Jupiter: A Modular and Extensible JVM

Size: px
Start display at page:

Download "Jupiter: A Modular and Extensible JVM"

Transcription

1 Jupiter: A Modular and Extensible JVM Patrick Doyle and Tarek Abdelrahman Edward S. Rogers, Sr. Department of Electrical and Computer Engineering University of Toronto {doylep tsa}@eecg.toronto.edu

2 Outline Motivation. Jupiter design. Configuration example (object allocator). Flexibility. Performance. Status of the implementation. Conclusions and future work. Doyle & Abdelrahman 2

3 Research into Scalable JVMs Research goal: to investigate JVM architectures to deliver high performance on large-scale parallel systems. 128-processor cluster of workstations with software-based SVM. Single system image (SSI). Research on Java-based SSI on clusters to date is limited to small numbers of processors. cjvm Jessica Hyperion etc. It remains unclear how to design a JVM to scale well to large numbers of processors. Doyle & Abdelrahman 3

4 Approaches to Scalability Four main target areas: Memory locality. Garbage collection. Memory consistency. Support for threading and synchronization. We will investigate alternative approaches in each area. Doyle & Abdelrahman 4

5 JVM Infrastructures In order to carry out this research, we need a JVM infrastructure that is: Modular. Flexible/Extensible. Efficient. Currently available JVMs: Hard to modify (Kaffe or Sun JVM). Designed to address a specific aspect of JVM performance. Hence, we elected to build our own infrastructure. Hard. Rewarding. Doyle & Abdelrahman 5

6 Jupiter Philosophy Jupiter is assembled out of small modules. Much like UNIX pipelines. Interconnection of modules determines JVM behavior. Module requirements: Atomicity: modifications should not split modules. Cohesion: modifications should involve few modules. Independence: unrelated modifications should be orthogonal. Must find a balance. Two kinds of modules Facilities: manage resources. Resources: used by a running Java program (e.g. Classes, Objects, Threads, etc.). Doyle & Abdelrahman 6

7 Jupiter Overview Memory Allocator ClassSource MemorySource Class Class Memory Memory Object Object ExecutionEngine Lock Lock Thread Thread Native Native ThreadSource NativeSource Thread Library Native Libraries Doyle & Abdelrahman 7

8 An Incarnation of Jupiter ExecutionEngine ThreadSource ClassSource NativeSource Native Libraries Thread Library MemorySource Class Loader Memory Allocator Module instance Uses relation Doyle & Abdelrahman 8

9 Object Allocator Example ExecutionEngine MemorySource Extend to achieve locality: void *nodealloc(int nodenumber, int size); Multiple levels: Memory allocation level. Object allocation level. Execution engine level. alloc() Doyle & Abdelrahman 9

10 Node-specific MemorySources ExecutionEngine MuxMemorySource MemorySource_1 MemorySource_N nodealloc(1, ) nodealloc(n, ) MemorySource for each node. Same MemorySource interface. Minimal change to the implementation of MemorySource. Locality decisions made transparently in MuxMemorySource. Doyle & Abdelrahman 10

11 Node-Specific s ExecutionEngine Mux MemorySource_1 MemorySource_N nodealloc(1, ) nodealloc(n, ) for each node. Enhances locality without altering interface. Node choices still transparent to ExecutionEngine. Same,, MemorySource_i as before. Doyle & Abdelrahman 11

12 A Locality-Aware ExecutionEngine ExecutionEngine MemorySource_1 MemorySource_N nodealloc(1, ) nodealloc(n, ) Locality-aware ExecutionEngine. ExecutionEngine directly manages locality. Same,, MemorySource_i as before. Modifications confined to ExecutionEngine. Doyle & Abdelrahman 12

13 Combined Appraoch ExecutionEngine Mux MuxMemorySource MuxMemorySource MemorySource_1 MemorySource_N MemorySource_1 MemorySource_N nodealloc(1, ) nodealloc(n, ) nodealloc(1, ) nodealloc(n, ) Modifications confined to a small number of modules. Multiple configurations through module interconnections. Doyle & Abdelrahman 13

14 Performance ExecutionEngine ExecutionEngine MemorySource_1 MuxMemorySource MemorySource_N nodealloc(i, ) nodealloc(1, ) nodealloc(n, ) Two problems: Call overhead: must make calls through the module hierarchy. Object proliferation: MemorySource_i for each node i. Doyle & Abdelrahman 14

15 Performance Standard MemorySource declarations: typedef struct ms_struct *MemorySource; void *ms_getmemory(memorysource this, int size); MemorySource constructors: MemorySource ms_new(int nodenumber); MemorySource ms_newmux(); MemorySource usage: void *ptr = ms_getmemory(obs_memorysource(), size); Doyle & Abdelrahman 15

16 Performance Custom declarations for nodealloc: typedef int MemorySource; inline MemorySource ms_new(int nodenumber){ return nodenumber; } inline MemorySource ms_newmux(){ return 1; } inline void *ms_getmemory(memorysource this, int size){ if(this == ms_newmux()) return nodealloc(/* Some node */, size); else return nodealloc(this, size); } Doyle & Abdelrahman 16

17 Performance void *ptr = ms_getmemory(obs_memorysource(), size); void *ptr = ms_getmemory(ms_newmux(), size); void *ptr = ms_getmemory(-1, size); void *ptr = nodealloc(/* Some node */, size); Doyle & Abdelrahman 17

18 JIT Compiler ExecutionEngine IR Native JIT OpcodeSpec Interpreter mode JIT mode Frame Interpreting Base Classes Frame Object Object Code-generating Base Classes Use OpcodeSpec module that is always executed by the ExecutionEngine. OpcodeSpec functions: Interpret bytecode, or Emit IR, which is passed to the JIT compiler. Doyle & Abdelrahman 18

19 Status Project started in March Core JVM implemented in C: All single-threaded facilities and resources. Interpreter-based execution engine. Native interface: java-to-native calls, but no callbacks. Can execute simple programs. Performance poor compared to Kaffe and Sun, mostly due to implementation problems. Doyle & Abdelrahman 19

20 Conclusions and Future Work We presented a JVM structure designed to be modular, flexible and efficient. Instances of well-defined modules. Interconnection of modules. Performance. The project is in its early stages, and future work will focus on completing the implementation. Research goals. Doyle & Abdelrahman 20

A Modular and Extensible JVM Infrastructure

A Modular and Extensible JVM Infrastructure A Modular and Extensible JVM Infrastructure Patrick Doyle and Tarek S. Abdelrahman Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Toronto, Ontario, Canada

More information

JavaSplit. A Portable Distributed Runtime for Java. Michael Factor Assaf Schuster Konstantin Shagin

JavaSplit. A Portable Distributed Runtime for Java. Michael Factor Assaf Schuster Konstantin Shagin JavaSplit A Portable Distributed Runtime for Java Michael Factor Assaf Schuster Konstantin Shagin Motivation Interconnected commodity workstations can yield a cost-effective substitute to super-computers.

More information

Jupiter/SVM: A JVM-based Single System Image for Clusters of Workstations

Jupiter/SVM: A JVM-based Single System Image for Clusters of Workstations Jupiter/SVM: A JVM-based Single System Image for Clusters of Workstations Carlos D. Cavanna, Tarek S. Abdelrahman, Angelos Bilas, and Peter Jamieson Edward S. Rogers Sr. Department of Electrical and Computer

More information

The Use of Traces in Optimization

The Use of Traces in Optimization The Use of Traces in Optimization by Borys Jan Bradel A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Edward S. Rogers Sr. Department of Electrical and

More information

Interaction of JVM with x86, Sparc and MIPS

Interaction of JVM with x86, Sparc and MIPS Interaction of JVM with x86, Sparc and MIPS Sasikanth Avancha, Dipanjan Chakraborty, Dhiral Gada, Tapan Kamdar {savanc1, dchakr1, dgada1, kamdar}@cs.umbc.edu Department of Computer Science and Electrical

More information

Just-In-Time Compilation

Just-In-Time Compilation Just-In-Time Compilation Thiemo Bucciarelli Institute for Software Engineering and Programming Languages 18. Januar 2016 T. Bucciarelli 18. Januar 2016 1/25 Agenda Definitions Just-In-Time Compilation

More information

Portable Resource Control in Java The J-SEAL2 Approach

Portable Resource Control in Java The J-SEAL2 Approach Portable Resource Control in Java The J-SEAL2 Approach Walter Binder w.binder@coco.co.at CoCo Software Engineering GmbH Austria Jarle Hulaas Jarle.Hulaas@cui.unige.ch Alex Villazón Alex.Villazon@cui.unige.ch

More information

2 Introduction to Java. Introduction to Programming 1 1

2 Introduction to Java. Introduction to Programming 1 1 2 Introduction to Java Introduction to Programming 1 1 Objectives At the end of the lesson, the student should be able to: Describe the features of Java technology such as the Java virtual machine, garbage

More information

Complex, concurrent software. Precision (no false positives) Find real bugs in real executions

Complex, concurrent software. Precision (no false positives) Find real bugs in real executions Harry Xu May 2012 Complex, concurrent software Precision (no false positives) Find real bugs in real executions Need to modify JVM (e.g., object layout, GC, or ISA-level code) Need to demonstrate realism

More information

CS/B.TECH/CSE(OLD)/SEM-6/CS-605/2012 OBJECT ORIENTED PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70

CS/B.TECH/CSE(OLD)/SEM-6/CS-605/2012 OBJECT ORIENTED PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70 CS/B.TECH/CSE(OLD)/SEM-6/CS-605/2012 2012 OBJECT ORIENTED PROGRAMMING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Jaguar: Enabling Efficient Communication and I/O in Java

Jaguar: Enabling Efficient Communication and I/O in Java Jaguar: Enabling Efficient Communication and I/O in Java Matt Welsh and David Culler UC Berkeley Presented by David Hovemeyer Outline ' Motivation ' How it works ' Code mappings ' External objects ' Pre

More information

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc.

JOVE. An Optimizing Compiler for Java. Allen Wirfs-Brock Instantiations Inc. An Optimizing Compiler for Java Allen Wirfs-Brock Instantiations Inc. Object-Orient Languages Provide a Breakthrough in Programmer Productivity Reusable software components Higher level abstractions Yield

More information

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1

Agenda. CSE P 501 Compilers. Java Implementation Overview. JVM Architecture. JVM Runtime Data Areas (1) JVM Data Types. CSE P 501 Su04 T-1 Agenda CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Summer 2004 Java virtual machine architecture.class files Class loading Execution engines Interpreters & JITs various strategies

More information

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen

Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services. Presented by: Jitong Chen Designing Next-Generation Data- Centers with Advanced Communication Protocols and Systems Services Presented by: Jitong Chen Outline Architecture of Web-based Data Center Three-Stage framework to benefit

More information

Java On Steroids: Sun s High-Performance Java Implementation. History

Java On Steroids: Sun s High-Performance Java Implementation. History Java On Steroids: Sun s High-Performance Java Implementation Urs Hölzle Lars Bak Steffen Grarup Robert Griesemer Srdjan Mitrovic Sun Microsystems History First Java implementations: interpreters compact

More information

Running class Timing on Java HotSpot VM, 1

Running class Timing on Java HotSpot VM, 1 Compiler construction 2009 Lecture 3. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int s = r + 5; return

More information

Chapter 1 INTRODUCTION SYS-ED/ COMPUTER EDUCATION TECHNIQUES, INC.

Chapter 1 INTRODUCTION SYS-ED/ COMPUTER EDUCATION TECHNIQUES, INC. hapter 1 INTRODUTION SYS-ED/ OMPUTER EDUATION TEHNIQUES, IN. Objectives You will learn: Java features. Java and its associated components. Features of a Java application and applet. Java data types. Java

More information

JiST: Java in Simulation Time

JiST: Java in Simulation Time JiST: Java in Simulation Time Transparent Parallel and Optimistic Execution of Discrete Event Simulations (PDES) of Mobile Ad hoc Networks (MANETs) Rimon Barr barr@cs.cornell.edu Wireless Network Lab Cornell

More information

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1

CSE P 501 Compilers. Java Implementation JVMs, JITs &c Hal Perkins Winter /11/ Hal Perkins & UW CSE V-1 CSE P 501 Compilers Java Implementation JVMs, JITs &c Hal Perkins Winter 2008 3/11/2008 2002-08 Hal Perkins & UW CSE V-1 Agenda Java virtual machine architecture.class files Class loading Execution engines

More information

Special Topics: Programming Languages

Special Topics: Programming Languages Lecture #23 0 V22.0490.001 Special Topics: Programming Languages B. Mishra New York University. Lecture # 23 Lecture #23 1 Slide 1 Java: History Spring 1990 April 1991: Naughton, Gosling and Sheridan (

More information

Expressing high level optimizations within LLVM. Artur Pilipenko

Expressing high level optimizations within LLVM. Artur Pilipenko Expressing high level optimizations within LLVM Artur Pilipenko artur.pilipenko@azul.com This presentation describes advanced development work at Azul Systems and is for informational purposes only. Any

More information

Lecture 1: Overview of Java

Lecture 1: Overview of Java Lecture 1: Overview of Java What is java? Developed by Sun Microsystems (James Gosling) A general-purpose object-oriented language Based on C/C++ Designed for easy Web/Internet applications Widespread

More information

Don t Get Caught In the Cold, Warm-up Your JVM Understand and Eliminate JVM Warm-up Overhead in Data-parallel Systems

Don t Get Caught In the Cold, Warm-up Your JVM Understand and Eliminate JVM Warm-up Overhead in Data-parallel Systems Don t Get Caught In the Cold, Warm-up Your JVM Understand and Eliminate JVM Warm-up Overhead in Data-parallel Systems David Lion, Adrian Chiu, Hailong Sun*, Xin Zhuang, Nikola Grcevski, Ding Yuan University

More information

Chapter 1 GETTING STARTED. SYS-ED/ Computer Education Techniques, Inc.

Chapter 1 GETTING STARTED. SYS-ED/ Computer Education Techniques, Inc. Chapter 1 GETTING STARTED SYS-ED/ Computer Education Techniques, Inc. Objectives You will learn: Java platform. Applets and applications. Java programming language: facilities and foundation. Memory management

More information

Soot A Java Bytecode Optimization Framework. Sable Research Group School of Computer Science McGill University

Soot A Java Bytecode Optimization Framework. Sable Research Group School of Computer Science McGill University Soot A Java Bytecode Optimization Framework Sable Research Group School of Computer Science McGill University Goal Provide a Java framework for optimizing and annotating bytecode provide a set of API s

More information

Compiler construction 2009

Compiler construction 2009 Compiler construction 2009 Lecture 3 JVM and optimization. A first look at optimization: Peephole optimization. A simple example A Java class public class A { public static int f (int x) { int r = 3; int

More information

Field Analysis. Last time Exploit encapsulation to improve memory system performance

Field Analysis. Last time Exploit encapsulation to improve memory system performance Field Analysis Last time Exploit encapsulation to improve memory system performance This time Exploit encapsulation to simplify analysis Two uses of field analysis Escape analysis Object inlining April

More information

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler

A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler A Trace-based Java JIT Compiler Retrofitted from a Method-based Compiler Hiroshi Inoue, Hiroshige Hayashizaki, Peng Wu and Toshio Nakatani IBM Research Tokyo IBM Research T.J. Watson Research Center April

More information

Computing Science 114 Solutions to Midterm Examination Tuesday October 19, In Questions 1 20, Circle EXACTLY ONE choice as the best answer

Computing Science 114 Solutions to Midterm Examination Tuesday October 19, In Questions 1 20, Circle EXACTLY ONE choice as the best answer Computing Science 114 Solutions to Midterm Examination Tuesday October 19, 2004 INSTRUCTOR: I E LEONARD TIME: 50 MINUTES In Questions 1 20, Circle EXACTLY ONE choice as the best answer 1 [2 pts] What company

More information

Portable Resource Control in Java: Application to Mobile Agent Security

Portable Resource Control in Java: Application to Mobile Agent Security Portable Resource Control in Java: Application to Mobile Agent Security Walter Binder CoCo Software Engineering GmbH Austria Jarle Hulaas, Alex Villazón, Rory Vidal University of Geneva Switzerland Requirements

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls POSIX System Programs System Structure Virtual Machines System Design and Implementation System Generation

More information

Supplementary Test 1

Supplementary Test 1 Name: Please fill in your Student Number and Name. Student Number : Student Number: University of Cape Town ~ Department of Computer Science Computer Science 1015F ~ 2009 Supplementary Test 1 Question

More information

Just In Time Compilation

Just In Time Compilation Just In Time Compilation JIT Compilation: What is it? Compilation done during execution of a program (at run time) rather than prior to execution Seen in today s JVMs and elsewhere Outline Traditional

More information

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1

SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine p. 1 SABLEJIT: A Retargetable Just-In-Time Compiler for a Portable Virtual Machine David Bélanger dbelan2@cs.mcgill.ca Sable Research Group McGill University Montreal, QC January 28, 2004 SABLEJIT: A Retargetable

More information

OS and Computer Architecture. Chapter 3: Operating-System Structures. Common System Components. Process Management

OS and Computer Architecture. Chapter 3: Operating-System Structures. Common System Components. Process Management Last class: OS and Architecture OS and Computer Architecture OS Service Protection Interrupts System Calls IO Scheduling Synchronization Virtual Memory Hardware Support Kernel/User Mode Protected Instructions

More information

Chapter 16. Layering a computing infrastructure

Chapter 16. Layering a computing infrastructure : Chapter 16 by David G. Messerschmitt Layering a computing infrastructure Applications Application components Middleware Operating system Network 2 1 Spanning layer Application Distributed object management

More information

Overview of C++: Part 1

Overview of C++: Part 1 C++: Part 1 d.schmidt@vanderbilt.edu www.dre.vanderbilt.edu/~schmidt Professor of Computer Science Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA C++ Overview

More information

Core JAVA Training Syllabus FEE: RS. 8000/-

Core JAVA Training Syllabus FEE: RS. 8000/- About JAVA Java is a high-level programming language, developed by James Gosling at Sun Microsystems as a core component of the Java platform. Java follows the "write once, run anywhere" concept, as it

More information

JamaicaVM Java for Embedded Realtime Systems

JamaicaVM Java for Embedded Realtime Systems JamaicaVM Java for Embedded Realtime Systems... bringing modern software development methods to safety critical applications Fridtjof Siebert, 25. Oktober 2001 1 Deeply embedded applications Examples:

More information

cjvm: a Single System Image of a JVM on a Cluster

cjvm: a Single System Image of a JVM on a Cluster cjvm: a Single System Image of a JVM on a Cluster Yariv Aridor Michael Factor Avi Teperman IBM Research Laboratory in Haifa Matam, Advanced Technology Center, Haifa 31905, ISRAEL yarivjfactorjteperman@il.ibm.com

More information

엄현상 (Eom, Hyeonsang) School of Computer Science and Engineering Seoul National University COPYRIGHTS 2017 EOM, HYEONSANG ALL RIGHTS RESERVED

엄현상 (Eom, Hyeonsang) School of Computer Science and Engineering Seoul National University COPYRIGHTS 2017 EOM, HYEONSANG ALL RIGHTS RESERVED 엄현상 (Eom, Hyeonsang) School of Computer Science and Engineering Seoul National University COPYRIGHTS 2017 EOM, HYEONSANG ALL RIGHTS RESERVED Outline - Questionnaire Results - Java Overview - Java Examples

More information

Operating System: Chap2 OS Structure. National Tsing-Hua University 2016, Fall Semester

Operating System: Chap2 OS Structure. National Tsing-Hua University 2016, Fall Semester Operating System: Chap2 OS Structure National Tsing-Hua University 2016, Fall Semester Outline OS Services OS-Application Interface OS Structure Chapter2 OS-Structure Operating System Concepts NTHU LSA

More information

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Department of Computer Science Why C? Low-level Direct access to memory WYSIWYG (more or less) Effectively

More information

Implementing Higher-Level Languages. Quick tour of programming language implementation techniques. From the Java level to the C level.

Implementing Higher-Level Languages. Quick tour of programming language implementation techniques. From the Java level to the C level. Implementing Higher-Level Languages Quick tour of programming language implementation techniques. From the Java level to the C level. Ahead-of-time compiler compile time C source code C compiler x86 assembly

More information

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties Overview Course Overview Course theme Five realities Computer Systems 1 2 Course Theme: Abstraction Is Good But Don t Forget Reality Most CS courses emphasize abstraction Abstract data types Asymptotic

More information

Final CSE 131B Spring 2004

Final CSE 131B Spring 2004 Login name Signature Name Student ID Final CSE 131B Spring 2004 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 (25 points) (24 points) (32 points) (24 points) (28 points) (26 points) (22 points)

More information

LECTURE 2. Compilers and Interpreters

LECTURE 2. Compilers and Interpreters LECTURE 2 Compilers and Interpreters COMPILATION AND INTERPRETATION Programs written in high-level languages can be run in two ways. Compiled into an executable program written in machine language for

More information

Chapter 3: Operating-System Structures

Chapter 3: Operating-System Structures Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation System Generation 3.1

More information

Compiling Java For High Performance on Servers

Compiling Java For High Performance on Servers Compiling Java For High Performance on Servers Ken Kennedy Center for Research on Parallel Computation Rice University Goal: Achieve high performance without sacrificing language compatibility and portability.

More information

EINDHOVEN UNIVERSITY OF TECHNOLOGY

EINDHOVEN UNIVERSITY OF TECHNOLOGY EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics & Computer Science Exam Programming Methods, 2IP15, Wednesday 17 April 2013, 09:00 12:00 TU/e THIS IS THE EXAMINER S COPY WITH (POSSIBLY INCOMPLETE)

More information

History Introduction to Java Characteristics of Java Data types

History Introduction to Java Characteristics of Java Data types Course Name: Advanced Java Lecture 1 Topics to be covered History Introduction to Java Characteristics of Java Data types What is Java? An Object-Oriented Programming Language developed at Sun Microsystems

More information

2 rd class Department of Programming. OOP with Java Programming

2 rd class Department of Programming. OOP with Java Programming 1. Structured Programming and Object-Oriented Programming During the 1970s and into the 80s, the primary software engineering methodology was structured programming. The structured programming approach

More information

Introduction to Java

Introduction to Java Introduction to Java Module 1: Getting started, Java Basics 22/01/2010 Prepared by Chris Panayiotou for EPL 233 1 Lab Objectives o Objective: Learn how to write, compile and execute HelloWorld.java Learn

More information

Programming Languages

Programming Languages TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Programming Languages Concurrency: Atomic Executions, Locks and Monitors Dr. Michael Petter Winter term 2016 Atomic Executions, Locks and Monitors

More information

Outline. Introduction to Java. What Is Java? History. Java 2 Platform. Java 2 Platform Standard Edition. Introduction Java 2 Platform

Outline. Introduction to Java. What Is Java? History. Java 2 Platform. Java 2 Platform Standard Edition. Introduction Java 2 Platform Outline Introduction to Java Introduction Java 2 Platform CS 3300 Object-Oriented Concepts Introduction to Java 2 What Is Java? History Characteristics of Java History James Gosling at Sun Microsystems

More information

Last class: OS and Architecture. OS and Computer Architecture

Last class: OS and Architecture. OS and Computer Architecture Last class: OS and Architecture OS and Computer Architecture OS Service Protection Interrupts System Calls IO Scheduling Synchronization Virtual Memory Hardware Support Kernel/User Mode Protected Instructions

More information

Last class: OS and Architecture. Chapter 3: Operating-System Structures. OS and Computer Architecture. Common System Components

Last class: OS and Architecture. Chapter 3: Operating-System Structures. OS and Computer Architecture. Common System Components Last class: OS and Architecture Chapter 3: Operating-System Structures System Components Operating System Services System Calls System Programs System Structure Virtual Machines System Design and Implementation

More information

Assumptions. History

Assumptions. History Assumptions A Brief Introduction to Java for C++ Programmers: Part 1 ENGI 5895: Software Design Faculty of Engineering & Applied Science Memorial University of Newfoundland You already know C++ You understand

More information

Index. Course Outline. Grading Policy. Lab Time Distribution. Important Instructions

Index. Course Outline. Grading Policy. Lab Time Distribution. Important Instructions Index Course Outline Grading Policy Lab Time Distribution Important Instructions 2 Course Outline Week Topics 1 - History and Evolution of Java - Overview of Java 2 - Datatypes - Variables 3 - Arrays 4

More information

A JVM Does What? Eva Andreasson Product Manager, Azul Systems

A JVM Does What? Eva Andreasson Product Manager, Azul Systems A JVM Does What? Eva Andreasson Product Manager, Azul Systems Presenter Eva Andreasson Innovator & Problem solver Implemented the Deterministic GC of JRockit Real Time Awarded patents on GC heuristics

More information

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator

Administration CS 412/413. Why build a compiler? Compilers. Architectural independence. Source-to-source translator CS 412/413 Introduction to Compilers and Translators Andrew Myers Cornell University Administration Design reports due Friday Current demo schedule on web page send mail with preferred times if you haven

More information

Swift: A Register-based JIT Compiler for Embedded JVMs

Swift: A Register-based JIT Compiler for Embedded JVMs Swift: A Register-based JIT Compiler for Embedded JVMs Yuan Zhang, Min Yang, Bo Zhou, Zhemin Yang, Weihua Zhang, Binyu Zang Fudan University Eighth Conference on Virtual Execution Environment (VEE 2012)

More information

Advanced programming for Java platform. Introduction

Advanced programming for Java platform. Introduction Advanced programming for Java platform Introduction About course Petr Hnětynka hnetynka@d3s.mff.cuni.cz http://d3s.mff.cuni.cz/teaching/vsjava/ continuation of "Java (NPRG013)" basic knowledge of Java

More information

Delft-Java Link Translation Buffer

Delft-Java Link Translation Buffer Delft-Java Link Translation Buffer John Glossner 1,2 and Stamatis Vassiliadis 2 1 Lucent / Bell Labs Advanced DSP Architecture and Compiler Research Allentown, Pa glossner@lucent.com 2 Delft University

More information

Outline. Object Oriented Programming. Course goals. Staff. Course resources. Assignments. Course organization Introduction Java overview Autumn 2003

Outline. Object Oriented Programming. Course goals. Staff. Course resources. Assignments. Course organization Introduction Java overview Autumn 2003 Outline Object Oriented Programming Autumn 2003 2 Course goals Software design vs hacking Abstractions vs language (syntax) Java used to illustrate concepts NOT a course about Java Prerequisites knowledge

More information

Introduction to Java. Lecture 1 COP 3252 Summer May 16, 2017

Introduction to Java. Lecture 1 COP 3252 Summer May 16, 2017 Introduction to Java Lecture 1 COP 3252 Summer 2017 May 16, 2017 The Java Language Java is a programming language that evolved from C++ Both are object-oriented They both have much of the same syntax Began

More information

PyPy - How to not write Virtual Machines for Dynamic Languages

PyPy - How to not write Virtual Machines for Dynamic Languages PyPy - How to not write Virtual Machines for Dynamic Languages Institut für Informatik Heinrich-Heine-Universität Düsseldorf ESUG 2007 Scope This talk is about: implementing dynamic languages (with a focus

More information

MapReduce on the Cell Broadband Engine Architecture. Marc de Kruijf

MapReduce on the Cell Broadband Engine Architecture. Marc de Kruijf MapReduce on the Cell Broadband Engine Architecture Marc de Kruijf Overview Motivation MapReduce Cell BE Architecture Design Performance Analysis Implementation Status Future Work What is MapReduce? A

More information

Managed runtimes & garbage collection

Managed runtimes & garbage collection Managed runtimes Advantages? Managed runtimes & garbage collection CSE 631 Some slides by Kathryn McKinley Disadvantages? 1 2 Managed runtimes Portability (& performance) Advantages? Reliability Security

More information

Effective Performance Measurement and Analysis of Multithreaded Applications

Effective Performance Measurement and Analysis of Multithreaded Applications Effective Performance Measurement and Analysis of Multithreaded Applications Nathan Tallent John Mellor-Crummey Rice University CSCaDS hpctoolkit.org Wanted: Multicore Programming Models Simple well-defined

More information

Compiling Techniques

Compiling Techniques Lecture 10: Introduction to 10 November 2015 Coursework: Block and Procedure Table of contents Introduction 1 Introduction Overview Java Virtual Machine Frames and Function Call 2 JVM Types and Mnemonics

More information

Cluster Computing with Single Thread Space

Cluster Computing with Single Thread Space Cluster Computing with Single Thread Space Francis Lau, Matchy Ma, Cho-Li Wang, and Benny Cheung Abstract To achieve single system image (SSI) for cluster computing is a challenging task since SSI is a

More information

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley

Managed runtimes & garbage collection. CSE 6341 Some slides by Kathryn McKinley Managed runtimes & garbage collection CSE 6341 Some slides by Kathryn McKinley 1 Managed runtimes Advantages? Disadvantages? 2 Managed runtimes Advantages? Reliability Security Portability Performance?

More information

Non-blocking Java Communications Support on Clusters

Non-blocking Java Communications Support on Clusters Non-blocking Java Communications Support on Clusters Guillermo L. Taboada*, Juan Touriño, Ramón Doallo UNIVERSIDADE DA CORUÑA SPAIN {taboada,juan,doallo}@udc.es 13th European PVM/MPI Users s Meeting (EuroPVM/MPI

More information

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters

Context Threading: A flexible and efficient dispatch technique for virtual machine interpreters : A flexible and efficient dispatch technique for virtual machine interpreters Marc Berndl Benjamin Vitale Mathew Zaleski Angela Demke Brown Research supported by IBM CAS, NSERC, CITO 1 Interpreter performance

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 3 Introduction to the C Programming Language (pt 1)!!Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia CS61C L03 Introduction to C

More information

CS/B.TECH/CSE(New)/SEM-5/CS-504D/ OBJECT ORIENTED PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70 GROUP A. (Multiple Choice Type Question)

CS/B.TECH/CSE(New)/SEM-5/CS-504D/ OBJECT ORIENTED PROGRAMMING. Time Allotted : 3 Hours Full Marks : 70 GROUP A. (Multiple Choice Type Question) CS/B.TECH/CSE(New)/SEM-5/CS-504D/2013-14 2013 OBJECT ORIENTED PROGRAMMING Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

cout << "How many numbers would you like to type? "; cin >> memsize; p = new int[memsize];

cout << How many numbers would you like to type? ; cin >> memsize; p = new int[memsize]; 1 C++ Dynamic Allocation Memory needs were determined before program execution by defining the variables needed. Sometime memory needs of a program can only be determined during runtime, or the memory

More information

Question. 1 Features of Java.

Question. 1 Features of Java. QUESTIONS BANK (CP-II) No Question 1 Features of Java. QUESTIONS BANK (CP-II) ( Using java) QUESTIONS BANK (CP-II) or Java Features:- (1) Java Is Small and Simple Java is modeled after C and C++. The object-oriented

More information

Objectives. Problem Solving. Introduction. An overview of object-oriented concepts. Programming and programming languages An introduction to Java

Objectives. Problem Solving. Introduction. An overview of object-oriented concepts. Programming and programming languages An introduction to Java Introduction Objectives An overview of object-oriented concepts. Programming and programming languages An introduction to Java 1-2 Problem Solving The purpose of writing a program is to solve a problem

More information

Fault Tolerant Java Virtual Machine. Roy Friedman and Alon Kama Technion Haifa, Israel

Fault Tolerant Java Virtual Machine. Roy Friedman and Alon Kama Technion Haifa, Israel Fault Tolerant Java Virtual Machine Roy Friedman and Alon Kama Technion Haifa, Israel Objective Create framework for transparent fault-tolerance Support legacy applications Intended for long-lived, highly

More information

Compilers and Interpreters

Compilers and Interpreters Overview Roadmap Language Translators: Interpreters & Compilers Context of a compiler Phases of a compiler Compiler Construction tools Terminology How related to other CS Goals of a good compiler 1 Compilers

More information

Compiling Techniques

Compiling Techniques Lecture 1: Introduction 20 September 2016 Table of contents 1 2 3 Essential Facts Lecturer: (christophe.dubach@ed.ac.uk) Office hours: Thursdays 11am-12pm Textbook (not strictly required): Keith Cooper

More information

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview

Introduction to Visual Basic and Visual C++ Introduction to Java. JDK Editions. Overview. Lesson 13. Overview Introduction to Visual Basic and Visual C++ Introduction to Java Lesson 13 Overview I154-1-A A @ Peter Lo 2010 1 I154-1-A A @ Peter Lo 2010 2 Overview JDK Editions Before you can write and run the simple

More information

Introduction. A. Bellaachia Page: 1

Introduction. A. Bellaachia Page: 1 Introduction 1. Objectives... 2 2. Why are there so many programming languages?... 2 3. What makes a language successful?... 2 4. Programming Domains... 3 5. Language and Computer Architecture... 4 6.

More information

The NetRexx Interpreter

The NetRexx Interpreter The NetRexx Interpreter http://www2.hursley.ibm.com/netrexx/ RexxLA / WarpTech -- 26 May 2000 Mike Cowlishaw IBM Fellow mfc@uk.ibm.com netrexxi Overview Introduction to NetRexx Demo. -- compiling and interpreting

More information

Evolution of Virtual Machine Technologies for Portability and Application Capture. Bob Vandette Java Hotspot VM Engineering Sept 2004

Evolution of Virtual Machine Technologies for Portability and Application Capture. Bob Vandette Java Hotspot VM Engineering Sept 2004 Evolution of Virtual Machine Technologies for Portability and Application Capture Bob Vandette Java Hotspot VM Engineering Sept 2004 Topics Virtual Machine Evolution Timeline & Products Trends forcing

More information

Inlining Java Native Calls at Runtime

Inlining Java Native Calls at Runtime Inlining Java Native Calls at Runtime (CASCON 2005 4 th Workshop on Compiler Driven Performance) Levon Stepanian, Angela Demke Brown Computer Systems Group Department of Computer Science, University of

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

CSc 453 Interpreters & Interpretation

CSc 453 Interpreters & Interpretation CSc 453 Interpreters & Interpretation Saumya Debray The University of Arizona Tucson Interpreters An interpreter is a program that executes another program. An interpreter implements a virtual machine,

More information

LLVM for a Managed Language What we've learned

LLVM for a Managed Language What we've learned LLVM for a Managed Language What we've learned Sanjoy Das, Philip Reames {sanjoy,preames}@azulsystems.com LLVM Developers Meeting Oct 30, 2015 This presentation describes advanced development work at Azul

More information

Motivation was to facilitate development of systems software, especially OS development.

Motivation was to facilitate development of systems software, especially OS development. A History Lesson C Basics 1 Development of language by Dennis Ritchie at Bell Labs culminated in the C language in 1972. Motivation was to facilitate development of systems software, especially OS development.

More information

Software Architecture

Software Architecture Software Architecture Lecture 5 Call-Return Systems Rob Pettit George Mason University last class data flow data flow styles batch sequential pipe & filter process control! process control! looping structure

More information

Operating System Structure

Operating System Structure CSE325 Principles of Operating Systems Operating System Structure David Duggan dduggan@sandia.gov January 24, 2013 A View of Operating System Services 1/24/13 CSE325 - OS Structure 2 Operating System Design

More information

Compiler construction 2009

Compiler construction 2009 Compiler construction 2009 Lecture 6 Some project extensions. Pointers and heap allocation. Object-oriented languages. Module systems. Memory structure Javalette restrictions Only local variables and parameters

More information

September 10,

September 10, September 10, 2013 1 Bjarne Stroustrup, AT&T Bell Labs, early 80s cfront original C++ to C translator Difficult to debug Potentially inefficient Many native compilers exist today C++ is mostly upward compatible

More information

Pause-Less GC for Improving Java Responsiveness. Charlie Gracie IBM Senior Software charliegracie

Pause-Less GC for Improving Java Responsiveness. Charlie Gracie IBM Senior Software charliegracie Pause-Less GC for Improving Java Responsiveness Charlie Gracie IBM Senior Software Developer charlie_gracie@ca.ibm.com @crgracie charliegracie 1 Important Disclaimers THE INFORMATION CONTAINED IN THIS

More information

PGAS: Partitioned Global Address Space

PGAS: Partitioned Global Address Space .... PGAS: Partitioned Global Address Space presenter: Qingpeng Niu January 26, 2012 presenter: Qingpeng Niu : PGAS: Partitioned Global Address Space 1 Outline presenter: Qingpeng Niu : PGAS: Partitioned

More information

Just-In-Time Compilers & Runtime Optimizers

Just-In-Time Compilers & Runtime Optimizers COMP 412 FALL 2017 Just-In-Time Compilers & Runtime Optimizers Comp 412 source code IR Front End Optimizer Back End IR target code Copyright 2017, Keith D. Cooper & Linda Torczon, all rights reserved.

More information

Deconstructing Java TM

Deconstructing Java TM Deconstructing Java TM Gilad Bracha 1 Original Sin: Primitive Types Eight types: bool, byte, char, short, int, long, float, double... and void too! Eight special cases in many APIs Cannot store in collections

More information