ECE 313 Computer Organization EXAM 2 November 9, 2001

Size: px
Start display at page:

Download "ECE 313 Computer Organization EXAM 2 November 9, 2001"

Transcription

1 ECE 33 Computer Organization EA 2 November 9, 2 This exam is open book and open notes. You have 5 minutes. Credit for problems requiring calculation will be given only if you show your work. Choose and work four of the five problems, and cross out the problem that you choose not to work. Only four problems will be graded even if you do not cross out a problem.. Floating Point Representation 25 Points a) Translate the decimal value 7.75 into single-precision floating point representation and show your answer in the space provided below b) Translate the number shown below in IEEE single-precision floating point format into its decimal equivalent and writes its value in the space provided below Value of number: Page of 6

2 ECE 33 Computer Organization EA 2 November 9, 2 2. Single-Cycle Processor Design 25 Points odify the single-cycle datapath and control to implement the jal (jump and link) instruction that is used for subprogram calls. The register transfer description for this instruction is as follows: Reg[3] <- PC + 4; PC <- (Instruction[25:] << 2) ark the necessary changes to the datapath and control on the diagrams shown below. PC 4 ADDR ADD Instruction RD jmpaddr I[25:] op I[3: Control nit Instruction I 6 WD <<2 Op RN RN2 WN RD Register File RegWrite 28 Control CONCAT op 6 I[3:26] funct 6I[5:] 5 5 RD2 6 E T N D 32 RegDst 32 PC+4[3-28] Src <<2 Operation 3 ADD Zero PCSrc Jump Branch emwrite ADDR Data WD emread RD emtor Instr RegDst Src emtoreg Reg Write Control Table em Read em Write Branch Op Op jr Page 2 of 6

3 ECE 33 Computer Organization EA 2 November 9, 2 3. Single-Cycle Processor Performance 25 Points The timing calculations performed on page 374 of the book assumed that the delay of the control units and multiplexers are negligible. In this problem we will consider the impact on timing of when the delays of the control units are not neglible. Specifically, suppose that in Figure 5.29 on p. 372, the block marked control has a delay and the block marked control has a delay Y. Further assume that The output will be stable 2ns after its control and data inputs are stable A multipliexer output is stable ns after its select and data inputs are stable Calculate the longest path through the single-cycle processor design when: (a) = ns, Y = ns (b) = 2ns, Y = ns 4. ulti-cycle Processor Design 25 Points odify the multi-cycle processor datapath and control to implement the jal (jump and link register) instruction. The register transfer description is the same as in the Problem 2. ark your changes on the attached schematic diagram and state diagram. How many clock cycles are required to execute the jump register instruction? Page 3 of 6

4 ECE 33 Computer Organization EA 2 November 9, 2 Page 4 of 6

5 ECE 33 Computer Organization EA 2 November 9, 2 ulticycle Design State Diagram Start Instruction Fetch emread SrcA = IorD = IRWrite SrcB = Op = PCWrite PCSource = Instruction decode / register fetch SrcA = SrcB = Op = (OP = BEQ ) address computation SrcA = SrcB = Op = Branch Execution Completion SrcA = SrcB = Op = SrcA = SrcB = Op = PCWriteCond PCSource = Jump Completion PCWrite PCSource = OP = LW ) emread IorD = access (OP = ( SW ) access 5 7 emwrite IorD = RegDst = RegWrite emtoreg = R-type completion Writeback step RegWrite emtoreg= RegDst = Page 5 of 6

6 ECE 33 Computer Organization EA 2 November 9, 2 4. icroprogrammed Design 25 Points Extend the microprogrammed implementation of the multicycle design discussed in lecture and the book to implement the addi instruction as in Homework Problem 5.5. Show any modifications to the microprogram (e.g., added microinstructions) and dispatch ROs (jump tables) by modifying the tables shown below. Label control SRC SRC2 Register control PCWrite control Sequencing Fetch Add PC 4 Read PC Seq Add PC Extshft Read Dispatch em Add A Extend Dispatch 2 LW2 Read Seq Write DR Fetch SW2 Write Fetch Rformat Func code A B Seq Write Fetch BEQ Subt A B Out-cond Fetch JP Jump address Fetch Dispatch RO Dispatch RO 2 Op Opcode name Value Op Opcode name Value R-format lw jmp sw beq lw sw Page 6 of 6

ECE 313 Computer Organization Name SOLUTION EXAM 2 November 3, Floating Point 20 Points

ECE 313 Computer Organization Name SOLUTION EXAM 2 November 3, Floating Point 20 Points ECE Computer Organization Name SOLTION EA November, This exam is open book and open notes. Credit for problems requiring calculation will be given only if you show your work.. Floating Point Points Translate

More information

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction Multi-cycle Approach Single cycle CPU State element Combinational logic State element clock one clock cycle or instruction Multi-cycle CPU Requires state elements to hold intermediate values State Element

More information

Lecture 5 and 6. ICS 152 Computer Systems Architecture. Prof. Juan Luis Aragón

Lecture 5 and 6. ICS 152 Computer Systems Architecture. Prof. Juan Luis Aragón ICS 152 Computer Systems Architecture Prof. Juan Luis Aragón Lecture 5 and 6 Multicycle Implementation Introduction to Microprogramming Readings: Sections 5.4 and 5.5 1 Review of Last Lecture We have seen

More information

Lab 8: Multicycle Processor (Part 1) 0.0

Lab 8: Multicycle Processor (Part 1) 0.0 Lab 8: ulticycle Processor (Part ). Introduction In this lab and the next, you will design and build your own multicycle IPS processor! Your processor should match the design from the text reprinted below

More information

Systems Architecture I

Systems Architecture I Systems Architecture I Topics A Simple Implementation of MIPS * A Multicycle Implementation of MIPS ** *This lecture was derived from material in the text (sec. 5.1-5.3). **This lecture was derived from

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. ultiple cycle implementation - complete Patterson: Appendix C, D 2 Breaking the Execution into Clock Cycles Execution of each instruction

More information

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points This exam is open book and open notes. Credit for problems requiring calculation will be given only if you show your work. 1. Multicycle Processor Design 0 Points In our discussion of exceptions in the

More information

Lecture 10 Multi-Cycle Implementation

Lecture 10 Multi-Cycle Implementation Lecture 10 ulti-cycle Implementation 1 Today s enu ulti-cycle machines Why multi-cycle? Comparative performance Physical and Logical Design of Datapath and Control icroprogramming 2 ulti-cycle Solution

More information

Processor (multi-cycle)

Processor (multi-cycle) CS359: Computer Architecture Processor (multi-cycle) Yanyan Shen Department of Computer Science and Engineering Five Instruction Steps ) Instruction Fetch ) Instruction Decode and Register Fetch 3) R-type

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. Single Cycle Review (Sample Exam/Quiz Q) 2. ultiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday (November

More information

Multiple Cycle Data Path

Multiple Cycle Data Path Multiple Cycle Data Path CS 365 Lecture 7 Prof. Yih Huang CS365 1 Multicycle Approach Break up the instructions into steps, each step takes a cycle balance the amount of work to be done restrict each cycle

More information

ENE 334 Microprocessors

ENE 334 Microprocessors ENE 334 Microprocessors Lecture 6: Datapath and Control : Dejwoot KHAWPARISUTH Adapted from Computer Organization and Design, 3 th & 4 th Edition, Patterson & Hennessy, 2005/2008, Elsevier (MK) http://webstaff.kmutt.ac.th/~dejwoot.kha/

More information

RISC Design: Multi-Cycle Implementation

RISC Design: Multi-Cycle Implementation RISC Design: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Computer Science 4 Computing Hardware Fall 6 Harvard University Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu Upcoming topics Mon, Nov th MIPS Basic Architecture (Part ) Wed, Nov th Basic Computer

More information

CC 311- Computer Architecture. The Processor - Control

CC 311- Computer Architecture. The Processor - Control CC 311- Computer Architecture The Processor - Control Control Unit Functions: Instruction code Control Unit Control Signals Select operations to be performed (ALU, read/write, etc.) Control data flow (multiplexor

More information

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours.

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours. This exam is open book and open notes. You have 2 hours. Problems 1-4 refer to a proposed MIPS instruction lwu (load word - update) which implements update addressing an addressing mode that is used in

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19

CO Computer Architecture and Programming Languages CAPL. Lecture 18 & 19 CO2-3224 Computer Architecture and Programming Languages CAPL Lecture 8 & 9 Dr. Kinga Lipskoch Fall 27 Single Cycle Disadvantages & Advantages Uses the clock cycle inefficiently the clock cycle must be

More information

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions COP33 - Computer Architecture Lecture ulti-cycle Design & Exceptions Single Cycle Datapath We designed a processor that requires one cycle per instruction RegDst busw 32 Clk RegWr Rd ux imm6 Rt 5 5 Rs

More information

Computer Organization & Design The Hardware/Software Interface Chapter 5 The processor : Datapath and control

Computer Organization & Design The Hardware/Software Interface Chapter 5 The processor : Datapath and control Computer Organization & Design The Hardware/Software Interface Chapter 5 The processor : Datapath and control Qing-song Shi http://.24.26.3 Email: zjsqs@zju.edu.cn Chapter 5 The processor : Datapath and

More information

The Processor: Datapath & Control

The Processor: Datapath & Control Chapter Five 1 The Processor: Datapath & Control We're ready to look at an implementation of the MIPS Simplified to contain only: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

Microprogrammed Control Approach

Microprogrammed Control Approach Microprogrammed Control Approach Considering the FSM for our MIPS subset has 10 states, the complete MIPS instruction set, which contains more than 100 instructions, and considering that these instructions

More information

Multicycle conclusion

Multicycle conclusion Multicycle conclusion The last few lectures covered a lot of material! We introduced a multicycle datapath, where different instructions take different numbers of cycles to execute. A multicycle unit is

More information

ECE473 Computer Architecture and Organization. Processor: Combined Datapath

ECE473 Computer Architecture and Organization. Processor: Combined Datapath Computer Architecture and Organization Processor: Combined path Lecturer: Prof. Yifeng Zhu Fall, 2014 Portions of these slides are derived from: Dave Patterson CB 1 Where are we? Want to build a processor

More information

Single-Cycle Examples, Multi-Cycle Introduction

Single-Cycle Examples, Multi-Cycle Introduction Single-Cycle Examples, ulti-cycle Introduction 1 Today s enu Single cycle examples Single cycle machines vs. multi-cycle machines Why multi-cycle? Comparative performance Physical and Logical Design of

More information

CPE 335. Basic MIPS Architecture Part II

CPE 335. Basic MIPS Architecture Part II CPE 335 Computer Organization Basic MIPS Architecture Part II Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s08/index.html CPE232 Basic MIPS Architecture

More information

ALUOut. Registers A. I + D Memory IR. combinatorial block. combinatorial block. combinatorial block MDR

ALUOut. Registers A. I + D Memory IR. combinatorial block. combinatorial block. combinatorial block MDR Microprogramming Exceptions and interrupts 9 CMPE Fall 26 A. Di Blas Fall 26 CMPE CPU Multicycle From single-cycle to Multicycle CPU with sequential control: Finite State Machine Textbook Edition: 5.4,

More information

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007

Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Digital Design & Computer Architecture (E85) D. Money Harris Fall 2007 Final Exam This is a closed-book take-home exam. You are permitted a calculator and two 8.5x sheets of paper with notes. The exam

More information

Mapping Control to Hardware

Mapping Control to Hardware C A P P E N D I X A custom format such as this is slave to the architecture of the hardware and the instruction set it serves. The format must strike a proper compromise between ROM size, ROM-output decoding,

More information

Review: Abstract Implementation View

Review: Abstract Implementation View Review: Abstract Implementation View Split memory (Harvard) model - single cycle operation Simplified to contain only the instructions: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

Lets Build a Processor

Lets Build a Processor Lets Build a Processor Almost ready to move into chapter 5 and start building a processor First, let s review Boolean Logic and build the ALU we ll need (Material from Appendix B) operation a 32 ALU result

More information

ECE468 Computer Organization and Architecture. Designing a Multiple Cycle Controller

ECE468 Computer Organization and Architecture. Designing a Multiple Cycle Controller ECE468 Computer Organization and Architecture Designing a Multiple Cycle Controller ECE468 multicontroller Review of a Multiple Cycle Implementation The root of the single cycle processor s problems: The

More information

RISC Processor Design

RISC Processor Design RISC Processor Design Single Cycle Implementation - MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 13 SE-273: Processor Design Feb 07, 2011 SE-273@SERC 1 Courtesy:

More information

Processor: Multi- Cycle Datapath & Control

Processor: Multi- Cycle Datapath & Control Processor: Multi- Cycle Datapath & Control (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann, 27) COURSE

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 22 COMPUTER ORGANIZATION HUGH CHESSER CHESSER HUGH CSEB 2U 2U CSEB Agenda Topics:. Sample Exam/Quiz Q - Review 2. Multiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday

More information

CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation

CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation CSE 2021: Computer Organization Fall 2010 Solution to Assignment # 3: Multicycle Implementation Note that these questions are taken from the previous final exmas of CSE2021 and should serve as practice

More information

Multicycle Approach. Designing MIPS Processor

Multicycle Approach. Designing MIPS Processor CSE 675.2: Introduction to Computer Architecture Multicycle Approach 8/8/25 Designing MIPS Processor (Multi-Cycle) Presentation H Slides by Gojko Babić and Elsevier Publishing We will be reusing functional

More information

Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle

Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle Inf2C - Computer Systems Lecture 12 Processor Design Multi-Cycle Boris Grot School of Informatics University of Edinburgh Previous lecture: single-cycle processor Inf2C Computer Systems - 2017-2018. Boris

More information

CENG 3420 Lecture 06: Datapath

CENG 3420 Lecture 06: Datapath CENG 342 Lecture 6: Datapath Bei Yu byu@cse.cuhk.edu.hk CENG342 L6. Spring 27 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified to contain only: memory-reference

More information

Outline. Combinational Element. State (Sequential) Element. Clocking Methodology. Input/Output of Elements

Outline. Combinational Element. State (Sequential) Element. Clocking Methodology. Input/Output of Elements Outline ombinational Element ombinational & sequential logic Single-cycle PU ulti-cycle PU Examples of ombinational Elements State (Sequential) Element! "#$$$ #$$ #$$ #$ # & & ) *.// * - + #3, * + - locking

More information

Implementing the Control. Simple Questions

Implementing the Control. Simple Questions Simple Questions How many cycles will it take to execute this code? lw $t2, 0($t3) lw $t3, 4($t3) beq $t2, $t3, Label add $t5, $t2, $t3 sw $t5, 8($t3) Label:... #assume not What is going on during the

More information

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems

ECE 3056: Architecture, Concurrency and Energy of Computation. Single and Multi-Cycle Datapaths: Practice Problems ECE 3056: Architecture, Concurrency and Energy of Computation Single and Multi-Cycle Datapaths: Practice Problems 1. Consider the single cycle SPIM datapath. a. Specify the values of the control signals

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 2021 COMPUTER ORGANIZATION HUGH LAS CHESSER 1012U HUGH CHESSER CSEB 1012U W10-M Agenda Topics: 1. Multiple cycle implementation review 2. State Machine 3. Control Unit implementation for Multi-cycle

More information

Lecture 5: The Processor

Lecture 5: The Processor Lecture 5: The Processor CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and

More information

comp 180 Lecture 25 Outline of Lecture The ALU Control Operation & Design The Datapath Control Operation & Design HKUST 1 Computer Science

comp 180 Lecture 25 Outline of Lecture The ALU Control Operation & Design The Datapath Control Operation & Design HKUST 1 Computer Science Outline of Lecture The Control Operation & Design The Datapath Control Operation & Design HKST 1 Computer Science Control After the design of partial single IPS datapath, we need to add the control unit

More information

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 CS COPTER ARCHITECTRE & ORGANIZATION SPRING DE : arch 6, HOEWORK III READ : i) Related portions of Chapter (except Sections. through.) ii) Related portions of Appendix A iii) Related portions of Appendix

More information

Chapter 4 The Processor (Part 2)

Chapter 4 The Processor (Part 2) Department of Electr rical Eng ineering, Chapter 4 The Processor (Part 2) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline A Multicycle Implementation Mapping Control

More information

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu

CENG 3420 Computer Organization and Design. Lecture 06: MIPS Processor - I. Bei Yu CENG 342 Computer Organization and Design Lecture 6: MIPS Processor - I Bei Yu CEG342 L6. Spring 26 The Processor: Datapath & Control q We're ready to look at an implementation of the MIPS q Simplified

More information

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 CS COPTER ARCHITECTRE & ORGANIZATION SPRING DE : TA HOEWORK IV READ : i) Related portions of Chapter (except Sections. through.) ii) Related portions of Appendix A iii) Related portions of Appendix iv)

More information

RISC Architecture: Multi-Cycle Implementation

RISC Architecture: Multi-Cycle Implementation RISC Architecture: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Topic #6. Processor Design

Topic #6. Processor Design Topic #6 Processor Design Major Goals! To present the single-cycle implementation and to develop the student's understanding of combinational and clocked sequential circuits and the relationship between

More information

RISC Architecture: Multi-Cycle Implementation

RISC Architecture: Multi-Cycle Implementation RISC Architecture: Multi-Cycle Implementation Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay

More information

LECTURE 6. Multi-Cycle Datapath and Control

LECTURE 6. Multi-Cycle Datapath and Control LECTURE 6 Multi-Cycle Datapath and Control SINGLE-CYCLE IMPLEMENTATION As we ve seen, single-cycle implementation, although easy to implement, could potentially be very inefficient. In single-cycle, we

More information

CS152 Computer Architecture and Engineering Lecture 13: Microprogramming and Exceptions. Review of a Multiple Cycle Implementation

CS152 Computer Architecture and Engineering Lecture 13: Microprogramming and Exceptions. Review of a Multiple Cycle Implementation CS152 Computer Architecture and Engineering Lecture 13: Microprogramming and Exceptions March 3, 1995 Dave Patterson (patterson@cs) and Shing Kong (shing.kong@eng.sun.com) Slides available on http://http.cs.berkeley.edu/~patterson

More information

ECE369. Chapter 5 ECE369

ECE369. Chapter 5 ECE369 Chapter 5 1 State Elements Unclocked vs. Clocked Clocks used in synchronous logic Clocks are needed in sequential logic to decide when an element that contains state should be updated. State element 1

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 14: One Cycle MIPs Datapath Adapted from Computer Organization and Design, Patterson & Hennessy, UCB R-Format Instructions Read two register operands Perform

More information

ﻪﺘﻓﺮﺸﻴﭘ ﺮﺗﻮﻴﭙﻣﺎﻛ يرﺎﻤﻌﻣ MIPS يرﺎﻤﻌﻣ data path and ontrol control

ﻪﺘﻓﺮﺸﻴﭘ ﺮﺗﻮﻴﭙﻣﺎﻛ يرﺎﻤﻌﻣ MIPS يرﺎﻤﻌﻣ data path and ontrol control معماري كامپيوتر پيشرفته معماري MIPS data path and control abbasi@basu.ac.ir Topics Building a datapath support a subset of the MIPS-I instruction-set A single cycle processor datapath all instruction actions

More information

Points available Your marks Total 100

Points available Your marks Total 100 CSSE 3 Computer Architecture I Rose-Hulman Institute of Technology Computer Science and Software Engineering Department Exam Name: Section: 3 This exam is closed book. You are allowed to use the reference

More information

Microprogramming. Microprogramming

Microprogramming. Microprogramming Microprogramming Alternative way of specifying control FSM State -- bubble control signals in bubble next state given by signals on arc not a great language to specify when things are complex Treat as

More information

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter

Initial Representation Finite State Diagram Microprogram. Sequencing Control Explicit Next State Microprogram counter Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

Chapter 5 Solutions: For More Practice

Chapter 5 Solutions: For More Practice Chapter 5 Solutions: For More Practice 1 Chapter 5 Solutions: For More Practice 5.4 Fetching, reading registers, and writing the destination register takes a total of 300ps for both floating point add/subtract

More information

Introduction. ENG3380 Computer Organization and Architecture MIPS: Data Path Design Part 3. Topics. References. School of Engineering 1

Introduction. ENG3380 Computer Organization and Architecture MIPS: Data Path Design Part 3. Topics. References. School of Engineering 1 ENG8 Computer Organization and rchitecture MIPS: Data Path Design Part Winter 7 S. reibi School of Engineering University of Guelph Introduction Topics uilding a Complete Data Path for MIPS Multi Cycle

More information

5.7. Microprogramming: Simplifying Control Design 5.7

5.7. Microprogramming: Simplifying Control Design 5.7 5.7 Microprogramming: Simplifying Control Design 5.7 For the of our simple MIPS subset, a graphical representation of the finite state machine, as in Figure 5.40 on page 345, is certainly adequate. We

More information

EE457. Note: Parts of the solutions are extracted from the solutions manual accompanying the text book.

EE457. Note: Parts of the solutions are extracted from the solutions manual accompanying the text book. EE457 Instructor: G. Puvvada ======================================================================= Homework 5b, Solution ======================================================================= Note:

More information

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm

Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium Tuesday, April 18 7:00pm to 10:00pm University of Calgary Department of Electrical and Computer Engineering ENCM 369: Computer Organization Lecture Instructor for L01 and L02: Dr. S. A. Norman Winter 2006 FINAL EXAMINATION Auxiliary Gymnasium

More information

Review Multicycle: What is Happening. Controlling The Multicycle Design

Review Multicycle: What is Happening. Controlling The Multicycle Design Review lticycle: What is Happening Reslt Zero Op SrcA SrcB Registers Reg Address emory em Data Sign etend Shift left Sorce A B Ot [-6] [5-] [-6] [5-] [5-] Instrction emory IR RegDst emtoreg IorD em em

More information

Initial Representation Finite State Diagram. Logic Representation Logic Equations

Initial Representation Finite State Diagram. Logic Representation Logic Equations Control Implementation Alternatives Control may be designed using one of several initial representations. The choice of sequence control, and how logic is represented, can then be determined independently;

More information

CS152 Computer Architecture and Engineering. Lecture 8 Multicycle Design and Microcode John Lazzaro (www.cs.berkeley.

CS152 Computer Architecture and Engineering. Lecture 8 Multicycle Design and Microcode John Lazzaro (www.cs.berkeley. CS152 Computer Architecture and Engineering Lecture 8 Multicycle Design and Microcode 2004-09-23 John Lazzaro (www.cs.berkeley.edu/~lazzaro) Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/

More information

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan)

Design of Digital Circuits 2017 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) Microarchitecture Design of Digital Circuits 27 Srdjan Capkun Onur Mutlu (Guest starring: Frank K. Gürkaynak and Aanjhan Ranganathan) http://www.syssec.ethz.ch/education/digitaltechnik_7 Adapted from Digital

More information

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control

ELEC 5200/6200 Computer Architecture and Design Spring 2017 Lecture 4: Datapath and Control ELEC 52/62 Computer Architecture and Design Spring 217 Lecture 4: Datapath and Control Ujjwal Guin, Assistant Professor Department of Electrical and Computer Engineering Auburn University, Auburn, AL 36849

More information

COMP303 Computer Architecture Lecture 9. Single Cycle Control

COMP303 Computer Architecture Lecture 9. Single Cycle Control COMP33 Computer Architecture Lecture 9 Single Cycle Control A Single Cycle Datapath We have everything except control signals (underlined) RegDst busw Today s lecture will look at how to generate the control

More information

Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control

Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control Chapter 5 The Processor: Datapath and Control Big Picture: Where are We Now? Performance of a

More information

Merging datapaths: (add,lw, sw)

Merging datapaths: (add,lw, sw) COP 273 Winter 2012 1 - IPS datapath and control 2 ar., 2012 erging datapaths: (add,lw, sw) The datapaths that we saw last lecture considered each instruction in isolation. I drew only those elements that

More information

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design

ENGN1640: Design of Computing Systems Topic 04: Single-Cycle Processor Design ENGN64: Design of Computing Systems Topic 4: Single-Cycle Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Major CPU Design Steps

Major CPU Design Steps Datapath Major CPU Design Steps. Analyze instruction set operations using independent RTN ISA => RTN => datapath requirements. This provides the the required datapath components and how they are connected

More information

Digital Design and Computer Architecture Harris and Harris

Digital Design and Computer Architecture Harris and Harris Digital Design and Computer Architecture Harris and Harris Lab 0: Multicycle Processor (Part ) Introduction In this lab and the next, you will design and build your own multicycle MIPS processor. You will

More information

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August

Lecture 8: Control COS / ELE 375. Computer Architecture and Organization. Princeton University Fall Prof. David August Lecture 8: Control COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Datapath and Control Datapath The collection of state elements, computation elements,

More information

The overall datapath for RT, lw,sw beq instrucution

The overall datapath for RT, lw,sw beq instrucution Designing The Main Control Unit: Remember the three instruction classes {R-type, Memory, Branch}: a) R-type : Op rs rt rd shamt funct 1.src 2.src dest. 31-26 25-21 20-16 15-11 10-6 5-0 a) Memory : Op rs

More information

PART I: Adding Instructions to the Datapath. (2 nd Edition):

PART I: Adding Instructions to the Datapath. (2 nd Edition): EE57 Instrctor: G. Pvvada ===================================================================== Homework #5b De: check on the blackboard =====================================================================

More information

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation

ECE 361 Computer Architecture Lecture 11: Designing a Multiple Cycle Controller. Review of a Multiple Cycle Implementation ECE 6 Computer Architecture Lecture : Designing a Multiple Cycle ler 6 multicontroller. Review of a Multiple Cycle Implementation The root of the single cycle processor s problems: The cycle time has to

More information

Digital Design and Computer Architecture

Digital Design and Computer Architecture Digital Design and Computer Architecture Lab 0: Multicycle Processor (Part ) Introduction In this lab and the next, you will design and build your own multicycle MIPS processor. You will be much more on

More information

CS232 Final Exam May 5, 2001

CS232 Final Exam May 5, 2001 CS232 Final Exam May 5, 2 Name: This exam has 4 pages, including this cover. There are six questions, worth a total of 5 points. You have 3 hours. Budget your time! Write clearly and show your work. State

More information

Lecture 6: Microprogrammed Multi Cycle Implementation. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 6: Microprogrammed Multi Cycle Implementation. James C. Hoe Department of ECE Carnegie Mellon University 8 447 Lectre 6: icroprogrammed lti Cycle Implementation James C. Hoe Department of ECE Carnegie ellon University 8 447 S8 L06 S, James C. Hoe, CU/ECE/CALC, 208 Yor goal today Hosekeeping nderstand why

More information

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H

COMPUTER ORGANIZATION AND DESIGN. The Hardware/Software Interface. Chapter 4. The Processor: A Based on P&H COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface Chapter 4 The Processor: A Based on P&H Introduction We will examine two MIPS implementations A simplified version A more realistic pipelined

More information

Chapter 5: The Processor: Datapath and Control

Chapter 5: The Processor: Datapath and Control Chapter 5: The Processor: Datapath and Control Overview Logic Design Conventions Building a Datapath and Control Unit Different Implementations of MIPS instruction set A simple implementation of a processor

More information

EECE 417 Computer Systems Architecture

EECE 417 Computer Systems Architecture EECE 417 Computer Systems Architecture Department of Electrical and Computer Engineering Howard University Charles Kim Spring 2007 1 Computer Organization and Design (3 rd Ed) -The Hardware/Software Interface

More information

LECTURE 5. Single-Cycle Datapath and Control

LECTURE 5. Single-Cycle Datapath and Control LECTURE 5 Single-Cycle Datapath and Control PROCESSORS In lecture 1, we reminded ourselves that the datapath and control are the two components that come together to be collectively known as the processor.

More information

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 5. Fall 2005 Department of Computer Science Kent State University Compter Architectre Chapter 5 Fall 25 Department of Compter Science Kent State University The Processor: Datapath & Control Or implementation of the MIPS is simplified memory-reference instrctions: lw,

More information

Grading Results Total 100

Grading Results Total 100 University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2003 Instructor: Dave Patterson 2003-10-8 CS 152 Exam #1 Personal Information First

More information

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination

THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination THE HONG KONG UNIVERSITY OF SCIENCE & TECHNOLOGY Computer Organization (COMP 2611) Spring Semester, 2014 Final Examination May 23, 2014 Name: Email: Student ID: Lab Section Number: Instructions: 1. This

More information

Design of Digital Circuits Lecture 13: Multi-Cycle Microarch. Prof. Onur Mutlu ETH Zurich Spring April 2017

Design of Digital Circuits Lecture 13: Multi-Cycle Microarch. Prof. Onur Mutlu ETH Zurich Spring April 2017 Design of Digital Circuits Lecture 3: Multi-Cycle Microarch. Prof. Onur Mutlu ETH Zurich Spring 27 6 April 27 Agenda for Today & Next Few Lectures! Single-cycle Microarchitectures! Multi-cycle and Microprogrammed

More information

Control Unit for Multiple Cycle Implementation

Control Unit for Multiple Cycle Implementation Control Unit for Multiple Cycle Implementation Control is more complex than in single cycle since: Need to define control signals for each step Need to know which step we are on Two methods for designing

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements

CSE 141 Computer Architecture Spring Lectures 11 Exceptions and Introduction to Pipelining. Announcements CSE 4 Computer Architecture Spring 25 Lectures Exceptions and Introduction to Pipelining May 4, 25 Announcements Reading Assignment Sections 5.6, 5.9 The Processor Datapath and Control Section 6., Enhancing

More information

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed Lecture 3: General Purpose Processor Design CSCE 665 Advanced VLSI Systems Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, tet etc included in slides are borrowed from various books, websites,

More information

Lecture 10: Simple Data Path

Lecture 10: Simple Data Path Lecture 10: Simple Data Path Course so far Performance comparisons Amdahl s law ISA function & principles What do bits mean? Computer math Today Take QUIZ 6 over P&H.1-, before 11:59pm today How do computers

More information

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm

ECE Exam I - Solutions February 19 th, :00 pm 4:25pm ECE 3056 Exam I - Solutions February 19 th, 2015 3:00 pm 4:25pm 1. (35 pts) Consider the following block of SPIM code. The text segment starts at 0x00400000 and the data segment starts at 0x10010000..data

More information

Pipelined Datapath. One register file is enough

Pipelined Datapath. One register file is enough ipelined path The goal of pipelining is to allow multiple instructions execute at the same time We may need to perform several operations in a cycle Increment the and add s at the same time. Fetch one

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing Announcements and Outline Check webct grades, make sure everything is there and is correct Pick up graded d homework at

More information