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Erlang. Functional Concurrent Distributed Soft real-time OTP (fault-tolerance, hot code update ) Open. Check the source code of generic behaviours"

Transcription

1 Lecture 10 Erlang

2 Erlang Functional Concurrent Distributed Soft real-time OTP (fault-tolerance, hot code update ) Open Check the source code of generic behaviours 2

3 Functional Haskell call-by-need (lazy) Expression are evaluated just-in-time Hard to predict memory and execution behaviour Erlang call-by-value (strict) Combinator style OK Direct pattern matching tail recursion Process tail recursion Constant memory usage 3

4 Recursion -module(list_stuff). -export([append/2, reverse/1]). append([x Xs], Ys) -> [X append(xs, Ys)]; average([], Ys) -> Ys. reverse([h T]) -> append(reverse(t), [H]); reverse([]) -> []. 4

5 Tail Recursion -module(list_stuff). -export([reverse/1, append/2]). reverse(xs) -> reverse_a(xs, []). reverse_a([x Xs], Acc) -> reverse_a(xs, [X Acc]); reverse_a([], Acc) -> Acc. %%continues 5

6 Tail Recursion %%continuation append(xs, Ys) -> reverse_a(r?verse(xs),ys). reverse_a(reverse(xs),ys). 6

7 Concurrent Programming Based on Message Passing: Q. What form of synchronisation? A. Asynchronous Q. What form of process naming? A. Direct, asymmetric A send MSG to B B receive anything 7

8 Asynchronous Message Passing Asynchronous send, receive from mailbox send receive Pid! Msg receive Msg-> receive Msg-> Pid! Msg 8

9 Concurrent Spawn a function evaluation in a separate thread Callout Pid = spawn( fun() -> loop(42) end) Function must use constant space Tail recursive fun() -> loop(42) end 9

10 Receive Message Order A receive statement tries to find a match as early in the mailbox as it can msg_1 msg_2 msg_1 msg_3 msg_2 msg_4 S msg_4 S receive msg_3 -> end 10

11 Receive Message Order A receive statement tries to find a match as early in the mailbox as it can msg_1 msg_2 msg_1 msg_4 S msg_4 S receive msg_4 -> msg_2 -> end 11

12 Receive Message Order A receive statement tries to find a match as early in the mailbox as it can msg_1 msg_2 msg_2 msg_4 S msg_4 S receive msg_4 -> _ -> end 12

13 Client-Server Interaction Common asynchronous communication pattern For example: a web server handles requests for web pages from clients (web browsers) client {request, Reg} client {result, Rep} server client client 13

14 Modelling Client-Server Computational server Off-loading heavy mathematical operations For example: factorial -module(math_server). -import(math_stuff,[factorial/1]). -export([start/0]). start() -> spawn(fun() -> loop(0) end). %%continues 14

15 Main Server Loop %%continuation loop(count) -> receive {factorial, From, N} -> Result = factorial(n), From! {result, Result}, loop(count+1); {get_count, From} -> From! {result, Count}, loop(count); stop -> true end. 15

16 Client Interface Encapsulating client access in a function Private channel for receiving replies? %%possible continuation compute_factorial(pid, N) -> Pid!{factorial, self(), N}, receive {result, Result} -> Result end. 16

17 References Private channel for receiving replies? Find the corresponding reply in the mailbox receive {result, Result} -> Result end BIF make_ref() Provides globally unique object different from every other object in the Erlang system including remote nodes 17

18 RPC Client Interface References to uniquely identify messages References allow only matching %%usual continuation compute_factorial(pid, N) -> Ref = make_ref(), Pid!{factorial, self(), Ref, N}, receive {result, Ref, Result} -> Result end. 18

19 RPC Main Server Loop %%continuation loop(count) -> receive {factorial, From, Ref, N} -> Result = factorial(n), From! {result, Ref, Result}, loop(count+1); {get_count, From, Ref} -> From! {result, Ref, Count}, loop(count); stop -> true end. 19

20 Registered Processes register(atom(), pid()) -> true BIF start() -> Pid = spawn(fun() -> loop(0) end), register(math_server, Pid), Pid. sending to a registered process math_server!{factorial, self(), 100}. 20

21 A Generic Server Desired features Proper reply behaviour - RPC Parameterised by the engine F Allows the engine to be upgraded dynamically Robust: does not crash if the engine goes wrong 21

22 More Generic Client-Server Higher-order functions can be used to capture the design pattern of a clientserver in a single module The main engine of a server has type : F:(State,Data) -> {Result,NewState} The state of the server before computing the query The new state of the server after the query 22

23 Main Server Loop loop(state, F) -> receive {request, From, Ref, Data} -> {R, NS} = F(State, Data), From! {result, Ref, R}, loop(ns, F); {update, From, Ref, NewF} -> From! {ok, Ref}, loop(state, NewF); stop -> true end. 23

24 Exceptions Expression evaluation can fail Examples: Bad pattern matching ({} = {1}) **exited: {{badmatch,{1}},[{erl_eval,expr,3}]}** Arithmetic error (1/0). **exited: {badarith, }** Using catch expression catch(1/0) = {'EXIT',{badarith, }} catch(1/1) = 1 24

25 More Robust Main Server Loop loop(state, F) -> receive {request, From, Ref, Data} -> case catch(f(state, Data)) of {'EXIT', Reason} -> From!{exit, Ref, Reason}, loop(state, F); {R, NewState} -> From!{result, Ref, R}, loop(newstate, F) end; 25

26 RPC Client Interface Generic client with exception passing request(pid, Data) -> Ref = make_ref(), Pid!{request, self(), Ref, Data}, receive {result, Ref, Result} -> Result; {exit, Ref, Reason} -> exit(reason) end. 26

27 Generic Server Instance -module(math_server). -import(math_stuff,[factorial/1]). -export([start/0]). start() -> g_server:start(math_server, 0, fun fx/2). fx(count, {factorial, N}) -> Result = factorial(n), {Result, Count+1}; fx(count, get_count) -> {Count, Count}. 27

28 Generic Server Instance Encapsulated client interface compute_factorial(pid, N) -> g_server:request(pid, {factorial, N}). get_count(pid) -> g_server:request(pid, get_count). 28

29 Classic Exercise Expressive power? Asynchronous message passing Yes, we know this already But this time we have direct naming Does this complicate matters? Somewhat. 29

30 Semaphore as Asynchronous Channel Semaphore sem s = N P(s); V(s); op void s(); for(int x=0;x<n;x++) send s(); receive s(); send s(); Channel 30

31 Modelling Semaphores A process has to simulate a semaphore -module(semaphore). -export([make/1, p/1, v/1]). make(permits) -> spawn(fun() -> loop(permits) end). p(sem) -> receive? -> v(sem) -> Sem!release. 31

32 Modelling Semaphores A process has to simulate a semaphore -module(semaphore). -export([make/1, p/1, v/1]). make(permits) -> spawn(fun() -> loop(permits) end). p(sem) -> receive? -> v(sem) -> Sem!release. 32

33 Modelling Semaphores Force a response from the semaphore modelling process %%possible continuation p(sem) -> Sem!{acquire, self()}, receive acquired -> ok end. 33

34 Modelling Semaphores In fact we can do it better Using the RPC request pattern %% a better continuation p(sem) -> Ref = make_ref(), Sem!{acquire, self(), Ref}, receive {acquired, Ref} -> ok end. 34

35 Semaphore Process Loop The semaphore modelling process as a finite state machine acquire release acquire Permits>0 receive acquire -> release -> Permits==0 receive release -> release 35

36 Semaphore Process FSM Implementing FSM One function per state loop(0) -> loop_release(); loop(permits) -> loop_both(permits). loop_release() -> receive release -> loop_both(1) end. %%continues 36

37 Semaphore Process FSM %%continuation loop_both(permits) -> receive {acquire, Pid, Ref} -> Pid!{acquired, Ref}, if (Permits-1)==0 -> loop_release(); true -> loop_both(permits-1) end; release -> loop_both(permits+1) end. 37

38 Using Semaphores A silly little example -module(semuser). -export([run/0]). -import(semaphore,[p/1,v/1]). run() -> Mutex = semaphore:make(1), spawn(fun () -> loop(["hi, Ho ], Mutex) end), spawn(fun () -> loop([ Chee, Tah ], Mutex) end). %%continues 38

39 Using Semaphores %%continuation loop(msg, Mutex) -> timer:sleep(500), p(mutex), io:format( My string is ~p.~n, [Msg]), timer:sleep(500), v(mutex), loop(msg, Mutex). 39

40 Selective Receive Clauses can have guards Guards must be composed from terminating functions (BIFs) loop(permits) -> receive {acquire,pid,ref} when Permits>0 -> Pid!{acquired, Ref}, loop(permits-1); release -> loop(permits+1) end. 40

41 Semaphores, last words Before you get the wrong idea Implementing semaphores using Erlang, Java, is for comparison purposes only It is not a natural or good programming style in a language with high level concurrency primitives! Nevertheless, the semaphore implementation showed certain patterns Finite state machine Selective receive 41

42 Distributed Execution Start Erlang node erl -sname node Start another Erlang node erl -sname other Send messages between nodes It just works For example to send to a registered process {process, 42

43 Distributed Example Start the math_server on one node For example on Run: math_server:start(). Now, on another node we can off-load heavy factorial computation For example on Run: math_server:compute_factorial( 42). 43

44 Conclusions Erlang Functional Concurrent Distributed Basics 44

Erlang. Joe Armstrong

Erlang. Joe Armstrong Erlang Joe Armstrong Though OOP came from many motivations, two were central. The large scale one was to find a better module scheme for complex systems involving hiding of details, and the small scale

More information

re-exam Concurrent Programming tda383/dit390 Date: Time: 14:00 18:00 Place: Maskinhuset (M)

re-exam Concurrent Programming tda383/dit390 Date: Time: 14:00 18:00 Place: Maskinhuset (M) re-exam Concurrent Programming tda383/dit390 Date: 2016-08-22 Time: 14:00 18:00 Place: Maskinhuset (M) Responsible Michał Pałka 031 772 10 79 Result Available no later than 2016-09-12 Aids Max 2 books

More information

Reminder from last time

Reminder from last time Concurrent systems Lecture 5: Concurrency without shared data, composite operations and transactions, and serialisability DrRobert N. M. Watson 1 Reminder from last time Liveness properties Deadlock (requirements;

More information

The Actor Model, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 18 10/23/2014

The Actor Model, Part Two. CSCI 5828: Foundations of Software Engineering Lecture 18 10/23/2014 The Actor Model, Part Two CSCI 5828: Foundations of Software Engineering Lecture 18 10/23/2014 1 Goals Cover the material presented in Chapter 5, of our concurrency textbook In particular, the material

More information

Lecture 6. Introduction to Message Passing

Lecture 6. Introduction to Message Passing Lecture 6 Introduction to Message Passing Message Passing Introduction to message passing JR s message passing model Operations Asynchronous message passing Synchronous message passing 2 Shared Variables?

More information

The Actor Model. CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016

The Actor Model. CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016 The Actor Model CSCI 5828: Foundations of Software Engineering Lecture 13 10/04/2016 1 Goals Introduce the Actor Model of Concurrency isolation, message passing, message patterns Present examples from

More information

Erlang 101. Google Doc

Erlang 101. Google Doc Erlang 101 Google Doc Erlang? with buzzwords Erlang is a functional concurrency-oriented language with extremely low-weight userspace "processes", share-nothing messagepassing semantics, built-in distribution,

More information

One process sends a message. We will consider two. dimensions of this. message passing. PPHT07 Linda

One process sends a message. We will consider two. dimensions of this. message passing. PPHT07 Linda Lecture 9 Linda and Erlang Part I Linda Overview of Mes sage Passing One process sends a message Another process awaits for a message We will consider two approach: dimensions of this What form of synchronisation

More information

Introduction to Erlang. Franck Petit / Sebastien Tixeuil

Introduction to Erlang. Franck Petit / Sebastien Tixeuil Introduction to Erlang Franck Petit / Sebastien Tixeuil Firstname.Lastname@lip6.fr Erlang History Erlang: Ericsson Language Designed to implement large-scale realtime telecommunication switching systems

More information

message passing model

message passing model message passing model PRODUCER-CONSUMER PROBLEM buffer producer consumer void producer(void) Two semaphores empty (i.v. 1) full (i.v. O) { while (TRUE) { ; P (empty);

More information

Programming Paradigms

Programming Paradigms PP 2016/17 Unit 16 Erlang Modules, Functions and Control Structures 1/31 Programming Paradigms Unit 16 Erlang Modules, Functions and Control Structures J. Gamper Free University of Bozen-Bolzano Faculty

More information

Beautiful Concurrency with Erlang

Beautiful Concurrency with Erlang Beautiful Concurrency with Erlang Kevin Scaldeferri OSCON 23 July 2008 6 years at Yahoo, building large high-concurrency distributed systems Not an expert, don t use it professionally Dabbled, liked it,

More information

Erlang. An introduction. Paolo Baldan Linguaggi e Modelli per il Global Computing AA 2016/2017

Erlang. An introduction. Paolo Baldan Linguaggi e Modelli per il Global Computing AA 2016/2017 Erlang An introduction Paolo Baldan Linguaggi e Modelli per il Global Computing AA 2016/2017 Erlang, in a slogan Declarative (functional) language for concurrent and distributed systems Erlang = Functions

More information

Operating Systems ECE344

Operating Systems ECE344 Operating Systems ECE344 Ding Yuan Announcement & Reminder Lab 0 mark posted on Piazza Great job! One problem: compilation error I fixed some for you this time, but won t do it next time Make sure you

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 6: Synchroniza&on (II) Semaphores and Monitors Ding Yuan Higher- Level Synchroniza&on We looked at using locks to provide mutual exclusion Locks work, but they have some

More information

PROGRAMMING IN HASKELL. Chapter 2 - First Steps

PROGRAMMING IN HASKELL. Chapter 2 - First Steps PROGRAMMING IN HASKELL Chapter 2 - First Steps 0 Glasgow Haskell Compiler GHC is the leading implementation of Haskell, and comprises a compiler and interpreter; The interactive nature of the interpreter

More information

PROGRAMMING IN HASKELL. Chapter 2 - First Steps

PROGRAMMING IN HASKELL. Chapter 2 - First Steps PROGRAMMING IN HASKELL Chapter 2 - First Steps 0 The Hugs System Hugs is an implementation of Haskell 98, and is the most widely used Haskell system; The interactive nature of Hugs makes it well suited

More information

Synchronization. CS 416: Operating Systems Design, Spring 2011 Department of Computer Science Rutgers University

Synchronization. CS 416: Operating Systems Design, Spring 2011 Department of Computer Science Rutgers University Synchronization Design, Spring 2011 Department of Computer Science Synchronization Basic problem: Threads are concurrently accessing shared variables The access should be controlled for predictable result.

More information

CSE Traditional Operating Systems deal with typical system software designed to be:

CSE Traditional Operating Systems deal with typical system software designed to be: CSE 6431 Traditional Operating Systems deal with typical system software designed to be: general purpose running on single processor machines Advanced Operating Systems are designed for either a special

More information

main read Identical static threads Dynamic threads with Concurrent and

main read Identical static threads Dynamic threads with Concurrent and CHAPTER 3: CONCURRENT PROCESSES AND PROGRAMMING Chapter outline Thread implementations Process models The client/server model Time services Language constructs for synchronization Concurrent programming

More information

Rev PA

<Urban.Boquist. com> Rev PA FP in industry - Erlang Urban Boquist Ericsson AB com> 1 Outline Who Am I Mobile Telecommunications Networks Packet Core Network GPRS & SGSN Use of Erlang in SGSN SGSN Design

More information

DS 2009: middleware. David Evans

DS 2009: middleware. David Evans DS 2009: middleware David Evans de239@cl.cam.ac.uk What is middleware? distributed applications middleware remote calls, method invocations, messages,... OS comms. interface sockets, IP,... layer between

More information

CPS506 - Comparative Programming Languages Elixir

CPS506 - Comparative Programming Languages Elixir CPS506 - Comparative Programming Languages Elixir Dr. Dave Mason Department of Computer Science Ryerson University c 2017 Dave Mason History Joe Armstrong worked at Ericson Erlang originally for lab development

More information

Logic Programming II & Revision

Logic Programming II & Revision Logic Programming II & Revision Gerardo Schneider Department of Informatics University of Oslo 1 Some corrections (1) hsiblings(x,y) :- child(x,parent), child(y,parent), X \== Y, child(x,parent1), child(y,parent2),

More information

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst

Operating Systems CMPSCI 377 Spring Mark Corner University of Massachusetts Amherst Operating Systems CMPSCI 377 Spring 2017 Mark Corner University of Massachusetts Amherst What is a Monitor? Ties data and the synchronization operations together Monitors guarantee mutual exclusion, i.e.,

More information

Monitors & Condition Synchronization

Monitors & Condition Synchronization Chapter 5 Monitors & Condition Synchronization monitors & condition synchronization Concepts: monitors: encapsulated data + access procedures mutual exclusion + condition synchronization single access

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Haskell 101 Dr. Hyunyoung Lee 1 Contents 1. Historical Background of Haskell 2. Lazy, Pure, and Functional Language 3. Using ghc and ghci 4. Functions 5. Haskell Scripts

More information

Exceptions in Erlang - Redux

Exceptions in Erlang - Redux Exceptions in Erlang - Redux Richard Carlsson Uppsala University Björn Gustavsson Patrik Nyblom Ericsson What's the big deal? Exceptions in Erlang are simple, right? Raising exceptions: throw(term) exit(term)

More information

Reasoning about programs. Chapter 9 of Thompson

Reasoning about programs. Chapter 9 of Thompson Reasoning about programs Chapter 9 of Thompson Proof versus testing A proof will state some property of a program that holds for all inputs. Testing shows only that a property holds for a particular set

More information

CHAPTER - 4 REMOTE COMMUNICATION

CHAPTER - 4 REMOTE COMMUNICATION CHAPTER - 4 REMOTE COMMUNICATION Topics Introduction to Remote Communication Remote Procedural Call Basics RPC Implementation RPC Communication Other RPC Issues Case Study: Sun RPC Remote invocation Basics

More information

MORE RECURSIVE FUNCTIONS

MORE RECURSIVE FUNCTIONS MORE RECURSIVE FUNCTIONS We'll write a few more recursive functions, just to get in the habit a bit more. After all, recursion being the only looping construct that exists in Erlang (except list comprehensions),

More information

Lecture 4: Higher Order Functions

Lecture 4: Higher Order Functions Lecture 4: Higher Order Functions Søren Haagerup Department of Mathematics and Computer Science University of Southern Denmark, Odense September 26, 2017 HIGHER ORDER FUNCTIONS The order of a function

More information

Java Monitors. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

Java Monitors. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. Java Monitors Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 19, 2010 Monteiro, Costa (DEI / IST) Parallel and Distributed Computing

More information

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads.

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Poor co-ordination that exists in threads on JVM is bottleneck

More information

Parallel Programming Languages COMP360

Parallel Programming Languages COMP360 Parallel Programming Languages COMP360 The way the processor industry is going, is to add more and more cores, but nobody knows how to program those things. I mean, two, yeah; four, not really; eight,

More information

Shell CSCE 314 TAMU. Functions continued

Shell CSCE 314 TAMU. Functions continued 1 CSCE 314: Programming Languages Dr. Dylan Shell Functions continued 2 Outline Defining Functions List Comprehensions Recursion 3 A Function without Recursion Many functions can naturally be defined in

More information

Horde Leader, a Framework to Build Cluster Aware Erlang Web Administration Console

Horde Leader, a Framework to Build Cluster Aware Erlang Web Administration Console Horde Leader, a Framework to Build Cluster Aware Erlang Web Administration Console November 9, 2006 Jérôme Sautret 2006 Process-one All right reserved Page 1 CONTENTS History and status of the project

More information

List Processing in Ocaml

List Processing in Ocaml CS251 Programming Languages Handout # 14 Prof. Lyn Turbak February 2, 2007 Wellesley College List Processing in Ocaml Given a list of integers ns, suppose we want to return a new list of the same length

More information

Introduction to Functional Programming in Haskell 1 / 56

Introduction to Functional Programming in Haskell 1 / 56 Introduction to Functional Programming in Haskell 1 / 56 Outline Why learn functional programming? The essence of functional programming What is a function? Equational reasoning First-order vs. higher-order

More information

Erlang and Go (CS262a, Berkeley Fall 2016) Philipp Moritz

Erlang and Go (CS262a, Berkeley Fall 2016) Philipp Moritz Erlang and Go (CS262a, Berkeley Fall 2016) Philipp Moritz The Problem Distributed computation is hard! State Hard to do recovery, dependency on order of execution Concurrency and Synchronization Hard to

More information

Synchronization: Basics

Synchronization: Basics Synchronization: Basics 53: Introduction to Computer Systems 4 th Lecture, April 8, 7 Instructor: Seth Copen Goldstein, Franz Franchetti Today Threads review Sharing Mutual exclusion Semaphores Traditional

More information

MONIX TASK LAZY, ASYNC & AWESOME. Alexandru Nedelcu. Software / alexn.org

MONIX TASK LAZY, ASYNC & AWESOME. Alexandru Nedelcu. Software  / alexn.org LAZY, ASYNC & AWESOME Alexandru Nedelcu Software Developer @ eloquentix.com @alexelcu / alexn.org WHAT IS MONIX? Scala / Scala.js library For composing asynchronous programs Exposes Observable & Task Typelevel

More information

Lecture 5: RMI etc. Servant. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3

Lecture 5: RMI etc. Servant. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3 Lecture 5: RMI etc. Java Remote Method Invocation Invocation Semantics Distributed Events CDK: Chapter 5 TVS: Section 8.3 CDK Figure 5.7 The role of proxy and skeleton in remote method invocation client

More information

Semaphores. Blocking in semaphores. Two types of semaphores. Example: Bounded buffer problem. Binary semaphore usage

Semaphores. Blocking in semaphores. Two types of semaphores. Example: Bounded buffer problem. Binary semaphore usage Semaphores CSE 451: Operating Systems Spring 2013 Module 8 Semaphores, Condition Variables, and Monitors Ed Lazowska lazowska@cs.washington.edu Allen Center 570 Semaphore = a synchronization primitive

More information

Chordy: a distributed hash table. Johan Montelius and Vladimir Vlassov. August 29, 2016

Chordy: a distributed hash table. Johan Montelius and Vladimir Vlassov. August 29, 2016 Introduction Chordy a distributed hash table Johan Montelius and Vladimir Vlassov August 29, 2016 In this assignment you will implement a distributed hash table following the Chord scheme. In order to

More information

Concurrent Programming (RIO) Lesson 9. Ch 8 [BenA 06] Messages Channels Rendezvous RPC and RMI. X=f(..); send X to B. OS kernel.

Concurrent Programming (RIO) Lesson 9. Ch 8 [BenA 06] Messages Channels Rendezvous RPC and RMI. X=f(..); send X to B. OS kernel. Lesson 9 Concurrency Control in Distributed Environment Ch 8 [BenA 06] Messages Channels Rendezvous RPC and RMI Distributed System No shared memory Communication with messages Tighly coupled systems Processes

More information

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

Monitors & Condition Synchronization

Monitors & Condition Synchronization Feb. 15, 2012 Monitors & condition Synchronization Concepts: monitors: encapsulated data + access procedures mutual exclusion + condition synchronization single access procedure active in the monitor Models:

More information

An Erlang primer. Johan Montelius

An Erlang primer. Johan Montelius An Erlang primer Johan Montelius Introduction This is not a crash course in Erlang since there are plenty of tutorials available on the web. I will however describe the tools that you need so that you

More information

CMPT 435/835 Tutorial 1 Actors Model & Akka. Ahmed Abdel Moamen PhD Candidate Agents Lab

CMPT 435/835 Tutorial 1 Actors Model & Akka. Ahmed Abdel Moamen PhD Candidate Agents Lab CMPT 435/835 Tutorial 1 Actors Model & Akka Ahmed Abdel Moamen PhD Candidate Agents Lab ama883@mail.usask.ca 1 Content Actors Model Akka (for Java) 2 Actors Model (1/7) Definition A general model of concurrent

More information

CSCI 5828: Foundations of Software Engineering

CSCI 5828: Foundations of Software Engineering CSCI 5828: Foundations of Software Engineering Lecture 16: Monitors & Condition Synchronization Slides created by Magee and Kramer for the Concurrency textbook 1 Chapter 5 Monitors & Condition Synchronization

More information

Inter-process communication (IPC)

Inter-process communication (IPC) Inter-process communication (IPC) We have studied IPC via shared data in main memory. Processes in separate address spaces also need to communicate. Consider system architecture both shared memory and

More information

Locking: A necessary evil? Lecture 10: Avoiding Locks. Priority Inversion. Deadlock

Locking: A necessary evil? Lecture 10: Avoiding Locks. Priority Inversion. Deadlock Locking: necessary evil? Lecture 10: voiding Locks CSC 469H1F Fall 2006 ngela Demke Brown (with thanks to Paul McKenney) Locks are an easy to understand solution to critical section problem Protect shared

More information

The Go Programming Language. Frank Roberts

The Go Programming Language. Frank Roberts The Go Programming Language Frank Roberts frank.roberts@uky.edu - C++ (1983), Java (1995), Python (1991): not modern - Java is 18 years old; how has computing changed in 10? - multi/many core - web programming

More information

Operating systems and concurrency (B08)

Operating systems and concurrency (B08) Operating systems and concurrency (B08) David Kendall Northumbria University David Kendall (Northumbria University) Operating systems and concurrency (B08) 1 / 20 Introduction Semaphores provide an unstructured

More information

Advanced Topics in Operating Systems

Advanced Topics in Operating Systems Advanced Topics in Operating Systems MSc in Computer Science UNYT-UoG Dr. Marenglen Biba 8-9-10 January 2010 Lesson 10 01: Introduction 02: Architectures 03: Processes 04: Communication 05: Naming 06:

More information

There are 8 total numbered pages, 6 Questions. You have 60 minutes. Budget your time carefully!

There are 8 total numbered pages, 6 Questions. You have 60 minutes. Budget your time carefully! UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING MIDTERM EXAMINATION, March, 2017 Third Year Materials ECE344H1 - Operating Systems Calculator Type: 2 Exam Type: A Examiner D. Yuan Please

More information

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling Multithreaded Programming Topics Multi Threaded Programming What are threads? How to make the classes threadable; Extending threads;

More information

Memory Consistency Models

Memory Consistency Models Memory Consistency Models Contents of Lecture 3 The need for memory consistency models The uniprocessor model Sequential consistency Relaxed memory models Weak ordering Release consistency Jonas Skeppstedt

More information

Test-Driven Development of Concurrent Programs using Concuerror

Test-Driven Development of Concurrent Programs using Concuerror Test-Driven Development of Concurrent Programs using Concuerror Alkis Gotovos 1 Maria Christakis 1 Konstantinos Sagonas 1,2 1 School of Electrical and Computer Engineering, National Technical University

More information

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY Instructors: Crista Lopes Copyright Instructors. Basics Concurrent Programming More than one thing at a time Examples: Network server handling hundreds of clients

More information

Thoughts on Assignment 4 Haskell: Flow of Control

Thoughts on Assignment 4 Haskell: Flow of Control Thoughts on Assignment 4 Haskell: Flow of Control CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Monday, February 27, 2017 Glenn G. Chappell Department of Computer

More information

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8

Design Issues. Subroutines and Control Abstraction. Subroutines and Control Abstraction. CSC 4101: Programming Languages 1. Textbook, Chapter 8 Subroutines and Control Abstraction Textbook, Chapter 8 1 Subroutines and Control Abstraction Mechanisms for process abstraction Single entry (except FORTRAN, PL/I) Caller is suspended Control returns

More information

INTRODUCTION TO HASKELL

INTRODUCTION TO HASKELL INTRODUCTION TO HASKELL PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/81 HASKELL: A PURELY FUNCTIONAL PROGRAMMING LANGUAGE Functions are first-class values: Can be

More information

Concurrency and Race Conditions (Linux Device Drivers, 3rd Edition (www.makelinux.net/ldd3))

Concurrency and Race Conditions (Linux Device Drivers, 3rd Edition (www.makelinux.net/ldd3)) (Linux Device Drivers, 3rd Edition (www.makelinux.net/ldd3)) Concurrency refers to the situation when the system tries to do more than one thing at once Concurrency-related bugs are some of the easiest

More information

Concurrency Control in Distributed Environment

Concurrency Control in Distributed Environment Lesson 9 Concurrency Control in Distributed Environment Ch 8 [BenA 06] Messages Channels Rendezvous RPC and RMI 1 Distributed System No shared memory Communication with messages Tighly coupled systems

More information

Semaphores INF4140. Lecture 3. 0 Book: Andrews - ch.04 ( ) INF4140 ( ) Semaphores Lecture 3 1 / 34

Semaphores INF4140. Lecture 3. 0 Book: Andrews - ch.04 ( ) INF4140 ( ) Semaphores Lecture 3 1 / 34 Semaphores INF4140 13.09.12 Lecture 3 0 Book: Andrews - ch.04 (4.1-4.4) INF4140 (13.09.12 ) Semaphores Lecture 3 1 / 34 Overview Last lecture: Locks and Barriers (complex techniques) No clear difference

More information

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012

Favoring Isolated Mutability The Actor Model of Concurrency. CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 Favoring Isolated Mutability The Actor Model of Concurrency CSCI 5828: Foundations of Software Engineering Lecture 24 04/11/2012 1 Goals Review the material in Chapter 8 of the Concurrency textbook that

More information

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1

Synchronization. Disclaimer: some slides are adopted from the book authors slides 1 Synchronization Disclaimer: some slides are adopted from the book authors slides 1 Recap Synchronization instructions test&set, compare&swap All or nothing Spinlock Spin on wait Good for short critical

More information

Synchronization COMPSCI 386

Synchronization COMPSCI 386 Synchronization COMPSCI 386 Obvious? // push an item onto the stack while (top == SIZE) ; stack[top++] = item; // pop an item off the stack while (top == 0) ; item = stack[top--]; PRODUCER CONSUMER Suppose

More information

Structured communication (Remote invocation)

Structured communication (Remote invocation) Prof. Dr. Claudia Müller-Birn Institute for Computer Science, Networked Information Systems Structured communication (Remote invocation) Nov 8th, 2011 Netzprogrammierung (Algorithmen und Programmierung

More information

Message-Passing Concurrency in Erlang

Message-Passing Concurrency in Erlang Message-Passing Concurrency in Erlang Erlang Training and Consulting Ltd Øredev, Malmö, November 6 th, 2009 Ulf Wiger Ulf.wiger@erlang-consulting.com @uwiger The (original) Problem Agent-based service...

More information

Concurrency Oriented Programming in Erlang

Concurrency Oriented Programming in Erlang Concurrency Oriented Programming in Erlang Joe Armstrong Distributed Systems Laboratory Swedish Institute of Computer Science joe@sics.se 17 February 2003 1 Introduction The starting point for this paper

More information

Erlang Programming. for Multi-core. Ulf Wiger. QCON London, March 12 th,

Erlang Programming. for Multi-core. Ulf Wiger. QCON London, March 12 th, Erlang Programming Erlang Training and Consulting Ltd for Multi-core QCON London, March 12 th, 2009 http://www.protest-project.eu/ Ulf Wiger ulf.wiger@erlang-consulting.com The age of multicore Fraction

More information

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements

Programming Languages Third Edition. Chapter 9 Control I Expressions and Statements Programming Languages Third Edition Chapter 9 Control I Expressions and Statements Objectives Understand expressions Understand conditional statements and guards Understand loops and variation on WHILE

More information

Programming with Threads Dec 7, 2009"

Programming with Threads Dec 7, 2009 Programming with Threads Dec 7, 2009" Administrivia" 2! Shared Variables in Threaded C Programs" 3! Threads Memory Model" 4! Example of Threads Accessing Another Threadʼs Stack" char **ptr; /* global */

More information

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions

CSE 544 Principles of Database Management Systems. Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions CSE 544 Principles of Database Management Systems Alvin Cheung Fall 2015 Lecture 14 Distributed Transactions Transactions Main issues: Concurrency control Recovery from failures 2 Distributed Transactions

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

An introduction to C++ template programming

An introduction to C++ template programming An introduction to C++ template programming Hayo Thielecke University of Birmingham http://www.cs.bham.ac.uk/~hxt March 2015 Templates and parametric polymorphism Template parameters Member functions of

More information

Synchronization II: EventBarrier, Monitor, and a Semaphore. COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala

Synchronization II: EventBarrier, Monitor, and a Semaphore. COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala Synchronization II: EventBarrier, Monitor, and a Semaphore COMPSCI210 Recitation 4th Mar 2013 Vamsi Thummala Check point: Mission in progress Master synchronization techniques Develop best practices for

More information

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, "hi", 3.2), c 4, a 1, b 5} 9/10/2017 4

# true;; - : bool = true. # false;; - : bool = false 9/10/ // = {s (5, hi, 3.2), c 4, a 1, b 5} 9/10/2017 4 Booleans (aka Truth Values) Programming Languages and Compilers (CS 421) Sasa Misailovic 4110 SC, UIUC https://courses.engr.illinois.edu/cs421/fa2017/cs421a # true;; - : bool = true # false;; - : bool

More information

Semaphores and Monitors: High-level Synchronization Constructs

Semaphores and Monitors: High-level Synchronization Constructs 1 Synchronization Constructs Synchronization Coordinating execution of multiple threads that share data structures Semaphores and Monitors High-level Synchronization Constructs A Historical Perspective

More information

Interprocess Communication By: Kaushik Vaghani

Interprocess Communication By: Kaushik Vaghani Interprocess Communication By: Kaushik Vaghani Background Race Condition: A situation where several processes access and manipulate the same data concurrently and the outcome of execution depends on the

More information

Process Synchronisation (contd.) Operating Systems. Autumn CS4023

Process Synchronisation (contd.) Operating Systems. Autumn CS4023 Operating Systems Autumn 2017-2018 Outline Process Synchronisation (contd.) 1 Process Synchronisation (contd.) Synchronization Hardware 6.4 (SGG) Many systems provide hardware support for critical section

More information

Week 5 Tutorial Structural Induction

Week 5 Tutorial Structural Induction Department of Computer Science, Australian National University COMP2600 / COMP6260 Formal Methods in Software Engineering Semester 2, 2016 Week 5 Tutorial Structural Induction You should hand in attempts

More information

Models of concurrency & synchronization algorithms

Models of concurrency & synchronization algorithms Models of concurrency & synchronization algorithms Lecture 3 of TDA383/DIT390 (Concurrent Programming) Carlo A. Furia Chalmers University of Technology University of Gothenburg SP3 2016/2017 Today s menu

More information

COSC441. Lecture 8 Introduction to Erlang

COSC441. Lecture 8 Introduction to Erlang COSC441 Lecture 8 Introduction to Erlang Approach The reference book is Learn You Some Erlang for Great Good! by Fred Hébert. http://learnyousomeerlang.com lets you read it free on-line. What I am going

More information

ERLANG EVOLVES FOR MULTI-CORE AND CLOUD ENVIRONMENTS

ERLANG EVOLVES FOR MULTI-CORE AND CLOUD ENVIRONMENTS ERLANG EVOLVES FOR MULTI-CORE AND CLOUD ENVIRONMENTS Torben Hoffmann Erlang Solutions Ltd. @LeHoff http://musings-of-an-erlang-priest.blogspot.dk/ 1 Agenda Erlang fundamentals Challenges 2 2 Warning 1:

More information

Final Score ID Extra Credit. 10% of course grade

Final Score ID Extra Credit. 10% of course grade Name Final Score ID Extra Credit Section (circle one): MW 8:30-9:50 TTh 9:30-10:50 TTh 11:00-12:20 10% of course grade 1. Inner Classes Anonymous inner classes are very commonly used with event-driven

More information

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp> Processor speed 6.037 - Structure and Interpretation of Computer Programs Mike Phillips Massachusetts Institute of Technology http://en.wikipedia.org/wiki/file:transistor_count_and_moore%27s_law_-

More information

Writing Parallel Programs COMP360

Writing Parallel Programs COMP360 Writing Parallel Programs COMP360 We stand at the threshold of a many core world. The hardware community is ready to cross this threshold. The parallel software community is not. Tim Mattson principal

More information

Semaphores (and Eventcounts) Otto J. Anshus University of {Tromsø, Oslo}

Semaphores (and Eventcounts) Otto J. Anshus University of {Tromsø, Oslo} Semaphores (and Eventcounts) Otto J. Anshus University of {Tromsø, Oslo} The Wa (Wawa) at Princeton See the too much milk problem last week Wawa http://www.wawa.com/ http://www.absoluteastronomy.com/encyclopedia/w/wa/wawa_food_markets.htm

More information

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = "Hello";

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = Hello; Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). In Java, this is legal: Object x = "Hello";

More information

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 Learning from Bad Examples CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 1 Goals Demonstrate techniques to design for shared mutability Build on an example where multiple threads

More information

PROGRAMMING IN HASKELL. Chapter 2 - First Steps

PROGRAMMING IN HASKELL. Chapter 2 - First Steps PROGRAMMING IN HASKELL Chapter 2 - First Steps 0 The Hugs System Hugs is an implementation of Haskell 98, and is the most widely used Haskell system; The interactive nature of Hugs makes it well suited

More information

Functions and Recursion. Dr. Philip Cannata 1

Functions and Recursion. Dr. Philip Cannata 1 Functions and Recursion Dr. Philip Cannata 1 10 High Level Languages This Course Java (Object Oriented) Jython in Java Relation ASP RDF (Horn Clause Deduction, Semantic Web) Dr. Philip Cannata 2 let transformation,

More information

Lecture 10: Introduction to Semaphores

Lecture 10: Introduction to Semaphores COMP 150-CCP Concurrent Programming Lecture 10: Introduction to Semaphores Dr. Richard S. Hall rickhall@cs.tufts.edu Concurrent programming February 19, 2008 Semaphores Semaphores (Dijkstra 1968) are widely

More information

CSC369 Lecture 2. Larry Zhang, September 21, 2015

CSC369 Lecture 2. Larry Zhang, September 21, 2015 CSC369 Lecture 2 Larry Zhang, September 21, 2015 1 Volunteer note-taker needed by accessibility service see announcement on Piazza for details 2 Change to office hour to resolve conflict with CSC373 lecture

More information

Dining Philosophers with π-calculus

Dining Philosophers with π-calculus Dining Philosophers with π-calculus Matthew Johnson January 28, 2015 Overview The primary goal of this project was to explore the π-calculus by implementing a deadlockfree solution to the dining philosophers

More information

G COURSE PLAN ASSISTANT PROFESSOR Regulation: R13 FACULTY DETAILS: Department::

G COURSE PLAN ASSISTANT PROFESSOR Regulation: R13 FACULTY DETAILS: Department:: G COURSE PLAN FACULTY DETAILS: Name of the Faculty:: Designation: Department:: Abhay Kumar ASSOC PROFESSOR CSE COURSE DETAILS Name Of The Programme:: BTech Batch:: 2013 Designation:: ASSOC PROFESSOR Year

More information