CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W12-M

Size: px
Start display at page:

Download "CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W12-M"

Transcription

1 CSE 22 Computer Organization Hugh Chesser, CSEB 2U W2-

2 Graphical Representation Time add $s, $t, $t IF ID E E Decode / Execute emory Back fetch from / stage into the instruction register file. Shading in each block indicates the element is used for in the instruction. Since is not accessed in an add instruction, it is not shaded. 2. Shading on the left half of the block indicates that the element is being written. During instruction fetch, the instruction is read so the right half of IF block is shaded. 3. Shading on the right half of the block indicates that the element is being read. During write back stage, the register file is written so the left half of the block is shaded. W2-2

3 Activity 2 Using the graphical representation, show that the following swap procedure has a pipeline hazard. Reorder the instructions to avoid pipeline stalls. lw $t, ($t) lw $t2, ($t) sw $t2, ($t) sw $t, ($t) lw $t, ($t) lw $t2, ($t) $t loaded $t2 loaded sw $t2, ($t) $t2 stored sw $t, ($t) $t stored W2-3

4 Agenda Topics:. Pipeline path and Control Patterson:.5 W2-

5 Pipelined path () IF/ID ID/E E/E E/ ress Regsiter ress IF: Fetch ID: Decode / file read E: Execute / W2- ress Calculation E: emory Access : back 5

6 Pipelined path (2) In pipelined path, each instruction is broken in five steps: IF ( Fetch), ID ( Decode and register file read), E (Execution or address calculation), E ( emory Access), and ( Back). Each of the above step takes one clock cycle. s and advance forward by from left to right. flows from right to left only in two cases. back stage placing the in the register file 2. Selection of the value for between ( + ) and branch target address s in between different stages store the store values to be used by next stage Name of registers are based on the two pipelined stages that the registers separate Each pipelining register has a different size: IF/ID register is 6 bits wide; ID/E register is 28 bits wide; E/E register is 97 bits wide; and E/ is 6 bits wide There are no pipeline registers at the end of the write-back stage as is written directly into or register file or the. W2-6

7 How pipelining works (): Example lw $s, ($s2) path for Fetch (IF) IF/ID ID/E E/E E/ ress Regsiter ress IF: Fetch W2-7

8 How pipelining works (2): Example lw $s, ($s2) path for Decode and File (ID) IF/ID ID/E E/E E/ ress Regsiter ress ID: Decode / file read W2-8

9 How pipelining works (3): Example lw $s, ($s2) path for Execute / ress Calculation (E) IF/ID ID/E E/E E/ ress Regsiter ress E: Execute / W2- ress Calculation 9

10 How pipelining works (): Example lw $s, ($s2) path for emory Access (E) IF/ID ID/E E/E E/ ress Regsiter ress W2- E: emory Access

11 How pipelining works (5): Example lw $s, ($s2) path for Back () IF/ID ID/E E/E E/ ress Regsiter ress W2- : back

12 How pipelining works (6): Example lw $s, ($s2) Complete path for lw instruction IF/ID ID/E E/E E/ ress Regsiter ress IF: Fetch ID: Decode / file read E: Execute / W2- ress Calculation E: emory Access : back 2

13 ultiple Clock Cycle Pipeline Diagram Time (in clock cycles) Program execution order CC CC 2 CC 3 CC CC 5 CC 6 lw $s, ($s2) I Reg D Reg IF/ID ID/E E/E E/ fetch decode Execution access back Activity 3: Using the graphical representation, show that the multiple clock cycle pipeline diagram of the following two instructions lw $t,($t) sub $s,$s,$s2 W2-3

14 Pipelined Control () Src Control ID/E E/E E/ IF/ID E ress register register 2 s 2 register Reg Src Branch em ress emtoreg [5 ] control em [2 6] [5 ] W2- RegDst Op

15 Pipelined Control (2) Control lines in pipelined implementation is divided into five groups according to the pipeline stage. Fetch: No control needed as the write control of and read control of instruction is always asserted. 2. Decode/ File : No controls needed as the register file in being read during each instruction. 3. Execution/ress Calculation: Control signals are Src, RegDst, and Op. For lw/sw instructions, Src =, RegDst = and Op =. For R-type instructions, Src =, RegDst =, and Op =.. emory Access: Control signals are Branch, em, and em. For lw instruction, em = and Branch = em =. For sw instruction, em = and Branch = em =. For branch instructions, Branch = and emwrite = em =. For R-type instructions, Branch = em = em =. 5. Back: Control signals are emtoreg. For lw instructions, emtoreg =. For R-type instructions, emtoreg =. Pipeline registers are ed to include the control signals for each stage of an instruction. W2-5

16 Activity Show the following instructions going through the pipeline: lw $, 2($) sub $,$2,$3 and $2,$,$5 or $3,$6,$7 and $,$8,$9 W2-6

17 Activity : Clock Cycle # IF : lw $, 2($) ID : before< > E : before< 2> E : be fore< 3> W B: before < > IF/ID ID/E E/E E/ Control E ress register register 2 s 2 register Reg Src Branch ress em emtoreg [5 ] control em C lo ck [2 6] [5 ] RegDst W2- Op 7

18 Activity : Clock Cycle # 2 IF : sub $, $2, $3 ID : lw $, 2($ ) E : before < > E : be fore<2> W B : be fore < 3> IF/ID ID/E E/E E/ lw Control E ress Reg register register 2 s 2 register $ $ Src Branch em ress emtoreg 2 [5 ] 2 control em C lo c k 2 [2 6] [5 ] RegDst W2- Op 8

19 Activity : Clock Cycle # 3 IF : and $2, $, $ 5 ID : sub $, $ 2, $3 E : lw $,... E : before< > W B : be fore< 2> IF/ID ID/E E/E E/ sub Control E ress 2 3 register register 2 s 2 register Reg $2 $3 $ Src Branch em ress emtoreg [5 ] 2 control em C lock 3 [2 6] [5 ] RegDst W2- Op 9

20 Activity : Clock Cycle # IF : or $ 3, $6, $7 ID : and $ 2, $2, $3 E : sub $,... E : lw $,... W B: be fore< > IF/ID ID/E E/E E/ and Control E ress 5 Reg register register 2 $ $2 s $5 $3 2 register Src Branch em ress emtoreg [5 ] control em C lo ck 2 [2 6] [5 ] 2 RegDst W2- Op 2

21 Activity : Clock Cycle # 5 IF: add $, $8, $9 ID: or $3, $6, $7 E: and $2,... E: sub $,... : lw $,... IF/ID ID/E E/E E/ or Control E ress 6 7 register register 2 s 2 register Reg $6 $7 $ $5 Src Branch em ress emtoreg [5 ] control em Clock 5 3 [2 6] [5 ] 3 2 RegDst W2- Op 2

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W9-W CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. Single Cycle Review (Sample Exam/Quiz Q) 2. ultiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday (November

More information

Designing a Pipelined CPU

Designing a Pipelined CPU Designing a Pipelined CPU CSE 4, S2'6 Review -- Single Cycle CPU CSE 4, S2'6 Review -- ultiple Cycle CPU CSE 4, S2'6 Review -- Instruction Latencies Single-Cycle CPU Load Ifetch /Dec Exec em Wr ultiple

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W10-M CSE 22 Computer Organization Hugh Chesser, CSEB 2U Agenda Topics:. ultiple cycle implementation - complete Patterson: Appendix C, D 2 Breaking the Execution into Clock Cycles Execution of each instruction

More information

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts

Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts CS359: Computer Architecture Chapter 3 & Appendix C Pipelining Part A: Basic and Intermediate Concepts Yanyan Shen Department of Computer Science and Engineering Shanghai Jiao Tong University Parallel

More information

Pipelined Datapath. One register file is enough

Pipelined Datapath. One register file is enough ipelined path The goal of pipelining is to allow multiple instructions execute at the same time We may need to perform several operations in a cycle Increment the and add s at the same time. Fetch one

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 2021 COMPUTER ORGANIZATION HUGH LAS CHESSER 1012U HUGH CHESSER CSEB 1012U W10-M Agenda Topics: 1. Multiple cycle implementation review 2. State Machine 3. Control Unit implementation for Multi-cycle

More information

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed

Processor Design CSCE Instructor: Saraju P. Mohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed Lecture 3: General Purpose Processor Design CSCE 665 Advanced VLSI Systems Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, tet etc included in slides are borrowed from various books, websites,

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S.

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 (2) Lecture notes from MKP, H. H. Lee and S. Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing (2) Pipeline Performance Assume time for stages is ps for register read or write

More information

CSE 2021 COMPUTER ORGANIZATION

CSE 2021 COMPUTER ORGANIZATION CSE 22 COMPUTER ORGANIZATION HUGH CHESSER CHESSER HUGH CSEB 2U 2U CSEB Agenda Topics:. Sample Exam/Quiz Q - Review 2. Multiple cycle implementation Patterson: Section 4.5 Reminder: Quiz #2 Next Wednesday

More information

ECE473 Computer Architecture and Organization. Processor: Combined Datapath

ECE473 Computer Architecture and Organization. Processor: Combined Datapath Computer Architecture and Organization Processor: Combined path Lecturer: Prof. Yifeng Zhu Fall, 2014 Portions of these slides are derived from: Dave Patterson CB 1 Where are we? Want to build a processor

More information

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12

Pipelined Datapath. Reading. Sections Practice Problems: 1, 3, 8, 12 Pipelined Datapath Lecture notes from KP, H. H. Lee and S. Yalamanchili Sections 4.5 4. Practice Problems:, 3, 8, 2 ing Note: Appendices A-E in the hardcopy text correspond to chapters 7- in the online

More information

Assignment 1 solutions

Assignment 1 solutions Assignment solutions. The jal instruction does a jump identical to the j instruction (i.e., replacing the low order 28 bits of the with the ress in the instruction) and also writes the value of the + 4

More information

Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns

Chapter Six. Dataı access. Reg. Instructionı. fetch. Dataı. Reg. access. Dataı. Reg. access. Dataı. Instructionı fetch. 2 ns 2 ns 2 ns 2 ns 2 ns Chapter Si Pipelining Improve perfomance by increasing instruction throughput eecutionı Time lw $, ($) 2 6 8 2 6 8 access lw $2, 2($) 8 ns access lw $3, 3($) eecutionı Time lw $, ($) lw $2, 2($) 2 ns 8

More information

Pipelining. Chapter 4

Pipelining. Chapter 4 Pipelining Chapter 4 ake processor rns faster Pipelining is an implementation techniqe in which mltiple instrctions are overlapped in eection Key of making processor fast Pipelining Single cycle path we

More information

cs470 - Computer Architecture 1 Spring 2002 Final Exam open books, open notes

cs470 - Computer Architecture 1 Spring 2002 Final Exam open books, open notes 1 of 7 ay 13, 2002 v2 Spring 2002 Final Exam open books, open notes Starts: 7:30 pm Ends: 9:30 pm Name: (please print) ID: Problem ax points Your mark Comments 1 10 5+5 2 40 10+5+5+10+10 3 15 5+10 4 10

More information

ECS 154B Computer Architecture II Spring 2009

ECS 154B Computer Architecture II Spring 2009 ECS 154B Computer Architecture II Spring 2009 Pipelining Datapath and Control 6.2-6.3 Partially adapted from slides by Mary Jane Irwin, Penn State And Kurtis Kredo, UCD Pipelined CPU Break execution into

More information

comp 180 Lecture 25 Outline of Lecture The ALU Control Operation & Design The Datapath Control Operation & Design HKUST 1 Computer Science

comp 180 Lecture 25 Outline of Lecture The ALU Control Operation & Design The Datapath Control Operation & Design HKUST 1 Computer Science Outline of Lecture The Control Operation & Design The Datapath Control Operation & Design HKST 1 Computer Science Control After the design of partial single IPS datapath, we need to add the control unit

More information

Chapter 4 (Part II) Sequential Laundry

Chapter 4 (Part II) Sequential Laundry Chapter 4 (Part II) The Processor Baback Izadi Division of Engineering Programs bai@engr.newpaltz.edu Sequential Laundry 6 P 7 8 9 10 11 12 1 2 A T a s k O r d e r A B C D 30 30 30 30 30 30 30 30 30 30

More information

Single-Cycle Examples, Multi-Cycle Introduction

Single-Cycle Examples, Multi-Cycle Introduction Single-Cycle Examples, ulti-cycle Introduction 1 Today s enu Single cycle examples Single cycle machines vs. multi-cycle machines Why multi-cycle? Comparative performance Physical and Logical Design of

More information

COMP2611: Computer Organization. The Pipelined Processor

COMP2611: Computer Organization. The Pipelined Processor COMP2611: Computer Organization The 1 2 Background 2 High-Performance Processors 3 Two techniques for designing high-performance processors by exploiting parallelism: Multiprocessing: parallelism among

More information

What do we have so far? Multi-Cycle Datapath (Textbook Version)

What do we have so far? Multi-Cycle Datapath (Textbook Version) What do we have so far? ulti-cycle Datapath (Textbook Version) CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instruction being processed in datapath How to lower CPI further? #1 Lec # 8 Summer2001

More information

PS Midterm 2. Pipelining

PS Midterm 2. Pipelining PS idterm 2 Pipelining Seqential Landry 6 P 7 8 9 idnight Time T a s k O r d e r A B C D 3 4 2 3 4 2 3 4 2 3 4 2 Seqential landry takes 6 hors for 4 loads If they learned pipelining, how long wold landry

More information

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard

Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Data Hazards Compiler Scheduling Pipeline scheduling or instruction scheduling: Compiler generates code to eliminate hazard Consider: a = b + c; d = e - f; Assume loads have a latency of one clock cycle:

More information

ECE 313 Computer Organization EXAM 2 November 9, 2001

ECE 313 Computer Organization EXAM 2 November 9, 2001 ECE 33 Computer Organization EA 2 November 9, 2 This exam is open book and open notes. You have 5 minutes. Credit for problems requiring calculation will be given only if you show your work. Choose and

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Indian Institute of Science Bangalore virendra@computer.org Lecture 20 SE-273: Processor Design Courtesy: Prof. Vishwani Agrawal

More information

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions?

Basic Instruction Timings. Pipelining 1. How long would it take to execute the following sequence of instructions? Basic Instruction Timings Pipelining 1 Making some assumptions regarding the operation times for some of the basic hardware units in our datapath, we have the following timings: Instruction class Instruction

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 483 Compter Organization Chapter 4.4 A Simple Implementation Scheme Chans Y The Big Pictre The Five Classic Components of a Compter Processor Control emory Inpt path Otpt path & Control 2 path and

More information

The Pipelined MIPS Processor

The Pipelined MIPS Processor 1 The niversity of Texas at Dallas Lecture #20: The Pipeline IPS Processor The Pipelined IPS Processor We complete our study of AL architecture by investigating an approach providing even higher performance

More information

ECE 313 Computer Organization FINAL EXAM December 13, 2000

ECE 313 Computer Organization FINAL EXAM December 13, 2000 This exam is open book and open notes. You have until 11:00AM. Credit for problems requiring calculation will be given only if you show your work. 1. Floating Point Representation / MIPS Assembly Language

More information

Unpipelined Machine. Pipelining the Idea. Pipelining Overview. Pipelined Machine. MIPS Unpipelined. Similar to assembly line in a factory

Unpipelined Machine. Pipelining the Idea. Pipelining Overview. Pipelined Machine. MIPS Unpipelined. Similar to assembly line in a factory Pipelining the Idea Similar to assembly line in a factory Divide instruction into smaller tasks Each task is performed on subset of resources Overlap the execution of multiple instructions by completing

More information

CS 251, Winter 2019, Assignment % of course mark

CS 251, Winter 2019, Assignment % of course mark CS 25, Winter 29, Assignment.. 3% of corse mark De Wednesday, arch 3th, 5:3P Lates accepted ntil Thrsday arch th, pm with a 5% penalty. (7 points) In the diagram below, the mlticycle compter from the corse

More information

Improve performance by increasing instruction throughput

Improve performance by increasing instruction throughput Improve performance by increasing instruction throughput Program execution order Time (in instructions) lw $1, 100($0) fetch 2 4 6 8 10 12 14 16 18 ALU Data access lw $2, 200($0) 8ns fetch ALU Data access

More information

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good

T = I x CPI x C. Both effective CPI and clock cycle C are heavily influenced by CPU design. CPI increased (3-5) bad Shorter cycle good CPU performance equation: T = I x CPI x C Both effective CPI and clock cycle C are heavily influenced by CPU design. For single-cycle CPU: CPI = 1 good Long cycle time bad On the other hand, for multi-cycle

More information

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points

ECE 313 Computer Organization FINAL EXAM December 11, Multicycle Processor Design 30 Points This exam is open book and open notes. Credit for problems requiring calculation will be given only if you show your work. 1. Multicycle Processor Design 0 Points In our discussion of exceptions in the

More information

Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control

Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control Computer and Information Sciences College / Computer Science Department The Processor: Datapath and Control Chapter 5 The Processor: Datapath and Control Big Picture: Where are We Now? Performance of a

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Harware Organization an Design ectre 11: Introction to IPs path apte from Compter Organization an Design, Patterson & Hennessy, CB IPS-lite processor Compter Want to bil a processor for a sbset

More information

CS420/520 Homework Assignment: Pipelining

CS420/520 Homework Assignment: Pipelining CS42/52 Homework Assignment: Pipelining Total: points. 6.2 []: Using a drawing similar to the Figure 6.8 below, show the forwarding paths needed to execute the following three instructions: Add $2, $3,

More information

EEC 483 Computer Organization

EEC 483 Computer Organization EEC 83 Compter Organization Chapter.6 A Pipelined path Chans Y Pipelined Approach 2 - Cycle time, No. stages - Resorce conflict E E A B C D 3 E E 5 E 2 3 5 2 6 7 8 9 c.y9@csohio.ed Resorces sed in 5 Stages

More information

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours.

ECE 313 Computer Organization FINAL EXAM December 14, This exam is open book and open notes. You have 2 hours. This exam is open book and open notes. You have 2 hours. Problems 1-4 refer to a proposed MIPS instruction lwu (load word - update) which implements update addressing an addressing mode that is used in

More information

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13

Comp 303 Computer Architecture A Pipelined Datapath Control. Lecture 13 Comp 33 Compter Architectre A Pipelined path Lectre 3 Pipelined path with Signals PCSrc IF/ ID ID/ EX EX / E E / Add PC 4 Address Instrction emory RegWr ra rb rw Registers bsw [5-] [2-6] [5-] bsa bsb Sign

More information

Pipeline Data Hazards. Dealing With Data Hazards

Pipeline Data Hazards. Dealing With Data Hazards Pipeline Data Hazards Warning, warning, warning! Dealing With Data Hazards In Software inserting independent instructions In Hardware inserting bubbles (stalling the pipeline) data forwarding Data Data

More information

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes.

The Processor Pipeline. Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. The Processor Pipeline Chapter 4, Patterson and Hennessy, 4ed. Section 5.3, 5.4: J P Hayes. Pipeline A Basic MIPS Implementation Memory-reference instructions Load Word (lw) and Store Word (sw) ALU instructions

More information

Pipelined Processor Design

Pipelined Processor Design Pipelined Processor Design Pipelined Implementation: MIPS Virendra Singh Computer Design and Test Lab. Indian Institute of Science (IISc) Bangalore virendra@computer.org Advance Computer Architecture http://www.serc.iisc.ernet.in/~viren/courses/aca/aca.htm

More information

CSE Lecture 13/14 In Class Handout For all of these problems: HAS NOT CANNOT Add Add Add must wait until $5 written by previous add;

CSE Lecture 13/14 In Class Handout For all of these problems: HAS NOT CANNOT Add Add Add must wait until $5 written by previous add; CSE 30321 Lecture 13/14 In Class Handout For the sequence of instructions shown below, show how they would progress through the pipeline. For all of these problems: - Stalls are indicated by placing the

More information

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1,

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1, SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Chapter 6 ADMIN ing for Chapter 6: 6., 6.9-6.2 2 Midnight Laundry Task order A 6 PM 7 8 9 0 2 2 AM B C D 3 Smarty

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

EECS 322 Computer Architecture Improving Memory Access: the Cache

EECS 322 Computer Architecture Improving Memory Access: the Cache EECS 322 Computer Architecture Improving emory Access: the Cache Instructor: Francis G. Wolff wolff@eecs.cwru.edu Case Western Reserve University This presentation uses powerpoint animation: please viewshow

More information

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture

The Processor. Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut. CSE3666: Introduction to Computer Architecture The Processor Z. Jerry Shi Department of Computer Science and Engineering University of Connecticut CSE3666: Introduction to Computer Architecture Introduction CPU performance factors Instruction count

More information

Enhanced Performance with Pipelining

Enhanced Performance with Pipelining Chapter 6 Enhanced Performance with Pipelining Note: The slides being presented represent a mi. Some are created by ark Franklin, Washington University in St. Lois, Dept. of CSE. any are taken from the

More information

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College

Pipelining: Overview. CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining: Overview CPSC 252 Computer Organization Ellen Walker, Hiram College Pipelining the Wash Divide into 4 steps: Wash, Dry, Fold, Put Away Perform the steps in parallel Wash 1 Wash 2, Dry 1 Wash

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer rchitecture and Engineering Lecture 10 Pipelining III 2005-2-17 John Lazzaro (www.cs.berkeley.edu/~lazzaro) Ts: Ted Hong and David arquardt www-inst.eecs.berkeley.edu/~cs152/ Last time:

More information

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27)

Lecture Topics. Announcements. Today: Data and Control Hazards (P&H ) Next: continued. Exam #1 returned. Milestone #5 (due 2/27) Lecture Topics Today: Data and Control Hazards (P&H 4.7-4.8) Next: continued 1 Announcements Exam #1 returned Milestone #5 (due 2/27) Milestone #6 (due 3/13) 2 1 Review: Pipelined Implementations Pipelining

More information

What do we have so far? Multi-Cycle Datapath

What do we have so far? Multi-Cycle Datapath What do we have so far? lti-cycle Datapath CPI: R-Type = 4, Load = 5, Store 4, Branch = 3 Only one instrction being processed in datapath How to lower CPI frther? #1 Lec # 8 Spring2 4-11-2 Pipelining pipelining

More information

Lecture 6: Pipelining

Lecture 6: Pipelining Lecture 6: Pipelining i CSCE 26 Computer Organization Instructor: Saraju P. ohanty, Ph. D. NOTE: The figures, text etc included in slides are borrowed from various books, websites, authors pages, and other

More information

Pipelining: Basic Concepts

Pipelining: Basic Concepts Pipelining: Basic Concepts Prof. Cristina Silvano Dipartimento di Elettronica e Informazione Politecnico di ilano email: silvano@elet.polimi.it Outline Reduced Instruction Set of IPS Processor Implementation

More information

Review: Computer Organization

Review: Computer Organization Review: Compter Organization Pipelining Chans Y Landry Eample Landry Eample Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 3 mintes A B C D Dryer takes 3 mintes

More information

Advanced Computer Architecture Pipelining

Advanced Computer Architecture Pipelining Advanced Computer Architecture Pipelining Dr. Shadrokh Samavi Some slides are from the instructors resources which accompany the 6 th and previous editions of the textbook. Some slides are from David Patterson,

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University

Lecture 9. Pipeline Hazards. Christos Kozyrakis Stanford University Lecture 9 Pipeline Hazards Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee18b 1 Announcements PA-1 is due today Electronic submission Lab2 is due on Tuesday 2/13 th Quiz1 grades will

More information

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4

Midnight Laundry. IC220 Set #19: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Return to Chapter 4 IC220 Set #9: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Return to Chapter 4 Midnight Laundry Task order A B C D 6 PM 7 8 9 0 2 2 AM 2 Smarty Laundry Task order A B C D 6 PM

More information

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution

EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution EC 413 Computer Organization - Fall 2017 Problem Set 3 Problem Set 3 Solution Important guidelines: Always state your assumptions and clearly explain your answers. Please upload your solution document

More information

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3.

Pipelining Analogy. Pipelined laundry: overlapping execution. Parallelism improves performance. Four loads: Non-stop: Speedup = 8/3.5 = 2.3. Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 = 2.3 Non-stop: Speedup =2n/05n+15 2n/0.5n 1.5 4 = number of stages 4.5 An Overview

More information

Laboratory Pipeline MIPS CPU Design (2): 16-bits version

Laboratory Pipeline MIPS CPU Design (2): 16-bits version Laboratory 10 10. Pipeline MIPS CPU Design (2): 16-bits version 10.1. Objectives Study, design, implement and test MIPS 16 CPU, pipeline version with the modified program without hazards Familiarize the

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering ECE260: Fundamentals of Computer Engineering Pipelined Datapath and Control James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania ECE260: Fundamentals of Computer Engineering

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

Exceptions and interrupts

Exceptions and interrupts Eceptions and interrpts An eception or interrpt is an nepected event that reqires the CPU to pase or stop the crrent program. Eception handling is the hardware analog of error handling in software. Classes

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Data Hazards in a Pipelined Datapath James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Data

More information

EE 457 Unit 6a. Basic Pipelining Techniques

EE 457 Unit 6a. Basic Pipelining Techniques EE 47 Unit 6a Basic Pipelining Techniques 2 Pipelining Introduction Consider a drink bottling plant Filling the bottle = 3 sec. Placing the cap = 3 sec. Labeling = 3 sec. Would you want Machine = Does

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 14: One Cycle MIPs Datapath Adapted from Computer Organization and Design, Patterson & Hennessy, UCB R-Format Instructions Read two register operands Perform

More information

CSE140: Components and Design Techniques for Digital Systems

CSE140: Components and Design Techniques for Digital Systems CSE4: Components and Design Techniques for Digital Systems Tajana Simunic Rosing Announcements and Outline Check webct grades, make sure everything is there and is correct Pick up graded d homework at

More information

Solutions for Chapter 6 Exercises

Solutions for Chapter 6 Exercises Soltions for Chapter 6 Eercises Soltions for Chapter 6 Eercises 6. 6.2 a. Shortening the ALU operation will not affect the speedp obtained from pipelining. It wold not affect the clock cycle. b. If the

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 25, Winter 28, Assignment 4.. 3% of corse mark De Wednesday, arch 7th, 4:3P Lates accepted ntil Thrsday arch 8th, am with a 5% penalty. (6 points) In the diagram below, the mlticycle compter from the

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Computer Science 4 Computing Hardware Fall 6 Harvard University Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu Upcoming topics Mon, Nov th MIPS Basic Architecture (Part ) Wed, Nov th Basic Computer

More information

Processor: Multi- Cycle Datapath & Control

Processor: Multi- Cycle Datapath & Control Processor: Multi- Cycle Datapath & Control (Based on text: David A. Patterson & John L. Hennessy, Computer Organization and Design: The Hardware/Software Interface, 3 rd Ed., Morgan Kaufmann, 27) COURSE

More information

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining

Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Computer and Information Sciences College / Computer Science Department Enhancing Performance with Pipelining Single-Cycle Design Problems Assuming fixed-period clock every instruction datapath uses one

More information

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction

Multi-cycle Approach. Single cycle CPU. Multi-cycle CPU. Requires state elements to hold intermediate values. one clock cycle or instruction Multi-cycle Approach Single cycle CPU State element Combinational logic State element clock one clock cycle or instruction Multi-cycle CPU Requires state elements to hold intermediate values State Element

More information

CS 152 Computer Architecture and Engineering Lecture 4 Pipelining

CS 152 Computer Architecture and Engineering Lecture 4 Pipelining CS 152 Computer rchitecture and Engineering Lecture 4 Pipelining 2014-1-30 John Lazzaro (not a prof - John is always OK) T: Eric Love www-inst.eecs.berkeley.edu/~cs152/ Play: 1 otorola 68000 Next week

More information

1048: Computer Organization

1048: Computer Organization 8: Compter Organization Lectre 6 Pipelining Lectre6 - pipelining (cwli@twins.ee.nct.ed.tw) 6- Otline An overview of pipelining A pipelined path Pipelined control Data hazards and forwarding Data hazards

More information

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions

COMP303 - Computer Architecture Lecture 10. Multi-Cycle Design & Exceptions COP33 - Computer Architecture Lecture ulti-cycle Design & Exceptions Single Cycle Datapath We designed a processor that requires one cycle per instruction RegDst busw 32 Clk RegWr Rd ux imm6 Rt 5 5 Rs

More information

Processor (II) - pipelining. Hwansoo Han

Processor (II) - pipelining. Hwansoo Han Processor (II) - pipelining Hwansoo Han Pipelining Analogy Pipelined laundry: overlapping execution Parallelism improves performance Four loads: Speedup = 8/3.5 =2.3 Non-stop: 2n/0.5n + 1.5 4 = number

More information

In-order vs. Out-of-order Execution. In-order vs. Out-of-order Execution

In-order vs. Out-of-order Execution. In-order vs. Out-of-order Execution In-order vs. Out-of-order Execution In-order instruction execution instructions are fetched, executed & committed in compilergenerated order if one instruction stalls, all instructions behind it stall

More information

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 8: Data Hazard and Resolution. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 8: Data Hazard and Resolution James C. Hoe Department of ECE Carnegie ellon University 18 447 S18 L08 S1, James C. Hoe, CU/ECE/CALC, 2018 Your goal today Housekeeping detect and resolve

More information

ECE473 Computer Architecture and Organization. Pipeline: Data Hazards

ECE473 Computer Architecture and Organization. Pipeline: Data Hazards Computer Architecture and Organization Pipeline: Data Hazards Lecturer: Prof. Yifeng Zhu Fall, 2015 Portions of these slides are derived from: Dave Patterson UCB Lec 14.1 Pipelining Outline Introduction

More information

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31

Instruction word R0 R1 R2 R3 R4 R5 R6 R8 R12 R31 4.16 Exercises 419 Exercise 4.11 In this exercise we examine in detail how an instruction is executed in a single-cycle datapath. Problems in this exercise refer to a clock cycle in which the processor

More information

CPE 335 Computer Organization. Basic MIPS Architecture Part I

CPE 335 Computer Organization. Basic MIPS Architecture Part I CPE 335 Computer Organization Basic MIPS Architecture Part I Dr. Iyad Jafar Adapted from Dr. Gheith Abandah slides http://www.abandah.com/gheith/courses/cpe335_s8/index.html CPE232 Basic MIPS Architecture

More information

Pipelining. lecture 15. MIPS data path and control 3. Five stages of a MIPS (CPU) instruction. - factory assembly line (Henry Ford years ago)

Pipelining. lecture 15. MIPS data path and control 3. Five stages of a MIPS (CPU) instruction. - factory assembly line (Henry Ford years ago) lecture 15 Pipelining MIPS data path and control 3 - factory assembly line (Henry Ford - 100 years ago) - car wash Multicycle model: March 7, 2016 Pipelining - cafeteria -... Main idea: achieve efficiency

More information

Designing a Pipelined CPU

Designing a Pipelined CPU Designing a Pipelined CPU Peer Instruction Lecture Materials for Computer Architecture by Dr. Leo Porter, adapted by Janet Davis, are licensed under a Creative Commons Attribution- NonCommercial-ShareAlike

More information

Instruction Pipelining

Instruction Pipelining Instruction Pipelining Simplest form is a 3-stage linear pipeline New instruction fetched each clock cycle Instruction finished each clock cycle Maximal speedup = 3 achieved if and only if all pipe stages

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

Instruction Pipelining

Instruction Pipelining Instruction Pipelining Simplest form is a 3-stage linear pipeline New instruction fetched each clock cycle Instruction finished each clock cycle Maximal speedup = 3 achieved if and only if all pipe stages

More information

Merging datapaths: (add,lw, sw)

Merging datapaths: (add,lw, sw) COP 273 Winter 2012 1 - IPS datapath and control 2 ar., 2012 erging datapaths: (add,lw, sw) The datapaths that we saw last lecture considered each instruction in isolation. I drew only those elements that

More information

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000 The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE 513 01 Test II November 14, 2000 Name: 1. (5 points) For an eight-stage pipeline, how many cycles does it take to

More information

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl.

Lecture 4: Review of MIPS. Instruction formats, impl. of control and datapath, pipelined impl. Lecture 4: Review of MIPS Instruction formats, impl. of control and datapath, pipelined impl. 1 MIPS Instruction Types Data transfer: Load and store Integer arithmetic/logic Floating point arithmetic Control

More information

Static, multiple-issue (superscaler) pipelines

Static, multiple-issue (superscaler) pipelines Static, multiple-issue (superscaler) pipelines Start more than one instruction in the same cycle Instruction Register file EX + MEM + WB PC Instruction Register file EX + MEM + WB 79 A static two-issue

More information

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control

Mark Redekopp and Gandhi Puvvada, All rights reserved. EE 357 Unit 15. Single-Cycle CPU Datapath and Control EE 37 Unit Single-Cycle CPU path and Control CPU Organization Scope We will build a CPU to implement our subset of the MIPS ISA Memory Reference Instructions: Load Word (LW) Store Word (SW) Arithmetic

More information

CS/CoE 1541 Mid Term Exam (Fall 2018).

CS/CoE 1541 Mid Term Exam (Fall 2018). CS/CoE 1541 Mid Term Exam (Fall 2018). Name: Question 1: (6+3+3+4+4=20 points) For this question, refer to the following pipeline architecture. a) Consider the execution of the following code (5 instructions)

More information

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1

Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Lecture 3: The Processor (Chapter 4 of textbook) Chapter 4.1 Introduction Chapter 4.1 Chapter 4.2 Review: MIPS (RISC) Design Principles Simplicity favors regularity fixed size instructions small number

More information

Multi-cycle Datapath (Our Version)

Multi-cycle Datapath (Our Version) ulti-cycle Datapath (Our Version) npc_sel Next PC PC Instruction Fetch IR File Operand Fetch A B ExtOp ALUSrc ALUctr Ext ALU R emrd emwr em Access emto Data em Dst Wr. File isters added: IR: Instruction

More information

ECE 331 Hardware Organization and Design. UMass ECE Discussion 10 4/5/2018

ECE 331 Hardware Organization and Design. UMass ECE Discussion 10 4/5/2018 ECE 331 Hardware Organization and Design UMass ECE Discussion 10 4/5/2018 Today s Discussion Topics Direct and Set Associative Cache Midterm Review Hazards Code reordering and forwarding Direct Mapped

More information