Software Components and Distributed Systems

Size: px
Start display at page:

Download "Software Components and Distributed Systems"

Transcription

1 Software Components and Distributed Systems INF5040/9040 Autumn 2017 Lecturer: Eli Gjørven (ifi/uio) September 12, 2017

2 Outline Recap distributed objects and RMI Introduction to Components Basic Design Concepts Distributed Components Main Technologies for Distributed Components Summary 2

3 Remote Procedure Call Ideally: make a remote call look as a local one in other words: achieving access transparency The basic idea: Client Stub Server Stub 3

4 RPC + Remote objects = RMI Idea: Make it possible to send messages to remote objects using mechanisms similar as RPC Remote client objects can only invoke the remote interface Local client objects can invoke: the methods in the remote interface + other methods implemented by the object Result: Access transparency! 4

5 RMI-software Example: Object A invokes a remote object on object B RMI-software: Proxy, skeleton and dispatcher Translates between local method invocations and remote invocations (including marshalling) Uses communication module to send request and receive reply 5

6 Limitations of Object-Oriented Middleware Objects do provide a clean separation between the specification of an object and its implementation RMI enables access transparency BUT: Object model is based on fine-grained classes with complex and implicit relationships and dependencies Objects need to handle explicitly Naming, RORs, binding, lifecycle, state.. Non-functional concerns like security, transactions, coordination and replication Through the middleware, or by own implementation No support for deployment 6

7 Software Components Some Definitions A unit of composition with contractually specified interfaces and explicit dependencies. (Clemens Szyperski) A piece of self-contained, self-deployable code, assembled with other components through its interface. (Wang and Qian) A nearly independent, and replaceable part of a system with a clear function, implementing a set of interfaces. (Philippe Krutchen, Rational Software) For example: JavaBeans, COM, CORBA, OSGi 7

8 Four Basic Design Concepts I. Component Model A component has a set of required and provided interfaces Several components may require or provide the same interface Required Interfaces (RI) Component Provided interfaces (PI) Impl. by Impl. by Component 1 Component 2 Component contract : For a component to function correctly, every required interface must be bound ( connected ) to a provided interface of another component. If a component provides an interface which is invoked by another component hosted in a different computer passing messages to it across a network, we have a DS. 8

9 Four Basic Design Concepts cont d II. Connection Model Describes a connection as a binding between a required and a provided interface through connectors, which are pre-defined composition operators. Main styles of connector interfaces: Method-based interface: RMI Event-based interface: Distributed events (ref lecture Communication paradigms ) Component 1 Method invocation Event Component 2 9

10 Four Basic Design Concepts cont d III. Composition Idea: Explicitly defined required and provided interfaces enables development of software as a composition of components: A set of components which are to be connected at runtime One component can be reused in different software compositions. A component in a composition can be replaced by another component that requires and provides the same interfaces Component 1 Interface 2 Impl. by Impl. by Component 2.1 Component

11 Four Basic Design Concepts cont d IV. Deployment Model Describes the process and activities for component and composition installation and configuration: Install components on the same or different computers Ensure components can be correctly connected Ensure that the middleware is configured to provide the right level of support for the components E.g., EJB produces a XML-based deployment descriptor 11

12 Designing a Component Platform The underlying foundation to construct, assemble, deploy and manage components Defines rules for deployment, composition and activation of components. To deliver and deploy components: a standardized archive format that packages component code and meta-data Embraces four component design concepts: component model, connection model, composition and deployment model Designed as a set of contractually specified interfaces 12

13 Inversion of control pattern The component model is suitable for the inversion control and dependency injection patterns Component 1 Dependency Component 2 Activate () addconnector (comp1) Component platform Dependency injection is a specific type of inversion of control. 13

14 Distributed Component Middleware Advantages of distribution Load sharing Increased availability Heterogeneity Replication Computer 1 Computer 2 App1 App2 Comp 1 Comp 2 Inter-process Comm. (Middleware) Local OS 1 Local OS 2 Network Distributed component middleware characteristics of components + functionality of middleware systems inter-process communication across machine boundaries 14

15 Revisit Distributed Object Middleware Distributed object middleware Infrastructure for access to remote objects transparently based on the Remote Procedure Call (RPC) Client Stub Explicit Middleware Distributed Object Skeleton API API API Database Driver Security Service Transaction Server Application logic must handle logic for life cycle management, transactions, security, persistence, etc. explicitly Object developer Objects can be difficult to reuse in different settings 15

16 Implicit Middleware No explicit references to middleware services from application logic Better support for separation of concerns Client Distributed Component Stub Request Interceptor Skeleton Implicit Middleware API API API Database Driver Security Service Transaction Server Enables changing middleware services separately without changing the application code 16

17 Component-based Middleware Distributed Components + Container => Implicit middleware Distributed Component The designer only focuses on the component logic, not burdened with the implementation of location, persistence, transactional capabilities and security. Container Responsibilities of the container life cycle management, system services (e.g., transactions), security dynamic deployment and activation of new components e.g., resolving dependencies dynamically or activating components requested in method calls Front-end for remote communication including interception of incoming invocations (cf. implicit middleware) Middleware that supports the container pattern: Application Server 17

18 Application Servers: Key Players 18

19 Distributed Components- Main Technologies Sun/Oracle defined the Enterprise Java Beans (EJB) specification as part of their Enterprise Edition of the Java 2 platform. OMG defined the CORBA Component Model (CCM), providing a distributed component model for languages other than Java. Microsoft defined the Distributed Component Object Model (DCOM), supporting distributed communication under Microsoft's COM+ application server. 19

20 Enterprise JavaBeans A server-side component model based on a three-tier architecture Beans in EJB: capture business logic Beans hosted by the EJB container supporting key distribution services: transactions, security and lifecycle EJB services can be container-managed: injecting calls to the associated services bean-managed: developer takes more control over these services 20

21 EJB Component Model Bean: a component offering business interfaces (remote and local) Session beans: stateless and stateful Message-driven beans: listener-style interface Bean implementation Plain Old Java Object (POJO) with annotations, public class eshop implements Orders public interface Orders {...} A significant number of annotations for container services 21

22 EJB dependency injection and interception Dependency injection in container: managing and resolving the relationships between a component and its dependencies, javax.transaction.usertransaction ut; Interception: to associate particular action(s) with an incoming call on a business interface, e.g. public class eshop implements Orders { public void MakeOrder (...) public Object log(invocationcontext ctx) throws Exception { System.out.println( invoked method: + ctx.getmethod().getname()); return invocationcontext.proceed(); } } 22

23 An public class eshop implements Orders javax.transaction.usertransaction ut; public void MakeOrder (...) { ut.begin();... ut.commit(); } public class eshop implements Orders public void MakeOrder(...){... } Container-Managed } 23

24 Fractal Component Model A lightweight component model developed by the open source consortium OW2 Programming with interfaces Uniform model for provided and required interfaces Explicit representation of the architecture No support for deployment, container patterns, etc. Configurable and reconfigurable at runtime Programming language agnostic model Implementations of the model available in several programming languages (Java, C, C#, Smalltalk, Python) Mostly used by research projects to develop experimental middleware 24

25 Fractal Component Model cont d Server (provided) and Client (required) interfaces Composition: bindings between interfaces Primitive Binding: client and server within the same address space Composite Binding: arbitrarily complex architectures consisting of components and bindings, implementing communication between two or more interfaces potentially on different machines (fx. CORBA) Component model is hierarchical a component: subcomponents and associated bindings subcomponents may themselves be composite System is fully configurable and reconfigurable: including components and their interconnections 25

26 Fractal: Component Structure 26

27 Fractal: Example Describing components through Architecture Description Language (ADL) <definition name="helloworld"> <interface name= r" role="server" signature= Runnable"/> <component name="client"> <interface name= r" role="server" signature= Runnable"/> <interface name="s" role="client" signature="service"/> <content class="clientimpl"/> </component> <component name="server"> <interface name="s" role="server" signature="service"/> <content class="serverimpl"/> </component> <binding client="this.r" server="client.r"/> <binding client="client.s" server="server.s"/> </definition> 27

28 Fractal: Example cont d Resulting Architecture HelloWorld r r client s s server Client Impl Server Impl 28

29 Limitations of components Explicitly defined dependencies works within organizations but not so well between organizations Not always an advantage to make middleware services for transactions, security,.. transparent Main concepts tightly coupled to complex middleware (container + middleware services) Common component middleware is tightly coupled to specific technologies (Java, CORBA, Microsoft COM, Fractal) What about Internet applications? 29

30 Summary: Components vs. Objects classes and object Object-Oriented data types and hierarchies implementation technology tightly coupled: low-level reuse Fine-grained classes with complex and implicit relationships and dependencies components Component-based interfaces and composition packaging & distribution technology loosely coupled: high-level reuse Coarse-grained software units with explicit relationships and dependencies Object-based middleware Explicit references to the middleware and its services from application code No support for deployment and configuration Component-based middleware No explicit references to the middleware and its services from application code Handles deployment of components to a container Container handles life-cycle management and system services Both: Most suitable for DS within an organization 30

~ Ian Hunneybell: CBSD Revision Notes (07/06/2006) ~

~ Ian Hunneybell: CBSD Revision Notes (07/06/2006) ~ 1 Component: Szyperski s definition of a component: A software component is a unit of composition with contractually specified interfaces and explicit context dependencies only. A software component can

More information

Introduction to componentbased software development

Introduction to componentbased software development Introduction to componentbased software development Nick Duan 8/31/09 1 Overview What is a component? A brief history of component software What constitute the component technology? Components/Containers/Platforms

More information

EJB ENTERPRISE JAVA BEANS INTRODUCTION TO ENTERPRISE JAVA BEANS, JAVA'S SERVER SIDE COMPONENT TECHNOLOGY. EJB Enterprise Java

EJB ENTERPRISE JAVA BEANS INTRODUCTION TO ENTERPRISE JAVA BEANS, JAVA'S SERVER SIDE COMPONENT TECHNOLOGY. EJB Enterprise Java EJB Enterprise Java EJB Beans ENTERPRISE JAVA BEANS INTRODUCTION TO ENTERPRISE JAVA BEANS, JAVA'S SERVER SIDE COMPONENT TECHNOLOGY Peter R. Egli 1/23 Contents 1. What is a bean? 2. Why EJB? 3. Evolution

More information

Today: Distributed Objects. Distributed Objects

Today: Distributed Objects. Distributed Objects Today: Distributed Objects Case study: EJBs (Enterprise Java Beans) Case study: CORBA Lecture 23, page 1 Distributed Objects Figure 10-1. Common organization of a remote object with client-side proxy.

More information

Component models. Page 1

Component models. Page 1 Component Models and Technology Component-based Software Engineering Ivica Crnkovic ivica.crnkovic@mdh.se Page 1 Overview Introduction ACME Architectural Description Language Java Bean Component Model

More information

Chapter 10 DISTRIBUTED OBJECT-BASED SYSTEMS

Chapter 10 DISTRIBUTED OBJECT-BASED SYSTEMS DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 10 DISTRIBUTED OBJECT-BASED SYSTEMS Distributed Objects Figure 10-1. Common organization of a remote

More information

Distributed Objects. Object-Oriented Application Development

Distributed Objects. Object-Oriented Application Development Distributed s -Oriented Application Development Procedural (non-object oriented) development Data: variables Behavior: procedures, subroutines, functions Languages: C, COBOL, Pascal Structured Programming

More information

CORBA (Common Object Request Broker Architecture)

CORBA (Common Object Request Broker Architecture) CORBA (Common Object Request Broker Architecture) René de Vries (rgv@cs.ru.nl) Based on slides by M.L. Liu 1 Overview Introduction / context Genealogical of CORBA CORBA architecture Implementations Corba

More information

CHAPTER - 4 REMOTE COMMUNICATION

CHAPTER - 4 REMOTE COMMUNICATION CHAPTER - 4 REMOTE COMMUNICATION Topics Introduction to Remote Communication Remote Procedural Call Basics RPC Implementation RPC Communication Other RPC Issues Case Study: Sun RPC Remote invocation Basics

More information

Socket attaches to a Ratchet. 2) Bridge Decouple an abstraction from its implementation so that the two can vary independently.

Socket attaches to a Ratchet. 2) Bridge Decouple an abstraction from its implementation so that the two can vary independently. Gang of Four Software Design Patterns with examples STRUCTURAL 1) Adapter Convert the interface of a class into another interface clients expect. It lets the classes work together that couldn't otherwise

More information

Reflective Middleware. INF Tommy Gudmundsen

Reflective Middleware. INF Tommy Gudmundsen Reflective Middleware INF5360 11.03.2008 Tommy Gudmundsen tommygu@ifi.uio.no Papers presented Grace, P., Blair, G.S., Samual, S., "ReMMoC: A Reflective Middleware to Support Mobile Client Interoperability"

More information

DS 2009: middleware. David Evans

DS 2009: middleware. David Evans DS 2009: middleware David Evans de239@cl.cam.ac.uk What is middleware? distributed applications middleware remote calls, method invocations, messages,... OS comms. interface sockets, IP,... layer between

More information

Lecture 5: Object Interaction: RMI and RPC

Lecture 5: Object Interaction: RMI and RPC 06-06798 Distributed Systems Lecture 5: Object Interaction: RMI and RPC Distributed Systems 1 Recap Message passing: send, receive synchronous versus asynchronous No global Time types of failure socket

More information

Chapter 6 Enterprise Java Beans

Chapter 6 Enterprise Java Beans Chapter 6 Enterprise Java Beans Overview of the EJB Architecture and J2EE platform The new specification of Java EJB 2.1 was released by Sun Microsystems Inc. in 2002. The EJB technology is widely used

More information

Services Oriented Architecture and the Enterprise Services Bus

Services Oriented Architecture and the Enterprise Services Bus IBM Software Group Services Oriented Architecture and the Enterprise Services Bus The next step to an on demand business Geoff Hambrick Distinguished Engineer, ISSW Enablement Team ghambric@us.ibm.com

More information

JAVA COURSES. Empowering Innovation. DN InfoTech Pvt. Ltd. H-151, Sector 63, Noida, UP

JAVA COURSES. Empowering Innovation. DN InfoTech Pvt. Ltd. H-151, Sector 63, Noida, UP 2013 Empowering Innovation DN InfoTech Pvt. Ltd. H-151, Sector 63, Noida, UP contact@dninfotech.com www.dninfotech.com 1 JAVA 500: Core JAVA Java Programming Overview Applications Compiler Class Libraries

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR (ODD SEMESTER) QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR (ODD SEMESTER) QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING ACADEMIC YEAR 2011 2012(ODD SEMESTER) QUESTION BANK SUBJECT CODE / NAME: IT1402-MIDDLEWARE TECHNOLOGIES YEAR/SEM : IV / VII UNIT

More information

Fast Track to EJB 3.0 and the JPA Using JBoss

Fast Track to EJB 3.0 and the JPA Using JBoss Fast Track to EJB 3.0 and the JPA Using JBoss The Enterprise JavaBeans 3.0 specification is a deep overhaul of the EJB specification that is intended to improve the EJB architecture by reducing its complexity

More information

The Fractal Open Component Model

The Fractal Open Component Model The Fractal Open Component Model Jean-Bernard Stefani INRIA Grenoble-Rhône-Alpes Jean-Bernard Stefani (INRIA Grenoble) Fractal OW2 Webinar 04/2009 1 / 24 Executive Summary Fractal: a model for the construction

More information

JVA-163. Enterprise JavaBeans

JVA-163. Enterprise JavaBeans JVA-163. Enterprise JavaBeans Version 3.0.2 This course gives the experienced Java developer a thorough grounding in Enterprise JavaBeans -- the Java EE standard for scalable, secure, and transactional

More information

CAS 703 Software Design

CAS 703 Software Design Dr. Ridha Khedri Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario Acknowledgments: Material based on Software by Tao et al. (Chapters 9 and 10) (SOA) 1 Interaction

More information

Advanced Topics in Operating Systems

Advanced Topics in Operating Systems Advanced Topics in Operating Systems MSc in Computer Science UNYT-UoG Dr. Marenglen Biba 8-9-10 January 2010 Lesson 10 01: Introduction 02: Architectures 03: Processes 04: Communication 05: Naming 06:

More information

COMPONENT BASED TECHNOLOGY (IT-1401)

COMPONENT BASED TECHNOLOGY (IT-1401) COMPONENT BASED TECHNOLOGY (IT-1401) TWO MARK QUESTIONS: UNIT-I 1. Define software component. A software component is a system element offering a predefined serviceable to communicate with other components.

More information

Java EE Application Assembly & Deployment Packaging Applications, Java EE modules. Model View Controller (MVC)2 Architecture & Packaging EJB Module

Java EE Application Assembly & Deployment Packaging Applications, Java EE modules. Model View Controller (MVC)2 Architecture & Packaging EJB Module Java Platform, Enterprise Edition 5 (Java EE 5) Core Java EE Java EE 5 Platform Overview Java EE Platform Distributed Multi tiered Applications Java EE Web & Business Components Java EE Containers services

More information

Designing a Distributed System

Designing a Distributed System Introduction Building distributed IT applications involves assembling distributed components and coordinating their behavior to achieve the desired functionality. Specifying, designing, building, and deploying

More information

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services

MTAT Enterprise System Integration. Lecture 2: Middleware & Web Services MTAT.03.229 Enterprise System Integration Lecture 2: Middleware & Web Services Luciano García-Bañuelos Slides by Prof. M. Dumas Overall view 2 Enterprise Java 2 Entity classes (Data layer) 3 Enterprise

More information

J2EE - Version: 25. Developing Enterprise Applications with J2EE Enterprise Technologies

J2EE - Version: 25. Developing Enterprise Applications with J2EE Enterprise Technologies J2EE - Version: 25 Developing Enterprise Applications with J2EE Enterprise Technologies Developing Enterprise Applications with J2EE Enterprise Technologies J2EE - Version: 25 5 days Course Description:

More information

Verteilte Systeme (Distributed Systems)

Verteilte Systeme (Distributed Systems) Verteilte Systeme (Distributed Systems) Karl M. Göschka Karl.Goeschka@tuwien.ac.at http://www.infosys.tuwien.ac.at/teaching/courses/ VerteilteSysteme/ Lecture 3: Communication (Part 2) Remote Procedure

More information

Lecture 06: Distributed Object

Lecture 06: Distributed Object Lecture 06: Distributed Object Distributed Systems Behzad Bordbar School of Computer Science, University of Birmingham, UK Lecture 0? 1 Recap Interprocess communication Synchronous and Asynchronous communication

More information

Deccansoft Software Services. J2EE Syllabus

Deccansoft Software Services. J2EE Syllabus Overview: Java is a language and J2EE is a platform which implements java language. J2EE standard for Java 2 Enterprise Edition. Core Java and advanced java are the standard editions of java whereas J2EE

More information

Dynamic Adaptability of Services in Enterprise JavaBeans Architecture

Dynamic Adaptability of Services in Enterprise JavaBeans Architecture 1. Introduction Dynamic Adaptability of Services in Enterprise JavaBeans Architecture Zahi Jarir *, Pierre-Charles David **, Thomas Ledoux ** zahijarir@ucam.ac.ma, {pcdavid, ledoux}@emn.fr (*) Faculté

More information

Implementing Architectures

Implementing Architectures Implementing Architectures Software Architecture Lecture 15 Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved. Learning Objectives Formulate implementation as a mapping

More information

JAYARAM. COLLEGE OF ENGINEERING AND TECHNOLOGY Pagalavadi, Tiruchirappalli (An approved by AICTE and Affiliated to Anna University)

JAYARAM. COLLEGE OF ENGINEERING AND TECHNOLOGY Pagalavadi, Tiruchirappalli (An approved by AICTE and Affiliated to Anna University) Estd: 1994 Department of Computer Science and Engineering Subject code : IT1402 Year/Sem: IV/VII Subject Name JAYARAM COLLEGE OF ENGINEERING AND TECHNOLOGY Pagalavadi, Tiruchirappalli - 621014 (An approved

More information

Distributed Middleware. Distributed Objects

Distributed Middleware. Distributed Objects Distributed Middleware Distributed objects DCOM CORBA EJBs Jini Lecture 25, page 1 Distributed Objects Figure 10-1. Common organization of a remote object with client-side proxy. Lecture 25, page 2 Distributed

More information

Spring & Hibernate. Knowledge of database. And basic Knowledge of web application development. Module 1: Spring Basics

Spring & Hibernate. Knowledge of database. And basic Knowledge of web application development. Module 1: Spring Basics Spring & Hibernate Overview: The spring framework is an application framework that provides a lightweight container that supports the creation of simple-to-complex components in a non-invasive fashion.

More information

JavaPolis 2004 Access Control Architectures: COM+ vs. EJB

JavaPolis 2004 Access Control Architectures: COM+ vs. EJB JavaPolis 2004 Access Control Architectures: COM+ vs. EJB Dr. Konstantin Beznosov Assistant Professor University of British Columbia Overall Presentation Goal Learn about the capabilities of COM+ and EJB

More information

Programming Web Services in Java

Programming Web Services in Java Programming Web Services in Java Description Audience This course teaches students how to program Web Services in Java, including using SOAP, WSDL and UDDI. Developers and other people interested in learning

More information

Implementing a Web Service p. 110 Implementing a Web Service Client p. 114 Summary p. 117 Introduction to Entity Beans p. 119 Persistence Concepts p.

Implementing a Web Service p. 110 Implementing a Web Service Client p. 114 Summary p. 117 Introduction to Entity Beans p. 119 Persistence Concepts p. Acknowledgments p. xvi Introduction p. xvii Overview p. 1 Overview p. 3 The Motivation for Enterprise JavaBeans p. 4 Component Architectures p. 7 Divide and Conquer to the Extreme with Reusable Services

More information

Metadata driven component development. using Beanlet

Metadata driven component development. using Beanlet Metadata driven component development using Beanlet What is metadata driven component development? It s all about POJOs and IoC Use Plain Old Java Objects to focus on business logic, and business logic

More information

Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan.

Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan. Distributed Object-Based Systems The WWW Architecture Web Services Handout 11 Part(a) EECS 591 Farnam Jahanian University of Michigan Reading List Remote Object Invocation -- Tanenbaum Chapter 2.3 CORBA

More information

Application Servers in E-Commerce Applications

Application Servers in E-Commerce Applications Application Servers in E-Commerce Applications Péter Mileff 1, Károly Nehéz 2 1 PhD student, 2 PhD, Department of Information Engineering, University of Miskolc Abstract Nowadays there is a growing demand

More information

Java J Course Outline

Java J Course Outline JAVA EE - J2SE - CORE JAVA After all having a lot number of programming languages. Why JAVA; yet another language!!! AND NOW WHY ONLY JAVA??? CHAPTER 1: INTRODUCTION What is Java? History Versioning The

More information

Software Design COSC 4353/6353 DR. RAJ SINGH

Software Design COSC 4353/6353 DR. RAJ SINGH Software Design COSC 4353/6353 DR. RAJ SINGH Outline What is SOA? Why SOA? SOA and Java Different layers of SOA REST Microservices What is SOA? SOA is an architectural style of building software applications

More information

(9A05803) WEB SERVICES (ELECTIVE - III)

(9A05803) WEB SERVICES (ELECTIVE - III) 1 UNIT III (9A05803) WEB SERVICES (ELECTIVE - III) Web services Architecture: web services architecture and its characteristics, core building blocks of web services, standards and technologies available

More information

Appendix A - Glossary(of OO software term s)

Appendix A - Glossary(of OO software term s) Appendix A - Glossary(of OO software term s) Abstract Class A class that does not supply an implementation for its entire interface, and so consequently, cannot be instantiated. ActiveX Microsoft s component

More information

Automatic Code Generation for Non-Functional Aspects in the CORBALC Component Model

Automatic Code Generation for Non-Functional Aspects in the CORBALC Component Model Automatic Code Generation for Non-Functional Aspects in the CORBALC Component Model Diego Sevilla 1, José M. García 1, Antonio Gómez 2 1 Department of Computer Engineering 2 Department of Information and

More information

Notes. Submit homework on Blackboard The first homework deadline is the end of Sunday, Feb 11 th. Final slides have 'Spring 2018' in chapter title

Notes. Submit homework on Blackboard The first homework deadline is the end of Sunday, Feb 11 th. Final slides have 'Spring 2018' in chapter title Notes Ask course content questions on Slack (is651-spring-2018.slack.com) Contact me by email to add you to Slack Make sure you checked Additional Links at homework page before you ask In-class discussion

More information

Component-Based and Service-Oriented Software Engineering: Key Concepts and Principles

Component-Based and Service-Oriented Software Engineering: Key Concepts and Principles Component-Based and Service-Oriented Software Engineering: Key Concepts and Principles Hongyu Pei Breivold, Magnus Larsson ABB AB, Corporate Research, 721 78 Västerås, Sweden {hongyu.pei-breivold, magnus.larsson}@se.abb.com

More information

Electronic Payment Systems (1) E-cash

Electronic Payment Systems (1) E-cash Electronic Payment Systems (1) Payment systems based on direct payment between customer and merchant. a) Paying in cash. b) Using a check. c) Using a credit card. Lecture 24, page 1 E-cash The principle

More information

04 Webservices. Web APIs REST Coulouris. Roy Fielding, Aphrodite, chp.9. Chp 5/6

04 Webservices. Web APIs REST Coulouris. Roy Fielding, Aphrodite, chp.9. Chp 5/6 04 Webservices Web APIs REST Coulouris chp.9 Roy Fielding, 2000 Chp 5/6 Aphrodite, 2002 http://www.xml.com/pub/a/2004/12/01/restful-web.html http://www.restapitutorial.com Webservice "A Web service is

More information

On Hierarchical, parallel and distributed components for Grid programming

On Hierarchical, parallel and distributed components for Grid programming On Hierarchical, parallel and distributed components for Grid programming Francoise Baude, Denis Caromel, Matthieu Morel www.inria.fr/oasis/proactive OASIS Team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis

More information

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A

Contents. Java RMI. Java RMI. Java RMI system elements. Example application processes/machines Client machine Process/Application A Contents Java RMI G53ACC Chris Greenhalgh Java RMI overview A Java RMI example Overview Walk-through Implementation notes Argument passing File requirements RPC issues and RMI Other problems with RMI 1

More information

Introduction. Enterprise Java Instructor: Please introduce yourself Name Experience in Java Enterprise Edition Goals you hope to achieve

Introduction. Enterprise Java Instructor: Please introduce yourself Name Experience in Java Enterprise Edition Goals you hope to achieve Enterprise Java Introduction Enterprise Java Instructor: Please introduce yourself Name Experience in Java Enterprise Edition Goals you hope to achieve Course Description This course focuses on developing

More information

Java EE 7: Back-End Server Application Development

Java EE 7: Back-End Server Application Development Oracle University Contact Us: Local: 0845 777 7 711 Intl: +44 845 777 7 711 Java EE 7: Back-End Server Application Development Duration: 5 Days What you will learn The Java EE 7: Back-End Server Application

More information

Object Interaction. Object Interaction. Introduction. Object Interaction vs. RPCs (2)

Object Interaction. Object Interaction. Introduction. Object Interaction vs. RPCs (2) Introduction Objective To support interoperability and portability of distributed OO applications by provision of enabling technology Object interaction vs RPC Java Remote Method Invocation (RMI) RMI Registry

More information

Hierarchical vs. Flat Component Models

Hierarchical vs. Flat Component Models Hierarchical vs. Flat Component Models František Plášil, Petr Hnětynka DISTRIBUTED SYSTEMS RESEARCH GROUP http://nenya.ms.mff.cuni.cz Outline Component models (CM) Desired Features Flat vers. hierarchical

More information

Unit 7: RPC and Indirect Communication

Unit 7: RPC and Indirect Communication SR (Systèmes Répartis) Unit 7: RPC and Indirect Communication François Taïani Outline n Remote Procedure Call è First Class RPC è Second Class RPC (RMI) n Indirect Communication è Group Communication è

More information

Overview p. 1 Server-side Component Architectures p. 3 The Need for a Server-Side Component Architecture p. 4 Server-Side Component Architecture

Overview p. 1 Server-side Component Architectures p. 3 The Need for a Server-Side Component Architecture p. 4 Server-Side Component Architecture Preface p. xix About the Author p. xxii Introduction p. xxiii Overview p. 1 Server-side Component Architectures p. 3 The Need for a Server-Side Component Architecture p. 4 Server-Side Component Architecture

More information

CORBA and COM TIP. Two practical techniques for object composition. X LIU, School of Computing, Napier University

CORBA and COM TIP. Two practical techniques for object composition. X LIU, School of Computing, Napier University CORBA and COM TIP Two practical techniques for object composition X LIU, School of Computing, Napier University CORBA Introduction Common Object Request Broker Architecture (CORBA) is an industry-standard

More information

Towards Software Architecture at Runtime

Towards Software Architecture at Runtime Towards Software Architecture at Runtime Authors Names Department of Computer Science and Technology Peking University, Beijing, PRC, 100871 +86 10 62757801-1 { @ cs.pku.edu.cn 1. Introduction Abstract

More information

Picolo: A Simple Python Framework for Introducing Component Principles

Picolo: A Simple Python Framework for Introducing Component Principles Picolo: A Simple Python Framework for Introducing Component Principles Raphaël Marvie LIFL University of Lille 1 (France) raphael.marvie@lifl.fr Abstract Components have now become a cornerstone of software

More information

Software Architecture Patterns

Software Architecture Patterns Software Architecture Patterns *based on a tutorial of Michael Stal Harald Gall University of Zurich http://seal.ifi.uzh.ch/ase www.infosys.tuwien.ac.at Overview Goal Basic architectural understanding

More information

System Models for Distributed Systems

System Models for Distributed Systems System Models for Distributed Systems INF5040/9040 Autumn 2015 Lecturer: Amir Taherkordi (ifi/uio) August 31, 2015 Outline 1. Introduction 2. Physical Models 4. Fundamental Models 2 INF5040 1 System Models

More information

Distributed Systems Lecture 2 1. External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4.

Distributed Systems Lecture 2 1. External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4. Distributed Systems Lecture 2 1 Today s Topics External Data Representation and Marshalling (Sec. 4.3) Request reply protocol (failure modes) (Sec. 4.4) Distributed Objects and Remote Invocations (5.1)

More information

J2EE Interview Questions

J2EE Interview Questions 1) What is J2EE? J2EE Interview Questions J2EE is an environment for developing and deploying enterprise applications. The J2EE platform consists of a set of services, application programming interfaces

More information

OSGi on the Server. Martin Lippert (it-agile GmbH)

OSGi on the Server. Martin Lippert (it-agile GmbH) OSGi on the Server Martin Lippert (it-agile GmbH) lippert@acm.org 2009 by Martin Lippert; made available under the EPL v1.0 October 6 th, 2009 Overview OSGi in 5 minutes Apps on the server (today and tomorrow)

More information

BEAAquaLogic. Service Bus. Interoperability With EJB Transport

BEAAquaLogic. Service Bus. Interoperability With EJB Transport BEAAquaLogic Service Bus Interoperability With EJB Transport Version 3.0 Revised: February 2008 Contents EJB Transport Introduction...........................................................1-1 Invoking

More information

A Strategic Comparison of Component Standards

A Strategic Comparison of Component Standards A Strategic Comparison of Component Standards Prof. Dr. Wolfgang Pree Department of Computer Science cs.uni-salzburg.at Copyright Wolfgang Pree, All Rights Reserved Contents What is a component? COM ::

More information

A Systematic Approach to Composing Heterogeneous Components

A Systematic Approach to Composing Heterogeneous Components A Systematic Approach to Composing Heterogeneous Components HUANG Gang, MEI Hong, WANG Qian-xiang, YANG Fu-qing Dept of Computer Science & Technology, Peking University, Beijing 100871 {huanggang, meih,

More information

Module 1 - Distributed System Architectures & Models

Module 1 - Distributed System Architectures & Models Module 1 - Distributed System Architectures & Models System Architecture Defines the structure of the system components identified functions of each component defined interrelationships and interactions

More information

NetBeans IDE Field Guide

NetBeans IDE Field Guide NetBeans IDE Field Guide Copyright 2005 Sun Microsystems, Inc. All rights reserved. Table of Contents Extending Web Applications with Business Logic: Introducing EJB Components...1 EJB Project type Wizards...2

More information

Software Engineering

Software Engineering Software Engineering Lecture 11: Physical Design Components and Middleware Peter Thiemann University of Freiburg, Germany SS 2014 Distributed Applications Basic choices Architecture Client/Server architecture

More information

Integrating Legacy Assets Using J2EE Web Services

Integrating Legacy Assets Using J2EE Web Services Integrating Legacy Assets Using J2EE Web Services Jonathan Maron Oracle Corporation Page Agenda SOA-based Enterprise Integration J2EE Integration Scenarios J2CA and Web Services Service Enabling Legacy

More information

Distribution and web services

Distribution and web services Chair of Software Engineering Carlo A. Furia, Bertrand Meyer Distribution and web services From concurrent to distributed systems Node configuration Multiprocessor Multicomputer Distributed system CPU

More information

J2EE Development. Course Detail: Audience. Duration. Course Abstract. Course Objectives. Course Topics. Class Format.

J2EE Development. Course Detail: Audience. Duration. Course Abstract. Course Objectives. Course Topics. Class Format. J2EE Development Detail: Audience www.peaksolutions.com/ittraining Java developers, web page designers and other professionals that will be designing, developing and implementing web applications using

More information

Distributed Programming with RMI. Overview CORBA DCOM. Prepared By: Shiba R. Tamrakar

Distributed Programming with RMI. Overview CORBA DCOM. Prepared By: Shiba R. Tamrakar Distributed Programming with RMI Overview Distributed object computing extends an object-oriented programming system by allowing objects to be distributed across a heterogeneous network, so that each of

More information

Chapter 4 Communication

Chapter 4 Communication DISTRIBUTED SYSTEMS Principles and Paradigms Second Edition ANDREW S. TANENBAUM MAARTEN VAN STEEN Chapter 4 Communication Layered Protocols (1) Figure 4-1. Layers, interfaces, and protocols in the OSI

More information

02 - Distributed Systems

02 - Distributed Systems 02 - Distributed Systems Definition Coulouris 1 (Dis)advantages Coulouris 2 Challenges Saltzer_84.pdf Models Physical Architectural Fundamental 2/60 Definition Distributed Systems Distributed System is

More information

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications

Distributed Objects and Remote Invocation. Programming Models for Distributed Applications Distributed Objects and Remote Invocation Programming Models for Distributed Applications Extending Conventional Techniques The remote procedure call model is an extension of the conventional procedure

More information

jar command Java Archive inherits from tar : Tape Archive commands: jar cvf filename jar tvf filename jar xvf filename java jar filename.

jar command Java Archive inherits from tar : Tape Archive commands: jar cvf filename jar tvf filename jar xvf filename java jar filename. jar & jar files jar command Java Archive inherits from tar : Tape Archive commands: jar cvf filename jar tvf filename jar xvf filename java jar filename.jar jar file A JAR file can contain Java class files,

More information

Chapter 5: Distributed objects and remote invocation

Chapter 5: Distributed objects and remote invocation Chapter 5: Distributed objects and remote invocation From Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edition 4, Addison-Wesley 2005 Figure 5.1 Middleware layers Applications

More information

Towards a Unified Component & Deployment Model for Distributed Real Time Systems

Towards a Unified Component & Deployment Model for Distributed Real Time Systems Your systems. Working as one. Towards a Unified Component & Deployment Model for Distributed Real Time Systems Gerardo Pardo Castellote, Ph.D. CTO, Real Time Innovations Co Chair OMG DDS SIG Sumant Tambe,

More information

Chapter 3 Introduction to Distributed Objects

Chapter 3 Introduction to Distributed Objects Chapter 3 Introduction to Distributed Objects Distributed object support all of the properties of an object created in compiled object oriented language, namely,data and code encapsulation, polymorphism

More information

INTRODUCTION TO Object Oriented Systems BHUSHAN JADHAV

INTRODUCTION TO Object Oriented Systems BHUSHAN JADHAV INTRODUCTION TO Object Oriented Systems 1 CHAPTER 1 Introduction to Object Oriented Systems Preview of Object-orientation. Concept of distributed object systems, Reasons to distribute for centralized objects.

More information

A short introduction to Web Services

A short introduction to Web Services 1 di 5 17/05/2006 15.40 A short introduction to Web Services Prev Chapter Key Concepts Next A short introduction to Web Services Since Web Services are the basis for Grid Services, understanding the Web

More information

Distributed Systems Principles and Paradigms

Distributed Systems Principles and Paradigms Distributed Systems Principles and Paradigms Chapter 09 (version 27th November 2001) Maarten van Steen Vrije Universiteit Amsterdam, Faculty of Science Dept. Mathematics and Computer Science Room R4.20.

More information

Application Servers G Session 11 - Sub-Topic 2 Using Enterprise JavaBeans. Dr. Jean-Claude Franchitti

Application Servers G Session 11 - Sub-Topic 2 Using Enterprise JavaBeans. Dr. Jean-Claude Franchitti Application Servers G22.3033-011 Session 11 - Sub-Topic 2 Using Enterprise JavaBeans Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences

More information

Limitations of Object-Based Middleware. Components in CORBA. The CORBA Component Model. CORBA Component

Limitations of Object-Based Middleware. Components in CORBA. The CORBA Component Model. CORBA Component Limitations of Object-Based Middleware Object-Oriented programming is a standardised technique, but Lack of defined interfaces between objects It is hard to specify dependencies between objects Internal

More information

Enterprise JavaBeans TM

Enterprise JavaBeans TM Enterprise JavaBeans TM Linda DeMichiel Sun Microsystems, Inc. Agenda Quick introduction to EJB TM Major new features Support for web services Container-managed persistence Query language Support for messaging

More information

Semantic SOA - Realization of the Adaptive Services Grid

Semantic SOA - Realization of the Adaptive Services Grid Semantic SOA - Realization of the Adaptive Services Grid results of the final year bachelor project Outline review of midterm results engineering methodology service development build-up of ASG software

More information

Object Security. Model Driven Security. Ulrich Lang, Rudolf Schreiner. Protection of Resources in Complex Distributed Systems

Object Security. Model Driven Security. Ulrich Lang, Rudolf Schreiner. Protection of Resources in Complex Distributed Systems Object Security TM The Security Policy Company Protection of Resources in Complex Distributed Systems Ulrich Lang, Rudolf Schreiner ObjectSecurity Ltd. University of Cambridge Agenda COACH Project Model

More information

Chapter 1 Introducing EJB 1. What is Java EE Introduction to EJB...5 Need of EJB...6 Types of Enterprise Beans...7

Chapter 1 Introducing EJB 1. What is Java EE Introduction to EJB...5 Need of EJB...6 Types of Enterprise Beans...7 CONTENTS Chapter 1 Introducing EJB 1 What is Java EE 5...2 Java EE 5 Components... 2 Java EE 5 Clients... 4 Java EE 5 Containers...4 Introduction to EJB...5 Need of EJB...6 Types of Enterprise Beans...7

More information

Vision of J2EE. Why J2EE? Need for. J2EE Suite. J2EE Based Distributed Application Architecture Overview. Umair Javed 1

Vision of J2EE. Why J2EE? Need for. J2EE Suite. J2EE Based Distributed Application Architecture Overview. Umair Javed 1 Umair Javed 2004 J2EE Based Distributed Application Architecture Overview Lecture - 2 Distributed Software Systems Development Why J2EE? Vision of J2EE An open standard Umbrella for anything Java-related

More information

Architectural Styles. Software Architecture Lecture 5. Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Architectural Styles. Software Architecture Lecture 5. Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved. Architectural Styles Software Architecture Lecture 5 Copyright Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved. Object-Oriented Style Components are objects Data and associated

More information

Distributed Technologies - overview & GIPSY Communication Procedure

Distributed Technologies - overview & GIPSY Communication Procedure DEPARTMENT OF COMPUTER SCIENCE CONCORDIA UNIVERSITY Distributed Technologies - overview & GIPSY Communication Procedure by Emil Vassev June 09, 2003 Index 1. Distributed Applications 2. Distributed Component

More information

A QoS-aware CORBA Component Model for Distributed Real-time and Embedded System Development

A QoS-aware CORBA Component Model for Distributed Real-time and Embedded System Development A -aware CORBA Model for Distributed Real-time and Embedded System Development Nanbor Wang and Chris Gill {nanbor,cdgill}@cse.wustl.edu Department of Computer Science and Engineering Washington University

More information

Challenges in component based programming. Lena Buffoni

Challenges in component based programming. Lena Buffoni Challenges in component based programming Lena Buffoni Challenge: Size & complexity Software is everywhere and increasingly complex (embedded systems, internet of things ) Single products have become product

More information

Distributed Information Processing

Distributed Information Processing Distributed Information Processing 5 th Lecture Eom, Hyeonsang ( 엄현상 ) Department of Computer Science & Engineering Seoul National University Copyrights 2017 Eom, Hyeonsang All Rights Reserved Outline

More information

8. Component Software

8. Component Software 8. Component Software Overview 8.1 Component Frameworks: An Introduction 8.2 OSGi Component Framework 8.2.1 Component Model and Bundles 8.2.2 OSGi Container and Framework 8.2.3 Further Features of the

More information

Introduction to Web Services & SOA

Introduction to Web Services & SOA References: Web Services, A Technical Introduction, Deitel & Deitel Building Scalable and High Performance Java Web Applications, Barish Service-Oriented Programming (SOP) SOP A programming paradigm that

More information