Java Threads. COMP 585 Noteset #2 1

Size: px
Start display at page:

Download "Java Threads. COMP 585 Noteset #2 1"

Transcription

1 Java Threads The topic of threads overlaps the boundary between software development and operation systems. Words like process, task, and thread may mean different things depending on the author and the context. Here is a reasonable set of general definitions. A process is a single task running on an operating system with its own set of resources that can be scheduled to run on the CPU. It is sometimes called a heavyweight process to emphasize that it controls its own virtual address space that is not shared with other processes. A thread is a single flow of control that runs in the context of some heavyweight process. A thread by itself is not a complete OS-level process or task that can be independently scheduled to run on the CPU. It is sometimes called a lightweight process to emphasize that it does not control its own virtual address space, but instead shares it with possibly other threads inside a single heavyweight process. If two heavyweight processes wish to exchange information, they cannot do so through shared variables because they exist in separate address spaces, so there are no shared variables available. Instead, they exchange information through message passing primitives, provided by either the operating system directly or by a 3 rd party library such as OpenMPI. There is a specific kind of parallel hardware design that is well matched to parallel software that depends on work performed cooperatively by processes that use message passing and not shared memory. This architecture is called a loosely-coupled parallel architecture. This means a parallel architecture with multiple processors, each with its own local memory and no memory shared by all processors. If two threads wish to exchange information, they may do so through shared variables because they exist in a single common virtual address space. The parallel hardware architecture best suited for parallel software that uses multiple threads within a single process is different, it is called a tightly-coupled architecture. It means an architecture with multiple processors but a common shared memory area. Different threads can run on different processors but they all have access to the same common shared memory. If a multithreaded process is running on a uniprocessor then there can only be virtual parallelism since only one thread within one process can be running at a time. But if a multithreaded application is running on a shared-memory multiprocessor (or even a uniprocessor with multiple cores), it is possible that multiple threads within the same process may run simultaneously. For that reason, a multithreaded application will have to make correct use of synchronization primitives that are built into the thread library to ensure program correctness. This is a hard problem to implement correctly. In the context of the development of a multithreaded software application, any code execution must be supported by some thread. In Java, the JVM automatically creates a thread called the main thread to run the main method of any Java program. You get this thread automatically, and might not have even noticed it. The state of the current Thread can be manipulated in a simple way via the static method Thread.sleep(int msec); Example for (int i=1; i<=100; i++) { System.out.println( i = + i); Thread.sleep(1000); // sleep (delay) for approx 1000 msec = 1 sec Note: we re putting a major thread to sleep here, normally would do this only for an auxiliary thread that we create expressly for that purpose. COMP 585 Noteset #2 1

2 The sleep method causes the current thread to suspend execution and wait for a timer interrupt from the OS. It also generates a checked (non-runtime) exception of type InterruptedException, so the complete example is actually: for (int i=1; i<=100; i++) { System.out.println("i = " + i); try { Thread.sleep(1000); catch (InterruptedException e) { System.out.println("Got Interrupted!"); Short Review of Exceptions A runtime exception is also called an unchecked exception. It means that the Java compiler does not require the exception to be handled via try/catch or passed to another handler via throw. The expectation is that an unchecked exception should be implicitly avoided by direct modification of the software (e.g., integer divide by zero). A nonruntime exception is also called a checked exception. It means that the Java compiler does require the exception to either be immediately handled with try/catch, or the containing method to be marked with a throws clause, which passes the exception to a try/catch block at some earlier point in the call chain. Non-runtime exceptions usually indicate exceptions that are inherent in the software which cannot be eliminated by changes to the code. Instead they must be properly responded to or handled by try/catch or throws. Any object that extends class Thread or implements interface Runnable can be launched as a separate thread. The code that defines the behavior of the thread is the run() method. If one thread that creates a second thread, the first thread must instantiate the second thread and then call its start() method (not its run() method). Threads and Swing The main method, and any method in its call chain, runs on the main thread. The JVM creates a main thread on behalf of any main method that it is asked to execute. Methods of an event listener, and any methods in their call chain, run on the event thread. The event thread is automatically introduced into a running application whenever a GUI component is instantiated. Other threads that the programmer needs must be created. Programs with User-Created Threads A program can create its own multiple threads by either Defining a new class that extends class Thread Having an existing class implement the Runnable interface In either case, the Thread must provide a definition for the method This defines the code to be executed by the Thread. After a Thread has been created (instantiated), it is launched by calling its start() method. If the run() method is called directly, no concurrency is achieved, the run() method joins the call chain of the current thread. The start() method is intercepted by the JVM, which creates a new Thread, and assigns the run() method to run on that new Thread. COMP 585 Noteset #2 2

3 Example: public class Thr { Thread t1 = new Thread() { System.out.println("t1 starts, sleeps for 3"); try { Thread.sleep(3000); catch (InterruptedException e) { System.out.println("t1 done!"); ; Thread t2 = new Thread() { System.out.println("t2 starts, sleeps for 5"); try { Thread.sleep(5000); catch (InterruptedException e) { System.out.println("t2 done!"); ; t2.start(); try { Thread.sleep(1000); catch (InterruptedException e) { t1.start(); Output is t2 starts, sleeps for 5 t1 starts, sleeps for 3 t1 done! t2 done! Threads t1 and t2 are each instantiated as objects of anonymous subclass of class Thread. The run() method is overridden as part of the instantiation to define the characteristic behavior of each thread. The main method launches the threads by invoking their start() methods, not the run() methods directly. Thread t2 begins executing before Thread t1. But the longer sleep time causes Thread t2 to still finish last. In this example, there is no real interaction or synchronization between the threads. The threads are controlled only by their interaction with the system clock. Synchronization gives the user more detailed control over how the threads interact with each other. COMP 585 Noteset #2 3

4 Thread Synchronization In Java a Thread represents a flow of control for some code. an Object (any Object) represents a lock that can be used for synchronization between Threads. Every Java Object contains an object-level lock that can be used for synchronization between multiple threads. In other words, multiple threads can synchronize their execution by waiting on and signaling a specific object that has been created to act as a lock, guard, semaphore, or other synchronization point. One thread can also interact directly with another thread, but there are new limits on the operations that can be performed. If you look at the API, you will see many deprecated methods for class Thread, which reflects the fact that Java s earlier model for threads and synchronization was broken. Many methods that directly modify the state of a thread are now known to be thread unsafe and are deprecated. Deprecated methods are still supported for backward compatibility with older code, but they should not be used in new code. In summary, here are the operations for Objects and Threads related to synchronization: Class Object wait() // executing Thread is suspended awaiting a later notify notify() // waiting Thread at the head of the wait queue is reactivated notifyall() // all waiting Threads in the wait queue are reactivated Class Thread start() // used by an executing Thread to activate another Thread interrupt() // used by an executing Thread to deactivate another Thread sleep(int) // note: static method called by some Thread on behalf of itself In particular note that destroy() resume() stop() suspend() are all deprecated. Since the individual Threads in a multithreaded application run independently of each other, the programmer must have the ability to guarantee in some situations that Thread #1 doesn t go past point A before Thread #2 reaches point B. In order to control progress, a Thread may perform a wait() operation on some Object acting as a lock or semaphore. In order for the waiting Thread to finish its wait, another Thread must perform a notify() operation on the same Object. Lock Provides synchronization features that can be used to coordinate execution of threads. Any Java object can be used as a lock. Each object provides an object-level lock, and each class provides a class-level lock. The most common synchronization operations are wait() and notifyall(). COMP 585 Noteset #2 4

5 Synchronization Example #1 In this example, the current thread synchronizes on an object-level lock which is nested inside the try-catch block for the InterruptedException. In this case, the thread releases the lock on the object as soon as it is interrupted. try { synchronized(obj) { obj.wait(); catch (InterruptedException e) { This example minimizes the amount of time the thread spends owning or controlling the object-level lock. For many applications, however, this won t be as useful as the next example. Synchronization Example #2 In this example, the try-catch block is nested inside the synchronized block. synchronized(obj) { try { obj.wait(); catch (InterruptedException e) { // mutex code goes here This example is more typical for guarding a mutex region, which could go into the catch block, or after the catch block while still inside the synchronized block. Still, there is a subtle problem (potential problem) with this example, since a Thread that is interrupted after waiting can be interrupted for different reasons, not all of which may be related to the object lock that it originally waited on. The notify() vs. notifyall() Methods General recommendation is for a signaling thread to signal via notifyall(), and release all threads that are waiting on an object-level lock. The released threads should then all compete among themselves to reacquire the lock. The next example implements a producer-consumer application that supports any number of producers and consumers using this approach. COMP 585 Noteset #2 5

6 Example (simplified initial version, not complete): class Thr2 { final Object obj = new Object(); Thread t1 = new Thread() { System.out.println("t1 starts, notifies t2"); obj.notify(); System.out.println("t1 done!"); ; Thread t2 = new Thread() { System.out.println("t2 starts, waits on t1"); obj.wait(); System.out.println("t2 done!"); ; t2.start(); Thread.sleep(5000); t1.start(); Problems First, the wait() and sleep() method calls generate an InterruptedException, so they must use try/catch. This is a compile-time error because InterruptedException is a checked or non-runtime exception. Correction #1 try { obj.wait(); catch (InterruptedException e)_ { Second, both the wait() and notify() methods must correctly negotiate the acquisition of the object-level lock before actually performing the wait or the notify. This requires that the code be placed into a synchronized block associated with the object. The code from correction #1 compiles, but generates a runtime exception of type IllegalMonitorStateException. COMP 585 Noteset #2 6

7 Using these observations to complete the example, we get: class Thr2 { final Object obj = new Object(); Thread t1 = new Thread() { System.out.println("t1 starts, notifies t2"); synchronized(obj) { obj.notify(); System.out.println("t1 done!"); ; Thread t2 = new Thread() { System.out.println("t2 starts, waits on t1"); try { synchronized(obj) { obj.wait(); catch(interruptedexception e) { System.out.println("t2 done!"); ; t2.start(); try { Thread.sleep(5000); catch (InterruptedException e) { t1.start(); Output is t2 starts, waits on t1 t1 starts, notifies t2 t1 done! t2 done! COMP 585 Noteset #2 7

8 Multithreaded Message Drop Box (from Imagine an object that represents a simple String message to be sent or received, along with a boolean flag to indicate if there is a message present or not. public class Drop { private String message; private boolean empty = true; Create synchronized methods that allow a consumer to pick up a message or a producer to drop off a message. The flag must be toggled accordingly. Since multiple producers and consumers might be present, all pick ups and drop offs must be synchronized on the object-level lock for the Drop object. [note: a synchronized non-static method implicitly uses the current object ( this ) as the lock] public class Drop { public synchronized String take() { while (empty) { try { wait(); catch (InterruptedException e) { empty = true; notifyall(); return message; public synchronized void put(string message) { while (!empty) { try { wait(); catch (InterruptedException e) { empty = false; this.message = message; notifyall(); Picking Up a Message In order to pick up a message ( take ) from this object, the taking thread applies the take() method to the Drop object. Since the method is synchronized, the thread has exclusive access to the object. If the message is present (empty == false), the thread picks it up, toggles the empty flag, and signals all waiting threads. If the message is not present, the thread waits in the object s queue, and releases the lock (this happens automatically as part of the wait). Dropping Off a Message The putting thread applies the put() method to the Drop object, which also synchronizes and gives the putting thread exclusive access to the object. If the previous message has already been picked up (empty == true), the thread drops off the message, toggles the flag, and signals all waiting threads. If the previous message has not been picked up, the thread waits in the queue and releases the lock. In all cases, when a waiting thread is signaled, it automatically reacquires the object lock before proceeding. COMP 585 Noteset #2 8

Introduction to Java Threads

Introduction to Java Threads Object-Oriented Programming Introduction to Java Threads RIT CS 1 "Concurrent" Execution Here s what could happen when you run this Java program and launch 3 instances on a single CPU architecture. The

More information

Java Threads. Written by John Bell for CS 342, Spring 2018

Java Threads. Written by John Bell for CS 342, Spring 2018 Java Threads Written by John Bell for CS 342, Spring 2018 Based on chapter 9 of Learning Java, Fourth Edition by Niemeyer and Leuck, and other sources. Processes A process is an instance of a running program.

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

COMP346 Winter Tutorial 4 Synchronization Semaphores

COMP346 Winter Tutorial 4 Synchronization Semaphores COMP346 Winter 2015 Tutorial 4 Synchronization Semaphores 1 Topics Synchronization in Details Semaphores Introducing Semaphore.java 2 Synchronization What is it? An act of communication between unrelated

More information

Chapter 32 Multithreading and Parallel Programming

Chapter 32 Multithreading and Parallel Programming Chapter 32 Multithreading and Parallel Programming 1 Objectives To get an overview of multithreading ( 32.2). To develop task classes by implementing the Runnable interface ( 32.3). To create threads to

More information

Overview. Processes vs. Threads. Computation Abstractions. CMSC 433, Fall Michael Hicks 1

Overview. Processes vs. Threads. Computation Abstractions. CMSC 433, Fall Michael Hicks 1 CMSC 433 Programming Language Technologies and Paradigms Spring 2003 Threads and Synchronization April 1, 2003 Overview What are threads? Thread scheduling, data races, and synchronization Thread mechanisms

More information

Threads and Parallelism in Java

Threads and Parallelism in Java Threads and Parallelism in Java Java is one of the few main stream programming languages to explicitly provide for user-programmed parallelism in the form of threads. A Java programmer may organize a program

More information

Java Threads. Introduction to Java Threads

Java Threads. Introduction to Java Threads Java Threads Resources Java Threads by Scott Oaks & Henry Wong (O Reilly) API docs http://download.oracle.com/javase/6/docs/api/ java.lang.thread, java.lang.runnable java.lang.object, java.util.concurrent

More information

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency

Chair of Software Engineering. Java and C# in depth. Carlo A. Furia, Marco Piccioni, Bertrand Meyer. Java: concurrency Chair of Software Engineering Carlo A. Furia, Marco Piccioni, Bertrand Meyer Java: concurrency Outline Java threads thread implementation sleep, interrupt, and join threads that return values Thread synchronization

More information

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit

Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multit Threads Multitasking Multitasking allows several activities to occur concurrently on the computer. A distinction is usually made between: Process-based multitasking Thread-based multitasking Multitasking

More information

Performance Throughput Utilization of system resources

Performance Throughput Utilization of system resources Concurrency 1. Why concurrent programming?... 2 2. Evolution... 2 3. Definitions... 3 4. Concurrent languages... 5 5. Problems with concurrency... 6 6. Process Interactions... 7 7. Low-level Concurrency

More information

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007 CMSC 433 Programming Language Technologies and Paradigms Spring 2007 Threads and Synchronization May 8, 2007 Computation Abstractions t1 t1 t4 t2 t1 t2 t5 t3 p1 p2 p3 p4 CPU 1 CPU 2 A computer Processes

More information

Animation Part 2: MoveableShape interface & Multithreading

Animation Part 2: MoveableShape interface & Multithreading Animation Part 2: MoveableShape interface & Multithreading MoveableShape Interface In the previous example, an image was drawn, then redrawn in another location Since the actions described above can apply

More information

Threads Questions Important Questions

Threads Questions Important Questions Threads Questions Important Questions https://dzone.com/articles/threads-top-80-interview https://www.journaldev.com/1162/java-multithreading-concurrency-interviewquestions-answers https://www.javatpoint.com/java-multithreading-interview-questions

More information

Info 408 Distributed Applications Programming Exercise sheet nb. 4

Info 408 Distributed Applications Programming Exercise sheet nb. 4 Lebanese University Info 408 Faculty of Science 2017-2018 Section I 1 Custom Connections Info 408 Distributed Applications Programming Exercise sheet nb. 4 When accessing a server represented by an RMI

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Multithreading Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to large compute clusters Can perform multiple

More information

Multiple Inheritance. Computer object can be viewed as

Multiple Inheritance. Computer object can be viewed as Multiple Inheritance We have seen that a class may be derived from a given parent class. It is sometimes useful to allow a class to be derived from more than one parent, inheriting members of all parents.

More information

CMSC 132: Object-Oriented Programming II. Threads in Java

CMSC 132: Object-Oriented Programming II. Threads in Java CMSC 132: Object-Oriented Programming II Threads in Java 1 Problem Multiple tasks for computer Draw & display images on screen Check keyboard & mouse input Send & receive data on network Read & write files

More information

Note: Each loop has 5 iterations in the ThreeLoopTest program.

Note: Each loop has 5 iterations in the ThreeLoopTest program. Lecture 23 Multithreading Introduction Multithreading is the ability to do multiple things at once with in the same application. It provides finer granularity of concurrency. A thread sometimes called

More information

Only one thread can own a specific monitor

Only one thread can own a specific monitor Java 5 Notes Threads inherit their priority and daemon properties from their creating threads The method thread.join() blocks and waits until the thread completes running A thread can have a name for identification

More information

Multithreaded Programming

Multithreaded Programming Multithreaded Programming Multithreaded programming basics Concurrency is the ability to run multiple parts of the program in parallel. In Concurrent programming, there are two units of execution: Processes

More information

CS11 Java. Fall Lecture 7

CS11 Java. Fall Lecture 7 CS11 Java Fall 2006-2007 Lecture 7 Today s Topics All about Java Threads Some Lab 7 tips Java Threading Recap A program can use multiple threads to do several things at once A thread can have local (non-shared)

More information

Concurrent Programming using Threads

Concurrent Programming using Threads Concurrent Programming using Threads Threads are a control mechanism that enable you to write concurrent programs. You can think of a thread in an object-oriented language as a special kind of system object

More information

CS 351 Design of Large Programs Threads and Concurrency

CS 351 Design of Large Programs Threads and Concurrency CS 351 Design of Large Programs Threads and Concurrency Brooke Chenoweth University of New Mexico Spring 2018 Concurrency in Java Java has basic concurrency support built into the language. Also has high-level

More information

Need for synchronization: If threads comprise parts of our software systems, then they must communicate.

Need for synchronization: If threads comprise parts of our software systems, then they must communicate. Thread communication and synchronization There are two main aspects to Outline for Lecture 19 multithreaded programming in Java: I. Thread synchronization. thread lifecycle, and thread synchronization.

More information

Java s Implementation of Concurrency, and how to use it in our applications.

Java s Implementation of Concurrency, and how to use it in our applications. Java s Implementation of Concurrency, and how to use it in our applications. 1 An application running on a single CPU often appears to perform many tasks at the same time. For example, a streaming audio/video

More information

What is a thread anyway?

What is a thread anyway? Concurrency in Java What is a thread anyway? Smallest sequence of instructions that can be managed independently by a scheduler There can be multiple threads within a process Threads can execute concurrently

More information

Programming Language Concepts: Lecture 11

Programming Language Concepts: Lecture 11 Programming Language Concepts: Lecture 11 Madhavan Mukund Chennai Mathematical Institute madhavan@cmi.ac.in PLC 2011, Lecture 11, 01 March 2011 Concurrent Programming Monitors [Per Brinch Hansen, CAR Hoare]

More information

public class Shared0 { private static int x = 0, y = 0;

public class Shared0 { private static int x = 0, y = 0; A race condition occurs anytime that the execution of one thread interferes with the desired behavior of another thread. What is the expected postcondition for the following bump() method? What should

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Threads Synchronization Refers to mechanisms allowing a programmer to control the execution order of some operations across different threads in a concurrent

More information

THREADS AND MULTITASKING ROBOTS

THREADS AND MULTITASKING ROBOTS ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 10 comp329-2013-parsons-lect10 2/37 Today Some more programming techniques that will be helpful

More information

ROBOTICS AND AUTONOMOUS SYSTEMS

ROBOTICS AND AUTONOMOUS SYSTEMS ROBOTICS AND AUTONOMOUS SYSTEMS Simon Parsons Department of Computer Science University of Liverpool LECTURE 10 THREADS AND MULTITASKING ROBOTS comp329-2013-parsons-lect10 2/37 Today Some more programming

More information

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling

JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling JAVA and J2EE UNIT - 4 Multithreaded Programming And Event Handling Multithreaded Programming Topics Multi Threaded Programming What are threads? How to make the classes threadable; Extending threads;

More information

Advanced Concepts of Programming

Advanced Concepts of Programming Berne University of Applied Sciences E. Benoist / E. Dubuis January 2005 1 Multithreading in Java Java provides the programmer with built-in threading capabilities The programmer can create and manipulate

More information

Contents. G53SRP: Java Threads. Definition. Why we need it. A Simple Embedded System. Why we need it. Java Threads 24/09/2009 G53SRP 1 ADC

Contents. G53SRP: Java Threads. Definition. Why we need it. A Simple Embedded System. Why we need it. Java Threads 24/09/2009 G53SRP 1 ADC Contents G53SRP: Java Threads Chris Greenhalgh School of Computer Science 1 Definition Motivations Threads Java threads Example embedded process Java Thread API & issues Exercises Book: Wellings 1.1 &

More information

Object Oriented Programming. Week 10 Part 1 Threads

Object Oriented Programming. Week 10 Part 1 Threads Object Oriented Programming Week 10 Part 1 Threads Lecture Concurrency, Multitasking, Process and Threads Thread Priority and State Java Multithreading Extending the Thread Class Defining a Class that

More information

Basics of. Multithreading in Java

Basics of. Multithreading in Java Basics of programming 3 Multithreading in Java Thread basics Motivation in most cases sequential (single threaded) applications are not adequate it s easier to decompose tasks into separate instruction

More information

CMSC 433 Programming Language Technologies and Paradigms. Concurrency

CMSC 433 Programming Language Technologies and Paradigms. Concurrency CMSC 433 Programming Language Technologies and Paradigms Concurrency What is Concurrency? Simple definition Sequential programs have one thread of control Concurrent programs have many Concurrency vs.

More information

Quiz on Tuesday April 13. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4. Java facts and questions. Things to try in Java

Quiz on Tuesday April 13. CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4. Java facts and questions. Things to try in Java CS 361 Concurrent programming Drexel University Fall 2004 Lecture 4 Bruce Char and Vera Zaychik. All rights reserved by the author. Permission is given to students enrolled in CS361 Fall 2004 to reproduce

More information

Concurrency in Java Prof. Stephen A. Edwards

Concurrency in Java Prof. Stephen A. Edwards Concurrency in Java Prof. Stephen A. Edwards The Java Language Developed by James Gosling et al. at Sun Microsystems in the early 1990s Originally called Oak, first intended application was as an OS for

More information

Threads Chate Patanothai

Threads Chate Patanothai Threads Chate Patanothai Objectives Knowing thread: 3W1H Create separate threads Control the execution of a thread Communicate between threads Protect shared data C. Patanothai Threads 2 What are threads?

More information

B2.52-R3: INTRODUCTION TO OBJECT ORIENTATED PROGRAMMING THROUGH JAVA

B2.52-R3: INTRODUCTION TO OBJECT ORIENTATED PROGRAMMING THROUGH JAVA B2.52-R3: INTRODUCTION TO OBJECT ORIENTATED PROGRAMMING THROUGH JAVA NOTE: 1. There are TWO PARTS in this Module/Paper. PART ONE contains FOUR questions and PART TWO contains FIVE questions. 2. PART ONE

More information

Unit III Rupali Sherekar 2017

Unit III Rupali Sherekar 2017 Unit III Exceptions An exception is an abnormal condition that arises in a code sequence at run time. In other words, an exception is a run-time error. In computer languages that do not support exception

More information

Multithread Computing

Multithread Computing Multithread Computing About This Lecture Purpose To learn multithread programming in Java What You Will Learn ¾ Benefits of multithreading ¾ Class Thread and interface Runnable ¾ Thread methods and thread

More information

Principles of Software Construction: Concurrency, Part 2

Principles of Software Construction: Concurrency, Part 2 Principles of Software Construction: Concurrency, Part 2 Josh Bloch Charlie Garrod School of Computer Science 1 Administrivia Homework 5a due now Homework 5 framework goals: Functionally correct Well documented

More information

Robotics and Autonomous Systems

Robotics and Autonomous Systems 1 / 38 Robotics and Autonomous Systems Lecture 10: Threads and Multitasking Robots Simon Parsons Department of Computer Science University of Liverpool 2 / 38 Today Some more programming techniques that

More information

Programming in Parallel COMP755

Programming in Parallel COMP755 Programming in Parallel COMP755 All games have morals; and the game of Snakes and Ladders captures, as no other activity can hope to do, the eternal truth that for every ladder you hope to climb, a snake

More information

04-Java Multithreading

04-Java Multithreading 04-Java Multithreading Join Google+ community http://goo.gl/u7qvs You can ask all your doubts, questions and queries by posting on this G+ community during/after webinar http://openandroidlearning.org

More information

Threads & Timers. CSE260, Computer Science B: Honors Stony Brook University

Threads & Timers. CSE260, Computer Science B: Honors Stony Brook University Threads & Timers CSE260, Computer Science B: Honors Stony Brook University http://www.cs.stonybrook.edu/~cse260 Multi-tasking When you re working, how many different applications do you have open at one

More information

7. MULTITHREDED PROGRAMMING

7. MULTITHREDED PROGRAMMING 7. MULTITHREDED PROGRAMMING What is thread? A thread is a single sequential flow of control within a program. Thread is a path of the execution in a program. Muti-Threading: Executing more than one thread

More information

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems

CMSC 330: Organization of Programming Languages. Threads Classic Concurrency Problems : Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks on either

More information

Informatica 3. Marcello Restelli. Laurea in Ingegneria Informatica Politecnico di Milano 9/15/07 10/29/07

Informatica 3. Marcello Restelli. Laurea in Ingegneria Informatica Politecnico di Milano 9/15/07 10/29/07 Informatica 3 Marcello Restelli 9/15/07 10/29/07 Laurea in Ingegneria Informatica Politecnico di Milano Structuring the Computation Control flow can be obtained through control structure at instruction

More information

Chapter 19 Multithreading

Chapter 19 Multithreading Chapter 19 Multithreading Prerequisites for Part VI Chapter 14 Applets, Images, and Audio Chapter 19 Multithreading Chapter 20 Internationalization 1 Objectives To understand the concept of multithreading

More information

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Threads block when they can t get that lock Wanna have your threads stall? Go ahead, synchronize it all The antidote to this liveness pitfall? Keeping

More information

COMP31212: Concurrency A Review of Java Concurrency. Giles Reger

COMP31212: Concurrency A Review of Java Concurrency. Giles Reger COMP31212: Concurrency A Review of Java Concurrency Giles Reger Outline What are Java Threads? In Java, concurrency is achieved by Threads A Java Thread object is just an object on the heap, like any other

More information

Unit - IV Multi-Threading

Unit - IV Multi-Threading Unit - IV Multi-Threading 1 Uni Processing In the early days of computer only one program will occupy the memory. The second program must be in waiting. The second program will be entered whenever first

More information

Multithreading using Java. Dr. Ferdin Joe John Joseph

Multithreading using Java. Dr. Ferdin Joe John Joseph Multithreading using Java Dr. Ferdin Joe John Joseph 1 Agenda Introduction Thread Applications Defining Threads Java Threads and States Priorities Accessing Shared Resources Synchronisation Assignment

More information

Handouts. 1 Handout for today! Recap. Homework #2 feedback. Last Time. What did you think? HW3a: ThreadBank. Today. Small assignment.

Handouts. 1 Handout for today! Recap. Homework #2 feedback. Last Time. What did you think? HW3a: ThreadBank. Today. Small assignment. Handouts CS193J: Programming in Java Summer Quarter 2003 Lecture 10 Thread Interruption, Cooperation (wait/notify), Swing Thread, Threading conclusions 1 Handout for today! #21: Threading 3 #22: HW3a:

More information

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages

The Dining Philosophers Problem CMSC 330: Organization of Programming Languages The Dining Philosophers Problem CMSC 0: Organization of Programming Languages Threads Classic Concurrency Problems Philosophers either eat or think They must have two forks to eat Can only use forks on

More information

Synchronization synchronization.

Synchronization synchronization. Unit 4 Synchronization of threads using Synchronized keyword and lock method- Thread pool and Executors framework, Futures and callable, Fork-Join in Java. Deadlock conditions 1 Synchronization When two

More information

CS 159: Parallel Processing

CS 159: Parallel Processing Outline: Concurrency using Java CS 159: Parallel Processing Spring 2007 Processes vs Threads Thread basics Synchronization Locks Examples Avoiding problems Immutable objects Atomic operations High"level

More information

IT 540 Operating Systems ECE519 Advanced Operating Systems

IT 540 Operating Systems ECE519 Advanced Operating Systems IT 540 Operating Systems ECE519 Advanced Operating Systems Prof. Dr. Hasan Hüseyin BALIK (5 th Week) (Advanced) Operating Systems 5. Concurrency: Mutual Exclusion and Synchronization 5. Outline Principles

More information

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem

CMSC 330: Organization of Programming Languages. The Dining Philosophers Problem CMSC 330: Organization of Programming Languages Threads Classic Concurrency Problems The Dining Philosophers Problem Philosophers either eat or think They must have two forks to eat Can only use forks

More information

Concurrent Programming Lecture 10

Concurrent Programming Lecture 10 Concurrent Programming Lecture 10 25th September 2003 Monitors & P/V Notion of a process being not runnable : implicit in much of what we have said about P/V and monitors is the notion that a process may

More information

CMSC 433 Programming Language Technologies and Paradigms. Composing Objects

CMSC 433 Programming Language Technologies and Paradigms. Composing Objects CMSC 433 Programming Language Technologies and Paradigms Composing Objects Composing Objects To build systems we often need to Create thread safe objects Compose them in ways that meet requirements while

More information

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci

Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci v1.0 20130323 Programmazione Avanzata e Paradigmi Ingegneria e Scienze Informatiche - UNIBO a.a 2013/2014 Lecturer: Alessandro Ricci [module lab 2.1] CONCURRENT PROGRAMMING IN JAVA: INTRODUCTION 1 CONCURRENT

More information

COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE

COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE COURSE 11 PROGRAMMING III OOP. JAVA LANGUAGE PREVIOUS COURSE CONTENT Input/Output Streams Text Files Byte Files RandomAcessFile Exceptions Serialization NIO COURSE CONTENT Threads Threads lifecycle Thread

More information

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems

Synchronization. CS 475, Spring 2018 Concurrent & Distributed Systems Synchronization CS 475, Spring 2018 Concurrent & Distributed Systems Review: Threads: Memory View code heap data files code heap data files stack stack stack stack m1 m1 a1 b1 m2 m2 a2 b2 m3 m3 a3 m4 m4

More information

CS180 Review. Recitation Week 15

CS180 Review. Recitation Week 15 CS180 Review Recitation Week 15 Announcement Final exam will be held on Thursday(12/17) 8:00~10:00 AM The coverage is comprehensive Project 5 is graded. Check your score in Blackboard. Classes and Methods

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 12 More Client-Server Programming Winter 2016 Reading: References at end of Lecture 1 Introduction So far, Looked at client-server programs with Java Sockets TCP and

More information

Multi-threaded programming in Java

Multi-threaded programming in Java Multi-threaded programming in Java Java allows program to specify multiple threads of execution Provides instructions to ensure mutual exclusion, and selective blocking/unblocking of threads What is a

More information

Le L c e t c ur u e e 7 To T p o i p c i s c t o o b e b e co c v o e v r e ed e Multithreading

Le L c e t c ur u e e 7 To T p o i p c i s c t o o b e b e co c v o e v r e ed e Multithreading Course Name: Advanced Java Lecture 7 Topics to be covered Multithreading Thread--An Introduction Thread A thread is defined as the path of execution of a program. It is a sequence of instructions that

More information

CS455: Introduction to Distributed Systems [Spring 2019] Dept. Of Computer Science, Colorado State University

CS455: Introduction to Distributed Systems [Spring 2019] Dept. Of Computer Science, Colorado State University CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] The House of Heap and Stacks Stacks clean up after themselves But over deep recursions they fret The cheerful heap has nary a care Harboring memory

More information

Module - 4 Multi-Threaded Programming

Module - 4 Multi-Threaded Programming Terminologies Module - 4 Multi-Threaded Programming Process: A program under execution is called as process. Thread: A smallest component of a process that can be executed independently. OR A thread is

More information

Component-Based Software Engineering

Component-Based Software Engineering Component-Based Software Engineering More stuff on Threads Paul Krause Lecture 7 - Contents Basics of threads and synchronization Waiting - releasing locks Collection Plate example Choices when pausing

More information

Java Programming Lecture 23

Java Programming Lecture 23 Java Programming Lecture 23 Alice E. Fischer April 19, 2012 Alice E. Fischer () Java Programming - L23... 1/20 April 19, 2012 1 / 20 Outline 1 Thread Concepts Definition and Purpose 2 Java Threads Creation

More information

Advanced Programming Concurrency

Advanced Programming Concurrency Advanced Programming Concurrency Concurrent Programming Until now, a program was a sequence of operations, executing one after another. In a concurrent program, several sequences of operations may execute

More information

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING

UNIT IV MULTITHREADING AND GENERIC PROGRAMMING UNIT IV MULTITHREADING AND GENERIC PROGRAMMING Differences between multithreading and multitasking, thread life cycle, creating threads, creating threads, synchronizing threads, Inter-thread communication,

More information

Multithreaded Programming

Multithreaded Programming core programming Multithreaded Programming 1 2001-2003 Marty Hall, Larry Brown http:// 2 Multithreaded Programming Agenda Why threads? Approaches for starting threads Separate class approach Callback approach

More information

Multi-threading in Java. Jeff HUANG

Multi-threading in Java. Jeff HUANG Multi-threading in Java Jeff HUANG Software Engineering Group @HKUST Do you use them? 2 Do u know their internals? 3 Let s see File DB How can they service so many clients simultaneously? l 4 Multi-threading

More information

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey

CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Frequently asked questions from the previous class survey CS 455: INTRODUCTION TO DISTRIBUTED SYSTEMS [THREADS] Shrideep Pallickara Computer Science Colorado State University L6.1 Frequently asked questions from the previous class survey L6.2 SLIDES CREATED BY:

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

CS 556 Distributed Systems

CS 556 Distributed Systems CS 556 Distributed Systems Tutorial on 4 Oct 2002 Threads A thread is a lightweight process a single sequential flow of execution within a program Threads make possible the implementation of programs that

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Real-Time and Concurrent Programming Lecture 4 (F4): Monitors: synchronized, wait and notify

Real-Time and Concurrent Programming Lecture 4 (F4): Monitors: synchronized, wait and notify http://cs.lth.se/eda040 Real-Time and Concurrent Programming Lecture 4 (F4): Monitors: synchronized, wait and notify Klas Nilsson 2016-09-20 http://cs.lth.se/eda040 F4: Monitors: synchronized, wait and

More information

CSCD 330 Network Programming

CSCD 330 Network Programming CSCD 330 Network Programming Lecture 12 More Client-Server Programming Winter 2019 Reading: References at end of Lecture 1 Introduction So far, Looked at client-server programs with Java Sockets TCP and

More information

CST242 Concurrency Page 1

CST242 Concurrency Page 1 CST242 Concurrency Page 1 1 2 3 4 5 6 7 9 Concurrency CST242 Concurrent Processing (Page 1) Only computers with multiple processors can truly execute multiple instructions concurrently On single-processor

More information

CS61B, Spring 2003 Discussion #17 Amir Kamil UC Berkeley 5/12/03

CS61B, Spring 2003 Discussion #17 Amir Kamil UC Berkeley 5/12/03 CS61B, Spring 2003 Discussion #17 Amir Kamil UC Berkeley 5/12/03 Topics: Threading, Synchronization 1 Threading Suppose we want to create an automated program that hacks into a server. Many encryption

More information

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS

AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS AP COMPUTER SCIENCE JAVA CONCEPTS IV: RESERVED WORDS PAUL L. BAILEY Abstract. This documents amalgamates various descriptions found on the internet, mostly from Oracle or Wikipedia. Very little of this

More information

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition Module 6: Process Synchronization 6.1 Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Java Monitors. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

Java Monitors. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. Java Monitors Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico October 19, 2010 Monteiro, Costa (DEI / IST) Parallel and Distributed Computing

More information

Exercise Session Week 8

Exercise Session Week 8 Chair of Software Engineering Java and C# in Depth Carlo A. Furia, Marco Piccioni, Bertrand Meyer Exercise Session Week 8 Quiz 1: What is printed? (Java) class MyTask implements Runnable { public void

More information

Unit 4. Thread class & Runnable Interface. Inter Thread Communication

Unit 4. Thread class & Runnable Interface. Inter Thread Communication Unit 4 Thread class & Runnable Interface. Inter Thread Communication 1 Multithreaded Programming Java provides built-in support for multithreaded programming. A multithreaded program contains two or more

More information

Handling Multithreading Approach Using Java Nikita Goel, Vijaya Laxmi, Ankur Saxena Amity University Sector-125, Noida UP India

Handling Multithreading Approach Using Java Nikita Goel, Vijaya Laxmi, Ankur Saxena Amity University Sector-125, Noida UP India RESEARCH ARTICLE Handling Multithreading Approach Using Java Nikita Goel, Vijaya Laxmi, Ankur Saxena Amity University Sector-125, Noida UP-201303 - India OPEN ACCESS ABSTRACT This paper contains information

More information

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012

Outline. Threads. Single and Multithreaded Processes. Benefits of Threads. Eike Ritter 1. Modified: October 16, 2012 Eike Ritter 1 Modified: October 16, 2012 Lecture 8: Operating Systems with C/C++ School of Computer Science, University of Birmingham, UK 1 Based on material by Matt Smart and Nick Blundell Outline 1 Concurrent

More information

COMPSCI 230 Threading Week8. Figure 1 Thread status diagram [http://www.programcreek.com/2009/03/thread-status/]

COMPSCI 230 Threading Week8. Figure 1 Thread status diagram [http://www.programcreek.com/2009/03/thread-status/] COMPSCI 230 Threading Week8 Figure 1 Thread status diagram [http://www.programcreek.com/2009/03/thread-status/] Synchronization Lock DeadLock Why do we need Synchronization in Java? If your code is executing

More information

Computation Abstractions. CMSC 330: Organization of Programming Languages. So, What Is a Thread? Processes vs. Threads. A computer.

Computation Abstractions. CMSC 330: Organization of Programming Languages. So, What Is a Thread? Processes vs. Threads. A computer. CMSC 330: Organization of Programming Languages Threads Computation Abstractions t1 t2 t1 t3 t2 t1 p1 p2 p3 p4 CPU 1 CPU 2 A computer t4 t5 Processes (e.g., JVM s) Threads CMSC 330 2 Processes vs. Threads

More information

COMP30112: Concurrency Topics 4.1: Concurrency Patterns - Monitors

COMP30112: Concurrency Topics 4.1: Concurrency Patterns - Monitors COMP30112: Concurrency Topics 4.1: Concurrency Patterns - Monitors Howard Barringer Room KB2.20: email: Howard.Barringer@manchester.ac.uk February 2009 Outline Monitors FSP Models-to-Java Monitors Producers/Consumers

More information