Software Engineering

Size: px
Start display at page:

Download "Software Engineering"

Transcription

1 Software Engineering chap 4. Software Reuse 1 SuJin Choi, PhD. Sogang University sujinchoi@sogang.ac.kr Slides modified, based on original slides by Ian Sommerville (Software Engineering 10 th Edition) 0 Software Reuse reuse is the use of previously acquired concepts or objects in a new situation. Don t Reinvent the Wheel Software engineering has been more focused on original development but it is recognised that to achieve better software, more quickly and at lower cost, we need a design process that is based on systematic software reuse. There has been a major switch to reuse-based development over the past 10 years. 1 1

2 Types of Reuse System reuse Complete systems, which may include several application programs may be reused. Application reuse An application may be reused either by incorporating it without change into other or by developing application families. Component reuse Components of an application from sub-systems to single objects may be reused. Object and function reuse Small-scale software components that implement a single well-defined object or function may be reused. 2 Other Types of Reuse Reuse can also include Requirements Documents Design Documents Design Patterns Software Architectures 3 2

3 Build for reuse, Build with reuse Build for reuse Abstraction: Identify units of reusable knowledge and concisely represent them in abstract form Classification: Store the reusable knowledge into a knowledge base that is indexed and classified Build with reuse Selection: Query the reusable knowledge into parameterized form (e.g. function with formal parameters) Specialization: Modify the reusable knowledge to fit new situations (e.g. function with actual parameters) Integration: Combine the reusable knowledge with your project (e.g. invocation, weaving, etc.) Source : [Krueger92] Software Reuse, ACM Survey Economics of Software Reuse Build for reuse Build with reuse Economics of Product Lines 5 3

4 Benefits of software reuse Benefit Accelerated development Explanation Bringing a system to market as early as possible is often more important than overall development costs. Reusing software can speed up system production because both development and validation time may be reduced. Effective use of specialists Instead of doing the same work over and over again, application specialists can develop reusable software that encapsulates their knowledge. Increased dependability Reused software, which has been tried and tested in working systems, should be more dependable than new software. Its design and implementation faults should have been found and fixed. 6 Benefits of software reuse Benefit Lower development costs Reduced process risk Standards compliance Explanation Development costs are proportional to the size of the software being developed. Reusing software means that fewer lines of code have to be written. The cost of existing software is already known, whereas the costs of development are always a matter of judgment. This is an important factor for project management because it reduces the margin of error in project cost estimation. This is particularly true when relatively large software components such as subsystems are reused. Some standards, such as user interface standards, can be implemented as a set of reusable components. For example, if menus in a user interface are implemented using reusable components, all applications present the same menu formats to users. The use of standard user interfaces improves dependability because users make fewer mistakes when presented with a familiar interface. 7 4

5 Problems with reuse Problem Creating, maintaining, and using a component library Finding, understanding, and adapting reusable components Increased maintenance costs Explanation Populating a reusable component library and ensuring the software developers can use this library can be expensive. Development processes have to be adapted to ensure that the library is used. Software components have to be discovered in a library, understood and, sometimes, adapted to work in a new environment. Engineers must be reasonably confident of finding a component in the library before they include a component search as part of their normal development process. If the source code of a reused software system or component is not available then maintenance costs may be higher because the reused elements of the system may become increasingly incompatible with system changes. 8 Problems with reuse Problem Lack of tool support Not-invented-here syndrome Explanation Some software tools do not support development with reuse. It may be difficult or impossible to integrate these tools with a component library system. The software process assumed by these tools may not take reuse into account. This is particularly true for tools that support embedded systems engineering, less so for object-oriented development tools. Some software engineers prefer to rewrite components because they believe they can improve on them. This is partly to do with trust and partly to do with the fact that writing original software is seen as more challenging than reusing other people s software. 9 5

6 Open source software reuse Open source licensing The GNU General Public License (GPL) This is a so-called reciprocal license that means that if you use open source software that is licensed under the GPL license, then you must make that software open source. The GNU Lesser General Public License (LGPL) This is a variant of the GPL license where you can write components that link to open source code 10 Reuse planning factors Factor Development schedule Expected lifetime Development team Description If the software has to be developed quickly, use COTS integration rather than CBSE. Even though the fit to requirements may be imperfect, it minimizes the amount of development required. If the system lifetime is long the maintainability of the system is critical. Probably it is better to avoid reuse with unavailable or inaccessible code, such as COTS and systems from external suppliers; suppliers may not be able to continue support for the reused software. All reuse technologies are fairly complex. If the development teams background, skills and experience is related to any of the reuse areas, this is probably where you should turn in to. 11 6

7 Reuse planning factors Factor Criticality and nonfunctional requirements Application domain Application Platform Description If the systems is a critical system (e.g., has stringent performance requirements) it is probably better to avoid using unavailable or inaccessible source code or generator-based reuse (generate code from a reusable domain-specific representation of a system). If the system is for a specific application domain, such as manufacturing and medical information systems, several configurable vertical application reuse methods may be considered a good solution. There are several generic products that may be reused for configuring them to a local solution. Consider the platform your system is designed for; you may only be able to use specific components. Also, if the component models or generic application systems you are using are platform-specific, such as.net component models are specific to Microsoft platforms, you may only be able to reuse these. 12 Black-box reuse and White-box reuse 13 7

8 The reuse landscape reuse techniques 14 Approaches that support software reuse Approach Description Application frameworks Collections of abstract and concrete classes are adapted and extended to create application systems. Application system integration Architectural patterns Aspect-oriented software development Component-based software engineering Two or more application systems are integrated to provide extended functionality Standard software architectures that support common types of application system are used as the basis of applications. Shared components are woven into an application at different places when the program is compiled. Systems are developed by integrating components (collections of objects) that conform to component-model standards. 15 8

9 Approaches that support software reuse Approach Configurable application systems Design patterns ERP systems Legacy system wrapping Model-driven engineering Description Domain-specific systems are designed so that they can be configured to the needs of specific system customers. Generic abstractions that occur across applications are represented as design patterns showing abstract and concrete objects and interactions. Large-scale systems that encapsulate generic business functionality and rules are configured for an organization. Legacy systems are wrapped by defining a set of interfaces and providing access to these legacy systems through these interfaces. Software is represented as domain models and implementation independent models and code is generated from these models. 16 Approaches that support software reuse Approach Program generators Description A generator system embeds knowledge of a type of application and is used to generate systems in that domain from a user-supplied system model. Program libraries Class and function libraries that implement commonly used abstractions are available for reuse. Service-oriented systems Software product lines Systems of systems Systems are developed by linking shared services, which may be externally provided. An application type is generalized around a common architecture so that it can be adapted for different customers. Two or more distributed systems are integrated to create a new system. 17 9

10 Black-box reuse and White-box reuse 18 Reuse planning factors Factor Development schedule Expected lifetime Development team Description If the software has to be developed quickly, use COTS integration rather than CBSE. Even though the fit to requirements may be imperfect, it minimizes the amount of development required. If the system lifetime is long the maintainability of the system is critical. Probably it is better to avoid reuse with unavailable or inaccessible code, such as COTS and systems from external suppliers; suppliers may not be able to continue support for the reused software. All reuse technologies are fairly complex. If the development teams background, skills and experience is related to any of the reuse areas, this is probably where you should turn in to

11 Reuse planning factors Factor Criticality and nonfunctional requirements Application domain Application Platform Description If the systems is a critical system (e.g., has stringent performance requirements) it is probably better to avoid using unavailable or inaccessible source code or generator-based reuse (generate code from a reusable domain-specific representation of a system). If the system is for a specific application domain, such as manufacturing and medical information systems, several configurable vertical application reuse methods may be considered a good solution. There are several generic products that may be reused for configuring them to a local solution. Consider the platform your system is designed for; you may only be able to use specific components. Also, if the component models or generic application systems you are using are platform-specific, such as.net component models are specific to Microsoft platforms, you may only be able to reuse these. 20 Application frameworks Framework definition..an integrated set of software artefacts (such as classes, objects and components) that collaborate to provide a reusable architecture for a family of related applications. Frameworks are generic and are extended to create a more specific application or sub-system. They provide a skeleton architecture for the system. Problem with frameworks is their complexity which means that it takes a long time to use them effectively

12 Application frameworks Frameworks are moderately large entities that can be reused. They are somewhere between system and component reuse. Frameworks are a sub-system design made up of a collection of abstract and concrete classes and the interfaces between them. The sub-system is implemented by adding components to fill in parts of the design and by instantiating the abstract classes in the framework. 22 Application Framework features Security classes to help implement user authentication (login) and access. Database support The framework may provide classes that provide an abstract interface to different databases. Session management Classes to create and manage sessions (a number of interactions with the system by a user) are usually part of a WAF. User interaction Most web frameworks now provide AJAX support, which allows more interactive web pages to be created

13 Application system reuse An application system product is a software system that can be adapted for different customers without changing the source code of the system. Application systems have generic features and so can be used/reused in different environments. Application system products are adapted by using built-in configuration mechanisms that allow the functionality of the system to be tailored to specific customer needs. For example, in a hospital patient record system, separate input forms and output reports might be defined for different types of patient. 24 ERP systems An Enterprise Resource Planning (ERP) system is a generic system that supports common business processes such as ordering and invoicing, manufacturing, etc. These are very widely used in large companies - they represent probably the most common form of software reuse. The generic core is adapted by including modules and by incorporating knowledge of business processes and rules

14 The architecture of an ERP system 26 ERP configuration Selecting the required functionality from the system. Establishing a data model that defines how the organization s data will be structured in the system database. Defining business rules that apply to that data. Defining the expected interactions with external systems. Designing the input forms and the output reports generated by the system. Designing new business processes that conform to the underlying process model supported by the system. Setting parameters that define how the system is deployed on its underlying platform

15 Benefits of application system reuse As with other types of reuse, more rapid deployment of a reliable system may be possible. It is possible to see what functionality is provided by the applications and so it is easier to judge whether or not they are likely to be suitable. Some development risks are avoided by using existing software. However, this approach has its own risks, as I discuss below. Businesses can focus on their core activity without having to devote a lot of resources to IT systems development. As operating platforms evolve, technology updates may be simplified as these are the responsibility of the Commercial-Off-The-Shelf(COTS) product vendor rather than the customer. 28 Problems of application system reuse Requirements usually have to be adapted to reflect the functionality and mode of operation of the COTS product. The COTS product may be based on assumptions that are practically impossible to change. Choosing the right COTS system for an enterprise can be a difficult process, especially as many COTS products are not well documented. There may be a lack of local expertise to support systems development. The COTS product vendor controls system support and evolution

16 COTS-solution and COTS-integrated systems Configurable application systems Single product that provides the functionality required by a customer Based around a generic solution and standardized processes Development focus is on system configuration System vendor is responsible for maintenance System vendor provides the platform for the system Application system integration Several heterogeneous system products are integrated to provide customized functionality Flexible solutions may be developed for customer processes Development focus is on system integration System owner is responsible for maintenance System owner provides the platform for the system 30 Configurable application systems Configurable application systems are generic application systems that may be designed to support a particular business type, business activity or, sometimes, a complete business enterprise. For example, an application system may be produced for dentists that handles appointments, dental records, patient recall, etc. Domain-specific systems, such as systems to support a business function (e.g. document management) provide functionality that is likely to be required by a range of potential users

17 Integrated application systems Integrated application systems are applications that include two or more application system products and/or legacy application systems. You may use this approach when there is no single application system that meets all of your needs or when you wish to integrate a new application system with systems that you already use. 32 Service-oriented interfaces Application system integration can be simplified if a service-oriented approach is used. A service-oriented approach means allowing access to the application system s functionality through a standard service interface, with a service for each discrete unit of functionality. Some applications may offer a service interface but, sometimes, this service interface has to be implemented by the system integrator. You have to program a wrapper that hides the application and provides externally visible services. < Application wrapping > 33 17

18 Application system integration problems Lack of control over functionality and performance Application systems may be less effective than they appear Problems with application system inter-operability Different application systems may make different assumptions that means integration is difficult No control over system evolution Application system vendors not system users control evolution Support from system vendors Application system vendors may not offer support over the lifetime of the product 34 Component-based development Component-based software engineering (CBSE) is an approach to software development that relies on the reuse of entities called software components. It emerged from the failure of object-oriented development to support effective reuse. Single object classes are too detailed and specific. Components are more abstract than object classes and can be considered to be stand-alone service providers. They can exist as stand-alone entities. (picture : 19/11/

19 CBSE and design principles CBSE is based on sound software engineering design principles: Components are independent so do not interfere with each other; Component implementations are hidden; Communication is through well-defined interfaces; One components can be replaced by another if its interface is maintained; Component infrastructures offer a range of standard services. 19/11/ Component characteristics Component characteristic Composable Deployable Description For a component to be composable, all external interactions must take place through publicly defined interfaces. In addition, it must provide external access to information about itself, such as its methods and attributes. To be deployable, a component has to be self-contained. It must be able to operate as a stand-alone entity on a component platform that provides an implementation of the component model. This usually means that the component is binary and does not have to be compiled before it is deployed. If a component is implemented as a service, it does not have to be deployed by a user of a component. Rather, it is deployed by the service provider. 19/11/

20 Component characteristics Component characteristic Documented Independent Standardized Description Components have to be fully documented so that potential users can decide whether or not the components meet their needs. The syntax and, ideally, the semantics of all component interfaces should be specified. A component should be independent it should be possible to compose and deploy it without having to use other specific components. In situations where the component needs externally provided services, these should be explicitly set out in a requires interface specification. Component standardization means that a component used in a CBSE process has to conform to a standard component model. This model may define component interfaces, component metadata, documentation, composition, and deployment. 19/11/ Component as a service provider The component is an independent, executable entity. It does not have to be compiled before it is used with other components. The services offered by a component are made available through an interface and all component interactions take place through that interface. The component interface is expressed in terms of parameterized operations and its internal state is never exposed. 19/11/

21 CBSE processes CBSE processes are software processes that support component-based software engineering. They take into account the possibilities of reuse and the different process activities involved in developing and using reusable components. Development for reuse This process is concerned with developing components or services that will be reused in other applications. It usually involves generalizing existing components. Development with reuse This process is the process of developing new applications using existing components and services. 19/11/ CBSE Processes 41 21

22 CBSE Process example - W Model The W Model for Component-based Software Development[online]. Online Available: 42 Software Product Line Engineering The strategic reuse of core assets in the development of individual products Targeted at specific marketing goals Strategic reuse implies preplanning that identifies and exploits commonality over time and space Identifies and manages variation across planned family of products 43 22

23 Reuse History (source : 44 The Real Truth About Reuse Reuse means taking something developed for one system and using it in another. The XYZ System is built with 80% reuse. A statement like this is vacuous. It is not clear what is being reused. It is not clear that the reuse has any benefit. Reusing code or components without an architecture focus and without pre-planning results in short-term perceived win long-term costs and problems failure to meet business goals (source :

24 Software Reuse Fact And Fiction The Fiction: And then we ll be able to construct software systems by picking out parts and plugging them together, just like Legos The Fact: It s more like having a bathtub full of Tinkertoys, Legos, Erector Set parts, Lincoln Logs, Block City, and six other incompatible kits -- picking out parts that fit specific functions and expecting them to fit together. (source : 46 Software Product Line A software product line is a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way. [SEI] 47 24

25 Software Product Lines Software product lines or application families are applications with generic functionality that can be adapted and configured for use in a specific context. A software product line is a set of applications with a common architecture and shared components, with each application specialized to reflect different requirements. Adaptation may involve: Component and system configuration; Selecting from a library of existing components; Modifying components to meet new requirements; Adding new components to the system. 48 SPL Processes Three Essential Activities All three activities are interrelated and highly iterative There is a strong feedback loop between the core assets and the products Strong management is needed to invest resources in the development [Clements and Northrop Software Product Line] 49 25

26 Questions & Answers 50 26

Software Reuse and Component-Based Software Engineering

Software Reuse and Component-Based Software Engineering Software Reuse and Component-Based Software Engineering Minsoo Ryu Hanyang University msryu@hanyang.ac.kr Contents Software Reuse Components CBSE (Component-Based Software Engineering) Domain Engineering

More information

Chapter 18. Software Reuse

Chapter 18. Software Reuse Chapter 18 Software Reuse Ian Sommerville Lutz Prechelt Ian Sommerville 2004, Software Engineering, 7th edition, prechelt@inf.fu-berlin.de 1 Objectives To explain the benefits of software reuse and some

More information

Game Production: reuse

Game Production: reuse Game Production: reuse Fabiano Dalpiaz f.dalpiaz@uu.nl 1 Outline Lecture contents 1. Introduction to software reuse 2. Patterns 3. Application frameworks 4. Software product lines 5. Commercial-off-the-shelf

More information

Minsoo Ryu. College of Information and Communications Hanyang University.

Minsoo Ryu. College of Information and Communications Hanyang University. Software Reuse and Component-Based Software Engineering Minsoo Ryu College of Information and Communications Hanyang University msryu@hanyang.ac.kr Software Reuse Contents Components CBSE (Component-Based

More information

SOFTWARE ENGINEERING. To discuss several different ways to implement software reuse. To describe the development of software product lines.

SOFTWARE ENGINEERING. To discuss several different ways to implement software reuse. To describe the development of software product lines. SOFTWARE ENGINEERING DESIGN WITH COMPONENTS Design with reuse designs and develops a system from reusable software. Reusing software allows achieving better products at low cost and time. LEARNING OBJECTIVES

More information

Dr. Tom Hicks. Computer Science Department Trinity University

Dr. Tom Hicks. Computer Science Department Trinity University Dr. Tom Hicks Computer Science Department Trinity University 1 1 About Design With Reuse 2 Software Reuse Why Do We Care About Reuse? Historically: In Most Engineering Disciplines, Systems are Designed

More information

EPL603 Topics in Software Engineering

EPL603 Topics in Software Engineering Lecture 4 - Software Reuse EPL603 Topics in Software Engineering Efi Papatheocharous Visiting Lecturer efi.papatheocharous@cs.ucy.ac.cy Office FST-B107, Tel. ext. 2740 Topics covered Software reuse The

More information

Chapter 17 - Component-based software engineering. Chapter 17 So-ware reuse

Chapter 17 - Component-based software engineering. Chapter 17 So-ware reuse Chapter 17 - Component-based software engineering 1 Topics covered ² Components and component models ² CBSE processes ² Component composition 2 Component-based development ² Component-based software engineering

More information

Component-based software engineering. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 19 Slide 1

Component-based software engineering. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 19 Slide 1 Component-based software engineering Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 19 Slide 1 Objectives To explain that CBSE is concerned with developing standardised components and

More information

Seminar report Software reuse

Seminar report Software reuse A Seminar report On Software reuse Submitted in partial fulfillment of the requirement for the award of degree of Bachelor of Technology in Computer Science SUBMITTED TO: www.studymafia.com SUBMITTED BY:

More information

Incremental development A.Y. 2018/2019

Incremental development A.Y. 2018/2019 Incremental development A.Y. 2018/2019 Incremental development Interleaves the activities of specification, development, and validation. The system is developed as a series of versions (increments), with

More information

Software Engineering Chap.7 - Design and Implementation

Software Engineering Chap.7 - Design and Implementation Software Engineering Chap.7 - Design and Implementation Simão Melo de Sousa RELEASE (UBI), LIACC (Porto), CCTC (Minho) Computer Science Department University of Beira Interior, Portugal Eng.Info./TSI,

More information

ΗΜΥ 317 Τεχνολογία Υπολογισμού

ΗΜΥ 317 Τεχνολογία Υπολογισμού ΗΜΥ 317 Τεχνολογία Υπολογισμού Εαρινό Εξάμηνο 2008 ΙΑΛΕΞΕΙΣ 16-17: Component-Based Software Engineering ΧΑΡΗΣ ΘΕΟΧΑΡΙ ΗΣ Λέκτορας ΗΜΜΥ (ttheocharides@ucy.ac.cy) [Προσαρμογή από Ian Sommerville, Software

More information

Second. Incremental development model

Second. Incremental development model 3 rd Stage Lecture time: 8:30 AM-2:30 PM Instructor: Ali Kadhum AL-Quraby Lecture No. : 4 Subject: Software Engineering Class room no.: Department of computer science Second. Incremental development model

More information

Verification and Validation. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1

Verification and Validation. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1 Verification and Validation Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1 Verification vs validation Verification: "Are we building the product right?. The software should

More information

Study of Component Based Software Engineering

Study of Component Based Software Engineering Study of Based Software Ishita Verma House No.4, Village Dayalpur Karawal Nagar Road Delhi-110094, India ish.v.16@gmail.com Abstract based engineering is an approach of development that emphasizes the

More information

Introduction to Software Reuse

Introduction to Software Reuse DCC / ICEx / UFMG Introduction to Software Reuse Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo Software Reuse The use of existing software or software knowledge to build new software In the last

More information

Part 4. Development. -Software Reuse - Component-Based Software Engineering. JUNBEOM YOO Ver. 1.

Part 4. Development. -Software Reuse - Component-Based Software Engineering. JUNBEOM YOO  Ver. 1. Software Engineering Part 4. Development - Rapid Software Development -Software Reuse - Component-Based Software Engineering Ver. 1.7 This lecture note is based on materials from Ian Sommerville 2006.

More information

SOFTWARE ARCHITECTURE & DESIGN INTRODUCTION

SOFTWARE ARCHITECTURE & DESIGN INTRODUCTION SOFTWARE ARCHITECTURE & DESIGN INTRODUCTION http://www.tutorialspoint.com/software_architecture_design/introduction.htm Copyright tutorialspoint.com The architecture of a system describes its major components,

More information

Part 5. Verification and Validation

Part 5. Verification and Validation Software Engineering Part 5. Verification and Validation - Verification and Validation - Software Testing Ver. 1.7 This lecture note is based on materials from Ian Sommerville 2006. Anyone can use this

More information

Topics in Object-Oriented Design Patterns

Topics in Object-Oriented Design Patterns Software design Topics in Object-Oriented Design Patterns Material mainly from the book Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; slides originally by Spiros Mancoridis;

More information

Chapter 6 Architectural Design. Lecture 1. Chapter 6 Architectural design

Chapter 6 Architectural Design. Lecture 1. Chapter 6 Architectural design Chapter 6 Architectural Design Lecture 1 1 Topics covered ² Architectural design decisions ² Architectural views ² Architectural patterns ² Application architectures 2 Software architecture ² The design

More information

Software Processes. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1

Software Processes. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1 Software Processes Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 4 Slide 1 Objectives To introduce software process models To describe three generic process models and when they may be

More information

Lecture 1. Chapter 6 Architectural design

Lecture 1. Chapter 6 Architectural design Chapter 6 Architectural Design Lecture 1 1 Topics covered Architectural design decisions Architectural views Architectural patterns Application architectures 2 Software architecture The design process

More information

CMSC 435: Software Engineering Section 0201

CMSC 435: Software Engineering Section 0201 CMSC 435: Software Engineering Section 0201 Atif M. Memon (atif@cs.umd.edu) 4115 A.V.Williams building Phone: 301-405-3071 Office hours Tu.Th. (11:00am-1:00pm) Don t wait, don t hesitate, do communicate!!

More information

Chapter 6 Architectural Design. Chapter 6 Architectural design

Chapter 6 Architectural Design. Chapter 6 Architectural design Chapter 6 Architectural Design 1 Topics covered Architectural design decisions Architectural views Architectural patterns Application architectures 2 Software architecture The design process for identifying

More information

Examples. Object Orientated Analysis and Design. Benjamin Kenwright

Examples. Object Orientated Analysis and Design. Benjamin Kenwright Examples Object Orientated Analysis and Design Benjamin Kenwright Outline Revision Questions Group Project Review Deliverables Example System Problem Case Studey Group Project Case-Study Example Vision

More information

Software testing. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23 Slide 1

Software testing. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23 Slide 1 Software testing Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 23 Slide 1 Objectives To discuss the distinctions between validation testing and defect testing To describe the principles

More information

Chapter 7 Design and Implementation

Chapter 7 Design and Implementation Chapter 7 Design and Implementation Chapter 7 Design and Implementation Slide 1 Topics covered Object-oriented design using the UML Design patterns Implementation issues Reuse Configuration management

More information

Chapter 6 Architectural Design

Chapter 6 Architectural Design Chapter 6 Architectural Design Chapter 6 Architectural Design Slide 1 Topics covered The WHAT and WHY of architectural design Architectural design decisions Architectural views/perspectives Architectural

More information

5/9/2014. Recall the design process. Lecture 1. Establishing the overall structureof a software system. Topics covered

5/9/2014. Recall the design process. Lecture 1. Establishing the overall structureof a software system. Topics covered Topics covered Chapter 6 Architectural Design Architectural design decisions Architectural views Architectural patterns Application architectures Lecture 1 1 2 Software architecture The design process

More information

Objectives. Architectural Design. Software architecture. Topics covered. Architectural design. Advantages of explicit architecture

Objectives. Architectural Design. Software architecture. Topics covered. Architectural design. Advantages of explicit architecture Objectives Architectural Design To introduce architectural design and to discuss its importance To explain the architectural design decisions that have to be made To introduce three complementary architectural

More information

Introduction to Software Engineering

Introduction to Software Engineering Introduction to Software Engineering Gérald Monard Ecole GDR CORREL - April 16, 2013 www.monard.info Bibliography Software Engineering, 9th ed. (I. Sommerville, 2010, Pearson) Conduite de projets informatiques,

More information

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms?

Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? Describing the architecture: Creating and Using Architectural Description Languages (ADLs): What are the attributes and R-forms? CIS 8690 Enterprise Architectures Duane Truex, 2013 Cognitive Map of 8090

More information

Software Design. Introduction. Software Design (Introduction) SERG

Software Design. Introduction. Software Design (Introduction) SERG Software Design Introduction Software Design How to implement the what. Requirements Document (RD) is starting point. Software design is a highly-creative activity. Good designers are worth their weight

More information

SOFTWARE ENGINEERING DECEMBER. Q2a. What are the key challenges being faced by software engineering?

SOFTWARE ENGINEERING DECEMBER. Q2a. What are the key challenges being faced by software engineering? Q2a. What are the key challenges being faced by software engineering? Ans 2a. The key challenges facing software engineering are: 1. Coping with legacy systems, coping with increasing diversity and coping

More information

Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila

Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila Engr. M. Fahad Khan Lecturer Software Engineering Department University Of Engineering & Technology Taxila Software Design and Architecture Software Design Software design is a process of problem-solving

More information

The Analysis and Design of the Object-oriented System Li Xin 1, a

The Analysis and Design of the Object-oriented System Li Xin 1, a International Conference on Materials Engineering and Information Technology Applications (MEITA 2015) The Analysis and Design of the Object-oriented System Li Xin 1, a 1 Shijiazhuang Vocational Technology

More information

Component-Based Software Engineering TIP

Component-Based Software Engineering TIP Component-Based Software Engineering TIP X LIU, School of Computing, Napier University This chapter will present a complete picture of how to develop software systems with components and system integration.

More information

Software Prototyping Animating and demonstrating system requirements. Uses of System Prototypes. Prototyping Benefits

Software Prototyping Animating and demonstrating system requirements. Uses of System Prototypes. Prototyping Benefits Software Prototyping Animating and demonstrating requirements Ian Sommerville 1995/2000 (Modified by Spiros Mancoridis 1999) Software Engineering, 6th edition. Chapter 8 Slide 1 Uses of System Prototypes

More information

Software Reuse Techniques

Software Reuse Techniques DCC / ICEx / UFMG Software Reuse Techniques Eduardo Figueiredo http://www.dcc.ufmg.br/~figueiredo Overview of Reuse Techniques Frameworks Design Patterns Configurable Applications Architecture Patterns

More information

Establishing the overall structure of a software system

Establishing the overall structure of a software system Architectural Design Establishing the overall structure of a software system Ian Sommerville 1995 Software Engineering, 5th edition. Chapter 13 Slide 1 Objectives To introduce architectural design and

More information

FOUR INDEPENDENT TOOLS TO MANAGE COMPLEXITY INHERENT TO DEVELOPING STATE OF THE ART SYSTEMS. DEVELOPER SPECIFIER TESTER

FOUR INDEPENDENT TOOLS TO MANAGE COMPLEXITY INHERENT TO DEVELOPING STATE OF THE ART SYSTEMS. DEVELOPER SPECIFIER TESTER TELECOM AVIONIC SPACE AUTOMOTIVE SEMICONDUCTOR IOT MEDICAL SPECIFIER DEVELOPER FOUR INDEPENDENT TOOLS TO MANAGE COMPLEXITY INHERENT TO DEVELOPING STATE OF THE ART SYSTEMS. TESTER PragmaDev Studio is a

More information

Component-based Architecture Buy, don t build Fred Broks

Component-based Architecture Buy, don t build Fred Broks Component-based Architecture Buy, don t build Fred Broks 1. Why use components?... 2 2. What are software components?... 3 3. Component-based Systems: A Reality!! [SEI reference]... 4 4. Major elements

More information

Implementing the Army Net Centric Data Strategy in a Service Oriented Environment

Implementing the Army Net Centric Data Strategy in a Service Oriented Environment Implementing the Army Net Centric Strategy in a Service Oriented Environment Michelle Dirner Army Net Centric Strategy (ANCDS) Center of Excellence (CoE) Service Team Lead RDECOM CERDEC SED in support

More information

Design and Implementa3on

Design and Implementa3on Software Engineering Design and Implementa3on 1 Design and implementation Software design and implementation is the stage in the software engineering process at which an executable software system is developed.

More information

CAS 703 Software Design

CAS 703 Software Design Dr. Ridha Khedri Department of Computing and Software, McMaster University Canada L8S 4L7, Hamilton, Ontario Acknowledgments: Material based on Software by Tao et al. (Chapters 9 and 10) (SOA) 1 Interaction

More information

Mission-Critical Customer Service. 10 Best Practices for Success

Mission-Critical  Customer Service. 10 Best Practices for Success Mission-Critical Email Customer Service 10 Best Practices for Success Introduction When soda cans and chocolate wrappers start carrying email contact information, you know that email-based customer service

More information

Introduction to Assurance

Introduction to Assurance Introduction to Assurance Overview Why assurance? Trust and assurance Life cycle and assurance April 1, 2015 Slide #1 Overview Trust Problems from lack of assurance Types of assurance Life cycle and assurance

More information

This slide is relevant to providing either a single three hour training session or explaining how a series of shorter sessions focused on per chapter

This slide is relevant to providing either a single three hour training session or explaining how a series of shorter sessions focused on per chapter Welcome to the OpenChain Curriculum Slides. These slides can be used to help train internal teams about FOSS compliance issues and to conform with the OpenChain Specification. You can deliver these slides

More information

Component-Based Software Engineering TIP

Component-Based Software Engineering TIP Component-Based Software Engineering TIP X LIU, School of Computing, Napier University This chapter will present a complete picture of how to develop software systems with components and system integration.

More information

Design Pattern. CMPSC 487 Lecture 10 Topics: Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, et al.)

Design Pattern. CMPSC 487 Lecture 10 Topics: Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, et al.) Design Pattern CMPSC 487 Lecture 10 Topics: Design Patterns: Elements of Reusable Object-Oriented Software (Gamma, et al.) A. Design Pattern Design patterns represent the best practices used by experienced

More information

Software Design Patterns. Background 1. Background 2. Jonathan I. Maletic, Ph.D.

Software Design Patterns. Background 1. Background 2. Jonathan I. Maletic, Ph.D. Software Design Patterns Jonathan I. Maletic, Ph.D. Department of Computer Science Kent State University J. Maletic 1 Background 1 Search for recurring successful designs emergent designs from practice

More information

Software processes. Objectives. Contents

Software processes. Objectives. Contents 2 Software processes Objectives The objective of this chapter is to introduce you to the idea of a software process a coherent set of activities for software production. When you have read this chapter

More information

SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES

SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES SEMANTIC SOLUTIONS FOR OIL & GAS: ROLES AND RESPONSIBILITIES Jeremy Carroll, Ralph Hodgson, {jeremy,ralph}@topquadrant.com This paper is submitted to The W3C Workshop on Semantic Web in Energy Industries

More information

Chapter 4. Fundamental Concepts and Models

Chapter 4. Fundamental Concepts and Models Chapter 4. Fundamental Concepts and Models 4.1 Roles and Boundaries 4.2 Cloud Characteristics 4.3 Cloud Delivery Models 4.4 Cloud Deployment Models The upcoming sections cover introductory topic areas

More information

Effective Threat Modeling using TAM

Effective Threat Modeling using TAM Effective Threat Modeling using TAM In my blog entry regarding Threat Analysis and Modeling (TAM) tool developed by (Application Consulting and Engineering) ACE, I have watched many more Threat Models

More information

Question 1: What is a code walk-through, and how is it performed?

Question 1: What is a code walk-through, and how is it performed? Question 1: What is a code walk-through, and how is it performed? Response: Code walk-throughs have traditionally been viewed as informal evaluations of code, but more attention is being given to this

More information

How to Harvest Reusable Components in Existing Software. Nikolai Mansurov Chief Scientist & Architect

How to Harvest Reusable Components in Existing Software. Nikolai Mansurov Chief Scientist & Architect How to Harvest Reusable Components in Existing Software Nikolai Mansurov Chief Scientist & Architect Overview Introduction Reuse, Architecture and MDA Option Analysis for Reengineering (OAR) Architecture

More information

Complexity. Object Orientated Analysis and Design. Benjamin Kenwright

Complexity. Object Orientated Analysis and Design. Benjamin Kenwright Complexity Object Orientated Analysis and Design Benjamin Kenwright Outline Review Object Orientated Programming Concepts (e.g., encapsulation, data abstraction,..) What do we mean by Complexity? How do

More information

SYSPRO s Fluid Interface Design

SYSPRO s Fluid Interface Design SYSPRO s Fluid Interface Design Introduction The world of computer-user interaction has come a long way since the beginning of the Graphical User Interface, but still most application interfaces are not

More information

The Value of Data Modeling for the Data-Driven Enterprise

The Value of Data Modeling for the Data-Driven Enterprise Solution Brief: erwin Data Modeler (DM) The Value of Data Modeling for the Data-Driven Enterprise Designing, documenting, standardizing and aligning any data from anywhere produces an enterprise data model

More information

Paper. Delivering Strong Security in a Hyperconverged Data Center Environment

Paper. Delivering Strong Security in a Hyperconverged Data Center Environment Paper Delivering Strong Security in a Hyperconverged Data Center Environment Introduction A new trend is emerging in data center technology that could dramatically change the way enterprises manage and

More information

Specifying and Prototyping

Specifying and Prototyping Contents Specifying and Prototyping M. EVREN KIYMAÇ 2008639030 What is Specifying? Gathering Specifications Specifying Approach & Waterfall Model What is Prototyping? Uses of Prototypes Prototyping Process

More information

UNIT V *********************************************************************************************

UNIT V ********************************************************************************************* Syllabus: 1 UNIT V 5. Package Diagram, Component Diagram, Deployment Diagram (08 Hrs, 16 Marks) Package Diagram: a. Terms and Concepts Names, Owned Elements, Visibility, Importing and Exporting b. Common

More information

Archiving. Services. Optimize the management of information by defining a lifecycle strategy for data. Archiving. ediscovery. Data Loss Prevention

Archiving. Services. Optimize the management of information by defining a lifecycle strategy for data. Archiving. ediscovery. Data Loss Prevention Symantec Enterprise Vault TransVault CommonDesk ARCviewer Vault LLC Optimize the management of information by defining a lifecycle strategy for data Backup is for recovery, archiving is for discovery.

More information

Cloud Computing: Making the Right Choice for Your Organization

Cloud Computing: Making the Right Choice for Your Organization Cloud Computing: Making the Right Choice for Your Organization A decade ago, cloud computing was on the leading edge. Now, 95 percent of businesses use cloud technology, and Gartner says that by 2020,

More information

Next-Generation SOA Infrastructure. An Oracle White Paper May 2007

Next-Generation SOA Infrastructure. An Oracle White Paper May 2007 Next-Generation SOA Infrastructure An Oracle White Paper May 2007 Next-Generation SOA Infrastructure INTRODUCTION Today, developers are faced with a bewildering array of technologies for developing Web

More information

BUILDING the VIRtUAL enterprise

BUILDING the VIRtUAL enterprise BUILDING the VIRTUAL ENTERPRISE A Red Hat WHITEPAPER www.redhat.com As an IT shop or business owner, your ability to meet the fluctuating needs of your business while balancing changing priorities, schedules,

More information

Verification and Validation. Assuring that a software system meets a user s needs. Verification vs Validation. The V & V Process

Verification and Validation. Assuring that a software system meets a user s needs. Verification vs Validation. The V & V Process Verification and Validation Assuring that a software system meets a user s needs Ian Sommerville 1995/2000 (Modified by Spiros Mancoridis 1999) Software Engineering, 6th edition. Chapters 19,20 Slide 1

More information

The requirements engineering process

The requirements engineering process 3 rd Stage Lecture time: 8:30-12:30 AM Instructor: Ali Kadhum AL-Quraby Lecture No. : 5 Subject: Software Engineering Class room no.: Department of computer science Process activities The four basic process

More information

Architectural Design. Architectural Design. Software Architecture. Architectural Models

Architectural Design. Architectural Design. Software Architecture. Architectural Models Architectural Design Architectural Design Chapter 6 Architectural Design: -the design the desig process for identifying: - the subsystems making up a system and - the relationships between the subsystems

More information

Software Life-Cycle Management

Software Life-Cycle Management Ingo Arnold Department Computer Science University of Basel Introduction Software Life-Cycle Management Architecture Handbook View Model Architecture View Models If this is real world s physical complexity..

More information

1 Software Architecture

1 Software Architecture Some buzzwords and acronyms for today Software architecture Design pattern Separation of concerns Single responsibility principle Keep it simple, stupid (KISS) Don t repeat yourself (DRY) Don t talk to

More information

Agent-Enabling Transformation of E-Commerce Portals with Web Services

Agent-Enabling Transformation of E-Commerce Portals with Web Services Agent-Enabling Transformation of E-Commerce Portals with Web Services Dr. David B. Ulmer CTO Sotheby s New York, NY 10021, USA Dr. Lixin Tao Professor Pace University Pleasantville, NY 10570, USA Abstract:

More information

How to Underpin Security Transformation With Complete Visibility of Your Attack Surface

How to Underpin Security Transformation With Complete Visibility of Your Attack Surface How to Underpin Security Transformation With Complete Visibility of Your Attack Surface YOU CAN T SECURE WHAT YOU CAN T SEE There are many reasons why you may be considering or engaged in a security transformation

More information

Lecture 15 Software Testing

Lecture 15 Software Testing Lecture 15 Software Testing Includes slides from the companion website for Sommerville, Software Engineering, 10/e. Pearson Higher Education, 2016. All rights reserved. Used with permission. Topics covered

More information

User interface design. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 16 Slide 1

User interface design. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 16 Slide 1 User interface design Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 16 Slide 1 The user interface Should be designed to match: Skills, experience and expectations of its anticipated users.

More information

Socket attaches to a Ratchet. 2) Bridge Decouple an abstraction from its implementation so that the two can vary independently.

Socket attaches to a Ratchet. 2) Bridge Decouple an abstraction from its implementation so that the two can vary independently. Gang of Four Software Design Patterns with examples STRUCTURAL 1) Adapter Convert the interface of a class into another interface clients expect. It lets the classes work together that couldn't otherwise

More information

Software architecture: Introduction

Software architecture: Introduction 2IW80 Software specification and architecture Software architecture: Introduction Alexander Serebrenik This week sources Slides by Johan Lukkien and Rudolf Mak Software architecture Software architecture

More information

Chapter 8 Software Testing. Chapter 8 Software testing

Chapter 8 Software Testing. Chapter 8 Software testing Chapter 8 Software Testing 1 Topics covered Introduction to testing Stages for testing software system are: Development testing Release testing User testing Test-driven development as interleave approach.

More information

RED HAT ENTERPRISE LINUX. STANDARDIZE & SAVE.

RED HAT ENTERPRISE LINUX. STANDARDIZE & SAVE. RED HAT ENTERPRISE LINUX. STANDARDIZE & SAVE. Is putting Contact us INTRODUCTION You know the headaches of managing an infrastructure that is stretched to its limit. Too little staff. Too many users. Not

More information

Software Testing. Massimo Felici IF

Software Testing. Massimo Felici IF Software Testing Massimo Felici IF-3.46 0131 650 5899 mfelici@staffmail.ed.ac.uk What is Software Testing? Software Testing is the design and implementation of a special kind of software system: one that

More information

developer.* The Independent Magazine for Software Professionals

developer.* The Independent Magazine for Software Professionals developer.* The Independent Magazine for Software Professionals Improving Developer Productivity With Domain-Specific Modeling Languages by Steven Kelly, PhD According to Software Productivity Research,

More information

Application Architectures, Design Patterns

Application Architectures, Design Patterns Application Architectures, Design Patterns Martin Ledvinka martin.ledvinka@fel.cvut.cz Winter Term 2017 Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Application Architectures, Design Patterns Winter Term

More information

Informatica Data Quality Product Family

Informatica Data Quality Product Family Brochure Informatica Product Family Deliver the Right Capabilities at the Right Time to the Right Users Benefits Reduce risks by identifying, resolving, and preventing costly data problems Enhance IT productivity

More information

Key Ideas. OO Analysis and Design Foundation. Objectives. Adapted from slides 2005 John Wiley & Sons, Inc.

Key Ideas. OO Analysis and Design Foundation. Objectives. Adapted from slides 2005 John Wiley & Sons, Inc. Slide 1 Information Systems Development COMM005 (CSM03) Autumn Semester 2009 Dr. Jonathan Y. Clark Email: j.y.clark@surrey.ac.uk Course Website: www.computing.surrey.ac.uk/courses/csm03/isdmain.htm Course

More information

Architectural Design

Architectural Design Architectural Design Objectives To introduce architectural design and to discuss its importance To explain the architectural design decisions that have to be made To introduce three complementary architectural

More information

OBJECT ORIENTED SYSTEM DEVELOPMENT Software Development Dynamic System Development Information system solution Steps in System Development Analysis

OBJECT ORIENTED SYSTEM DEVELOPMENT Software Development Dynamic System Development Information system solution Steps in System Development Analysis UNIT I INTRODUCTION OBJECT ORIENTED SYSTEM DEVELOPMENT Software Development Dynamic System Development Information system solution Steps in System Development Analysis Design Implementation Testing Maintenance

More information

Symantec Data Center Transformation

Symantec Data Center Transformation Symantec Data Center Transformation A holistic framework for IT evolution As enterprises become increasingly dependent on information technology, the complexity, cost, and performance of IT environments

More information

Data Mining: Approach Towards The Accuracy Using Teradata!

Data Mining: Approach Towards The Accuracy Using Teradata! Data Mining: Approach Towards The Accuracy Using Teradata! Shubhangi Pharande Department of MCA NBNSSOCS,Sinhgad Institute Simantini Nalawade Department of MCA NBNSSOCS,Sinhgad Institute Ajay Nalawade

More information

SYMANTEC: SECURITY ADVISORY SERVICES. Symantec Security Advisory Services The World Leader in Information Security

SYMANTEC: SECURITY ADVISORY SERVICES. Symantec Security Advisory Services The World Leader in Information Security SYMANTEC: SECURITY ADVISORY SERVICES Symantec Security Advisory Services The World Leader in Information Security Knowledge, as the saying goes, is power. At Symantec we couldn t agree more. And when it

More information

ISO INTERNATIONAL STANDARD. Information and documentation Managing metadata for records Part 2: Conceptual and implementation issues

ISO INTERNATIONAL STANDARD. Information and documentation Managing metadata for records Part 2: Conceptual and implementation issues INTERNATIONAL STANDARD ISO 23081-2 First edition 2009-07-01 Information and documentation Managing metadata for records Part 2: Conceptual and implementation issues Information et documentation Gestion

More information

ARC BRIEF. Application Downtime, Your Productivity Killer. Overview. Trends in Plant Application Adoption. By John Blanchard and Greg Gorbach

ARC BRIEF. Application Downtime, Your Productivity Killer. Overview. Trends in Plant Application Adoption. By John Blanchard and Greg Gorbach ARC BRIEF JANUARY 2012 Application Downtime, Your Productivity Killer By John Blanchard and Greg Gorbach Overview Today, manufacturing enterprises are faced with intense competitive pressure, limited IT

More information

The testing process. Component testing. System testing

The testing process. Component testing. System testing Software testing Objectives To discuss the distinctions between validation testing and defect testing To describe the principles of system and component testing To describe strategies for generating system

More information

SOFTWARE ENGINEERING. Software Specification Software Design and Implementation Software Validation. Peter Mileff PhD

SOFTWARE ENGINEERING. Software Specification Software Design and Implementation Software Validation. Peter Mileff PhD Peter Mileff PhD SOFTWARE ENGINEERING Software Specification Software Design and Implementation Software Validation University of Miskolc Department of Information Technology Software Specification...

More information

Semantics, Metadata and Identifying Master Data

Semantics, Metadata and Identifying Master Data Semantics, Metadata and Identifying Master Data A DataFlux White Paper Prepared by: David Loshin, President, Knowledge Integrity, Inc. Once you have determined that your organization can achieve the benefits

More information

Architecture and Design Evolution

Architecture and Design Evolution Architecture and Design Evolution Pradyumn Sharma pradyumn.sharma@pragatisoftware.com www.twitter.com/pradyumnsharma 1 What is Software Architecture? Structure of a system, comprising software elements,

More information

Total Cost of Ownership: Benefits of the OpenText Cloud

Total Cost of Ownership: Benefits of the OpenText Cloud Total Cost of Ownership: Benefits of the OpenText Cloud OpenText Managed Services in the Cloud delivers on the promise of a digital-first world for businesses of all sizes. This paper examines how organizations

More information

History of object-oriented approaches

History of object-oriented approaches Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin Object-Oriented Oriented Systems Analysis and Design with the UML Objectives: Understand the basic characteristics of object-oriented

More information