MICROPROGRAMMED CONTROL

Size: px
Start display at page:

Download "MICROPROGRAMMED CONTROL"

Transcription

1 1 MICROPROGRAMMED CONTROL Control Memory Sequencing Microinstructions Microprogram Example Design of Control nit Microinstruction Format Nanostorage and Nanoprogram

2 2 Implementation of Control nit COMPARISON OF CONTROL NIT IMPLEMENTATIONS Control nit Implementation Combinational Logic Circuits (Hard-wired) Memory Control Data I R Status F/Fs Control nit's State Timing State Ins. Cycle State Combinational Logic Circuits Control Points CP Microprogram M e m o r y Control Data I R Status F/Fs Next Address Generation Logic C S A R Control Storage ( -program memory) C S D R } D C P s CP

3 3 TERMINOLOGY Microprogram / Microcode (corresponding to one CP instruction) - Consists of microinstructions - Program stored in memory that generates all control signals required to execute the instruction set correctly Microinstruction - Contains a control word and a sequencing word Control Word - All control information required for one clock cycle Sequencing Word - Information needed to decide the next microinstruction address Control Memory (Control Storage: CS) - Storage for microprogram. Generally ROM Writeable Control Memory (Writeable Control Storage:WCS) - CS whose contents can be modified -> microprogram -> Instruction set Dynamic Microprogramming - Computer system whose control unit is implemented with a microprogram in WCS - Microprogram can be changed by a system programmer or a user

4 4 TERMINOLOGY Sequencer (Microprogram Sequencer) A Microprogram Control nit that determines the Microinstruction Address to be executed in the next clock cycle Sequencing Capabilities Required in a Control Storage - Incrementing of the control address register - nconditional and conditional branches - A mapping process from the bits of the machine instruction to an address for control memory - A facility for subroutine call and return

5 5 MICROINSTRCTION SEQENCING Sequencing Instruction code Mapping logic Status bits Branch logic MX select Multiplexers Control address register (CAR) Subroutine register (SBR) Incrementer Control memory (ROM) select a status bit Branch address Microoperations

6 6 CONDITIONAL BRANCH Sequencing Conditional Branch If Condition is true, then Branch (address from the next address field of the current microinstruction) else Fall Through Conditions to Test: O(overflow), N(negative), Z(zero), C(carry), etc. nconditional Branch Fixing the value of one status bit at the input of the multiplexer to 1

7 7 MAPPING OF INSTRCTIONS Sequencing Direct Mapping OP-codes of Instructions ADD 0000 AND 0001 LDA 0010 STA 0011 BN Address ADD Routine AND Routine LDA Routine STA Routine BN Routine Control Storage Mapping Bits 10 xxxx 010 Address ADD Routine AND Routine LDA Routine STA Routine BN Routine

8 8 MAPPING OF INSTRCTIONS TO MICROROTINES Sequencing Mapping from the OP-code of an instruction to the address of the Microinstruction which is the starting microinstruction of its execution microprogram Machine Instruction Mapping bits Microinstruction address OP-code Address 0 x x x x Mapping function implemented by ROM or PLA OP-code Mapping memory (ROM or PLA) Control address register Control Memory

9 MICROPROGRAM Computer Configuration 9 EXAMPLE Microprogram MX 10 0 AR 10 0 PC Address Memory 2048 x 16 MX 6 0 SBR 6 0 CAR 15 0 DR Control memory 128 x 20 Control unit Arithmetic logic and shift unit 15 0 AC

10 10 MACHINE INSTRCTION FORMAT Microprogram Machine instruction format I Opcode Address 0 Sample machine instructions Symbol OP-code Description ADD 0000 AC AC + M[EA] BRANCH 0001 if (AC < 0) then (PC EA) STORE 0010 M[EA] AC EXCHANGE 0011 AC M[EA], M[EA] AC EA is the effective address Microinstruction Format F1 F2 F3 CD BR AD F1, F2, F3: Microoperation fields CD: Condition for branching BR: Branch field AD: Address field

11 11 Microprogram MICROINSTRCTION FIELD DESCRIPTIONS - F1,F2,F3 F1 Microoperation Symbol 000 None NOP 001 AC AC + DR ADD 010 AC 0 CLRAC 011 AC AC + 1 INCAC 100 AC DR DRTAC 101 AR DR(0-10) DRTAR 110 AR PC PCTAR 111 M[AR] DR WRITE F2 Microoperation Symbol 000 None NOP 001 AC AC - DR SB 010 AC AC DR OR 011 AC AC DR AND 100 DR M[AR] READ 101 DR AC ACTDR 110 DR DR + 1 INCDR 111 DR(0-10) PC PCTDR F3 Microoperation Symbol 000 None NOP 001 AC AC DR XOR 010 AC AC COM 011 AC shl AC SHL 100 AC shr AC SHR 101 PC PC + 1 INCPC 110 PC AR ARTPC 111 Reserved

12 12 Microprogram MICROINSTRCTION FIELD DESCRIPTIONS - CD, BR CD Condition Symbol Comments 00 Always = 1 nconditional branch 01 DR(15) I Indirect address bit 10 AC(15) S Sign bit of AC 11 AC = 0 Z Zero value in AC BR Symbol Function 00 CAR AD if condition = 1 CAR CAR + 1 if condition = 0 01 CALL CAR AD, SBR CAR + 1 if condition = 1 CAR CAR + 1 if condition = 0 10 RET CAR SBR (Return from subroutine) 11 MAP CAR(2-5) DR(11-14), CAR(0,1,6) 0

13 13 SYMBOLIC MICROINSTRCTIONS Microprogram Symbols are used in microinstructions as in assembly language A symbolic microprogram can be translated into its binary equivalent by a microprogram assembler. Sample Format five fields: Label: label; micro-ops; CD; BR; AD may be empty or may specify a symbolic address terminated with a colon Micro-ops: consists of one, two, or three symbols separated by commas CD: one of {, I, S, Z}, where : nconditional Branch I: Indirect address bit S: Sign of AC Z: Zero value in AC BR: AD: one of {, CALL, RET, MAP} one of {Symbolic address, NEXT, empty}

14 14 Microprogram SYMBOLIC MICROPROGRAM - FETCH ROTINE During FETCH, Read an instruction from memory and decode the instruction and update PC Sequence of microoperations in the fetch cycle: AR PC DR M[AR], PC PC + 1 AR DR(0-10), CAR(2-5) DR(11-14), CAR(0,1,6) 0 Symbolic microprogram for the fetch cycle: FETCH: ORG 64 PCTAR READ, INCPC DRTAR NEXT NEXT MAP Binary equivalents translated by an assembler Binary address F1 F2 F3 CD BR AD

15 15 SYMBOLIC MICROPROGRAM Microprogram Control Storage: bit words The first 64 words: Routines for the 16 machine instructions (as 4 bits in op code field) The last 64 words: sed for other purpose (e.g., fetch routine and other subroutines) Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are 0( ), 4( ), 8, 12, 16, 20,..., 60 Partial Symbolic Microprogram Label Microops CD BR AD ADD: ORG 0 NOP READ ADD I CALL INDRCT NEXT FETCH BRANCH: OVER: ORG 4 NOP NOP NOP ARTPC S I CALL OVER FETCH INDRCT FETCH STORE: EXCHANGE: FETCH: INDRCT: ORG 8 NOP ACTDR WRITE ORG 12 NOP READ ACTDR, DRTAC WRITE ORG 64 PCTAR READ, INCPC DRTAR READ DRTAR I I CALL CALL MAP RET INDRCT NEXT FETCH INDRCT NEXT NEXT FETCH NEXT NEXT NEXT INDRCT: when I=1, say, for ADD at 0 address, and to get Effective Address of data a branch to INDRCT (a subroutine) occurs and SBR return address ( 1 in this case). RET from subroutine INDRCT CAR SBR

16 16 BINARY MICROPROGRAM Microprogram Address Binary Microinstruction Micro Routine Decimal Binary F1 F2 F3 CD BR AD ADD BRANCH STORE EXCHANGE FETCH INDRCT This microprogram can be implemented using ROM

17 PCTAR DRTAR Microprogrammed Control 17 DESIGN OF CONTROL NIT - DECODING MICROOPERATIONAL FIELDS- Design of Control nit F1 microoperation fields F2 F3 3 x 8 decoder DRTAC ADD From PC 3 x 8 decoder From DR(0-10) AND Load 3 x 8 decoder Arithmetic logic and shift unit AC AC DR Few functions are shown as outputs of 3 decoders Note: Instead of using gates to generate control signals for ADD, AND, and DRTAC these will become now outputs of MX Select 0 1 Multiplexers Load AR Clock

18 S 1 S 0 Address Source 00 CAR + 1, In-Line 01 SBR RETRN 10 CS(AD), Branch or CALL 11 MAP 18 MICROPROGRAM SEQENCER - NEXT MICROINSTRCTION ADDRESS LOGIC - Address source selection External (MAP) S S 1 0 Branch, CALL Address MX1 RETRN form Subroutine In-Line SBR Incrementer L Subroutine CALL Design of Control nit Clock CAR Control Storage MX-1 selects an address from one of four sources and routes it into a CAR - In-Line Sequencing CAR Branch, Subroutine Call CS(AD) - Return from Subroutine Output of SBR - New Machine instruction MAP

19 19 MICROPROGRAM SEQENCER - CONDITION AND BRANCH CONTROL - Design of Control nit From CP 1 I S Z MX2 Select Test BR field of CS T I 0 I 1 Input logic L L(load SBR with PC) for subroutine Call S 0 for next address S 1 selection CD Field of CS Input Logic I 0 I 1 T Meaning Source of Address S 1 S 0 L 000 In-Line CAR CS(AD) In-Line CAR CALL CS(AD) and SBR <- CAR x RET SBR x MAP DR(11-14) 11 0 S 0 = I 0 S 1 = I 0 I 1 + I 0 T L = I 0 I 1 T

20 20 Design of Control nit MICROPROGRAM SEQENCER External (MAP) I I 0 T Input logic L S 1 1 S 0 MX1 SBR Load 1 I SZ MX2 Test Incrementer Select Clock CAR Control memory Microops CD BR AD......

MICROPROGRAMMED CONTROL

MICROPROGRAMMED CONTROL 1 MICROPROGRAMMED CONTROL Control Memory Sequencing Microinstructions Microprogram Example Design of Control nit Microinstruction Format Nanostorage and Nanoprogram 2 Implementation of Control nit COMPARISON

More information

MICROPROGRAMMED CONTROL

MICROPROGRAMMED CONTROL 1 MICROPROGRAMMED CONTROL Control Memory Sequencing Microinstructions Microprogram Example Design of Control nit Microinstruction Format Nanostorage and Nanoprogram External input (IR) Next address generator

More information

Nanostorage and Nanoprogram

Nanostorage and Nanoprogram Computer System AA rc hh ii tec ture (7 ) Nanostorage and Nanoprogram 2 Combinational Logic Circuits (Hard-wired) Microprogram 3 Microprogram - - Microinstruction - - - - Control Memory(Control Storage:

More information

Control Unit Implementation Hardwired Memory

Control Unit Implementation Hardwired Memory Chapter 7: Microprogrammed nit mplementation Hardwired nstruction code Sequence Counter Combinational Logic Circuits signals Microprogrammed nstruction code CAR: Register CDR: Data Register Next Generator

More information

MICROPROGRAMMED CONTROL:-

MICROPROGRAMMED CONTROL:- MICROPROGRAMMED CONTROL:- Two methods of implementing control unit are Hardwired Control & Micro-Programmed Control. Hardwired: - when the control signals are generated by hardware using conventional logic

More information

Blog - https://anilkumarprathipati.wordpress.com/

Blog - https://anilkumarprathipati.wordpress.com/ Control Memory 1. Introduction The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Computer Architecture Programming the Basic Computer

Computer Architecture Programming the Basic Computer 4. The Execution of the EXCHANGE Instruction The EXCHANGE routine reads the operand from the effective address and places it in DR. The contents of DR and AC are interchanged in the third microinstruction.

More information

Chapter 3 : Control Unit

Chapter 3 : Control Unit 3.1 Control Memory Chapter 3 Control Unit The function of the control unit in a digital computer is to initiate sequences of microoperations. When the control signals are generated by hardware using conventional

More information

Chap. 7 Microprogrammed Control(Control Unit)

Chap. 7 Microprogrammed Control(Control Unit) (Control Unit) 7-1 7-1 Control Memory Control Unit Initiate sequences of microoperations» Control signal (that specify microoperations) in a bus-organized system groups of bits that select the paths in

More information

Fig: Computer memory with Program, data, and Stack. Blog - NEC (Autonomous) 1

Fig: Computer memory with Program, data, and Stack. Blog -   NEC (Autonomous) 1 Central Processing Unit 1. Stack Organization A useful feature that is included in the CPU of most computers is a stack or last in, first out (LIFO) list. A stack is a storage device that stores information

More information

MICROPROGRAMMED CONTROL

MICROPROGRAMMED CONTROL MICROPROGRAMMED CONTROL Hardwired Control Unit: When the control signals are generated by hardware using conventional logic design techniques, the control unit is said to be hardwired. Micro programmed

More information

Computer Organization and Architecture

Computer Organization and Architecture Computer Organization and Architecture Dr Binu P Chacko Associate Professor Department of Computer Science Prajyoti Niketan College, Pudukad, THRISSUR Instruction Codes Computer organization is defined

More information

Computer Architecture

Computer Architecture http://www.bsccsit.com/ Computer Architecture CSC. 201 Third Semester Prepared By: Arjun Singh Saud Special thanks to Mr. Arjun Singh Saud for providing this valuable note! Chapter 1 Data representation

More information

Computer Organization Control Unit. Department of Computer Science Missouri University of Science & Technology

Computer Organization Control Unit. Department of Computer Science Missouri University of Science & Technology Control Unit Department of Computer Science Missouri University of Science & Technology hurson@mst.edu 1 Note, this unit will be covered in three lectures. In case you finish it earlier, then you have

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN 1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University

Chapter 5. Computer Architecture Organization and Design. Computer System Architecture Database Lab, SANGJI University Chapter 5. Computer Architecture Organization and Design Computer System Architecture Database Lab, SANGJI University Computer Architecture Organization and Design Instruction Codes Computer Registers

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN 1 BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle

CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle CS 224: Computer Organization S.KHABET CHAPTER 5 Basic Organization and Design Outline Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions

More information

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2

Class Notes. Dr.C.N.Zhang. Department of Computer Science. University of Regina. Regina, SK, Canada, S4S 0A2 Class Notes CS400 Part VI Dr.C.N.Zhang Department of Computer Science University of Regina Regina, SK, Canada, S4S 0A2 C. N. Zhang, CS400 83 VI. CENTRAL PROCESSING UNIT 1 Set 1.1 Addressing Modes and Formats

More information

Basic Computer Organization - Designing your first computer. Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides.

Basic Computer Organization - Designing your first computer. Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides. Basic Computer Organization - Designing your first computer Acknowledgment: Most of the slides are adapted from Prof. Hyunsoo Yoon s slides. 1 This week- BASIC COMPUTER ORGANIZATION AND DESIGN Instruction

More information

5-1 Instruction Codes

5-1 Instruction Codes Chapter 5: Lo ai Tawalbeh Basic Computer Organization and Design 5-1 Instruction Codes The Internal organization of a digital system is defined by the sequence of microoperations it performs on data stored

More information

Faculty of Engineering Systems & Biomedical Dept. First Year Cairo University Sheet 6 Computer I

Faculty of Engineering Systems & Biomedical Dept. First Year Cairo University Sheet 6 Computer I aculty of Engineering Systems & Biomedical Dept. irst Year Cairo University Sheet 6 Computer I 1. Choose rue or alse for each of the following statements a) In a direct addressing mode instruction, the

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN

UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN 1 UNIT:2 BASIC COMPUTER ORGANIZATION AND DESIGN BASIC COMPUTER ORGANIZATION AND DESIGN 2.1 Instruction Codes 2.2 Computer Registers AC or Accumulator, Data Register or DR, the AR or Address Register, program

More information

BASIC COMPUTER ORGANIZATION AND DESIGN

BASIC COMPUTER ORGANIZATION AND DESIGN BASIC COMPUTER ORGANIZATION AND DESIGN Instruction Codes Computer Registers Computer Instructions Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Complete

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

COMPUTER ORGANIZATION

COMPUTER ORGANIZATION COMPUTER ORGANIZATION INDEX UNIT-II PPT SLIDES Srl. No. Module as per Session planner Lecture No. PPT Slide No. 1. Register Transfer language 2. Register Transfer Bus and memory transfers 3. Arithmetic

More information

csitnepal Unit 3 Basic Computer Organization and Design

csitnepal Unit 3 Basic Computer Organization and Design Unit 3 Basic Computer Organization and Design Introduction We introduce here a basic computer whose operation can be specified by the resister transfer statements. Internal organization of the computer

More information

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions

Chapter 05: Basic Processing Units Control Unit Design. Lesson 15: Microinstructions Chapter 05: Basic Processing Units Control Unit Design Lesson 15: Microinstructions 1 Objective Understand that an instruction implement by sequences of control signals generated by microinstructions in

More information

Computer Organization (Autonomous)

Computer Organization (Autonomous) Computer Organization (Autonomous) UNIT II Sections - A & D Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. SYLLABUS Basic Computer Organization and Design: Instruction codes Stored Program

More information

Computer Organization and Design

Computer Organization and Design CSE211 Computer Organization and Design Lecture : 3 Tutorial: 1 Practical: 0 Credit: 4 KIDS Labs 1 Unit 1 : Basics of Digital Electronics Introduction Logic Gates Flip Flops Decoder Encoder Multiplexers

More information

Basic Computer Organization and Design Part 2/3

Basic Computer Organization and Design Part 2/3 Basic Computer Organization and Design Part 2/3 Adapted by Dr. Adel Ammar Computer Organization Basic Computer Instructions Basic Computer Instruction Format Memory-Reference Instructions (OP-code = 000

More information

Computer Architecture

Computer Architecture Computer Architecture Lecture 1: Digital logic circuits The digital computer is a digital system that performs various computational tasks. Digital computers use the binary number system, which has two

More information

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 14: Microprogrammed Control

Chapter 05: Basic Processing Units Control Unit Design Organization. Lesson 14: Microprogrammed Control Chapter 05: Basic Processing Units Control Unit Design Organization Lesson 14: Microprogrammed Control Objective Understand the design of microprogrammed control unit to generate all sequences of the control

More information

Blog -

Blog - . Instruction Codes Every different processor type has its own design (different registers, buses, microoperations, machine instructions, etc) Modern processor is a very complex device It contains Many

More information

CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN

CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN CHAPTER SIX BASIC COMPUTER ORGANIZATION AND DESIGN 6.1. Instruction Codes The organization of a digital computer defined by: 1. The set of registers it contains and their function. 2. The set of instructions

More information

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1

CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 CHETTINAD COLLEGE OF ENGINEERING AND TECHNOLOGY COMPUTER ARCHITECURE- III YEAR EEE-6 TH SEMESTER 16 MARKS QUESTION BANK UNIT-1 Data representation: (CHAPTER-3) 1. Discuss in brief about Data types, (8marks)

More information

Micro-Operations. execution of a sequence of steps, i.e., cycles

Micro-Operations. execution of a sequence of steps, i.e., cycles Micro-Operations Instruction execution execution of a sequence of steps, i.e., cycles Fetch, Indirect, Execute & Interrupt cycles Cycle - a sequence of micro-operations Micro-operations data transfer between

More information

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR.

There are four registers involved in the fetch cycle: MAR, MBR, PC, and IR. CS 320 Ch. 20 The Control Unit Instructions are broken down into fetch, indirect, execute, and interrupt cycles. Each of these cycles, in turn, can be broken down into microoperations where a microoperation

More information

Controller Implementation--Part II

Controller Implementation--Part II Controller Implementation--Part II Alternative controller FSM implementation approaches based on: Classical Moore and Mealy machines Time-State: Divide and Conquer Jump counters Microprogramming (ROM)

More information

Chapter 16. Control Unit Operation. Yonsei University

Chapter 16. Control Unit Operation. Yonsei University Chapter 16 Control Unit Operation Contents Micro-Operation Control of the Processor Hardwired Implementation 16-2 Micro-Operations Micro-Operations Micro refers to the fact that each step is very simple

More information

REGISTER TRANSFER LANGUAGE

REGISTER TRANSFER LANGUAGE REGISTER TRANSFER LANGUAGE The operations executed on the data stored in the registers are called micro operations. Classifications of micro operations Register transfer micro operations Arithmetic micro

More information

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital

COMPUTER ARCHITECTURE AND ORGANIZATION Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital Register Transfer and Micro-operations 1. Introduction A digital system is an interconnection of digital hardware modules that accomplish a specific information-processing task. Digital systems vary in

More information

Computer Architecture and Organization: L06: Instruction Cycle

Computer Architecture and Organization: L06: Instruction Cycle Computer Architecture and Organization: L06: Instruction Cycle By: A. H. Abdul Hafez Abdul.hafez@hku.edu.tr, ah.abdulhafez@gmail.com 1 Outlines 1. Fetch and decode 2. Determine the Type of Instruction

More information

Register Transfer and Micro-operations

Register Transfer and Micro-operations Register Transfer Language Register Transfer Bus Memory Transfer Micro-operations Some Application of Logic Micro Operations Register Transfer and Micro-operations Learning Objectives After reading this

More information

CHAPTER 8: Central Processing Unit (CPU)

CHAPTER 8: Central Processing Unit (CPU) CS 224: Computer Organization S.KHABET CHAPTER 8: Central Processing Unit (CPU) Outline Introduction General Register Organization Stack Organization Instruction Formats Addressing Modes 1 Major Components

More information

SCRAM Introduction. Philipp Koehn. 19 February 2018

SCRAM Introduction. Philipp Koehn. 19 February 2018 SCRAM Introduction Philipp Koehn 19 February 2018 This eek 1 Fully work through a computer circuit assembly code Simple but Complete Random Access Machine (SCRAM) every instruction is 8 bit 4 bit for op-code:

More information

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015

Advanced Parallel Architecture Lesson 3. Annalisa Massini /2015 Advanced Parallel Architecture Lesson 3 Annalisa Massini - 2014/2015 Von Neumann Architecture 2 Summary of the traditional computer architecture: Von Neumann architecture http://williamstallings.com/coa/coa7e.html

More information

C.P.U Organization. Memory Unit. Central Processing Unit (C.P.U) Input-Output Processor (IOP) Figure (1) Digital Computer Block Diagram

C.P.U Organization. Memory Unit. Central Processing Unit (C.P.U) Input-Output Processor (IOP) Figure (1) Digital Computer Block Diagram C.P.U Organization 1.1 Introduction A computer system is sometimes subdivided into two functional entities "Hardware" and "Software". The H/W of the computer consists of all the electronic components and

More information

Lecture 11: Control Unit and Instruction Encoding

Lecture 11: Control Unit and Instruction Encoding CSCI25 Computer Organization Lecture : Control Unit and Instruction Encoding Ming-Chang YANG mcyang@cse.cuhk.edu.hk Reading: Chap. 7.4~7.5 (5 th Ed.) Recall: Components of a Processor Register file: a

More information

CHAPTER 4: Register Transfer Language and Microoperations

CHAPTER 4: Register Transfer Language and Microoperations CS 224: Computer Organization S.KHABET CHAPTER 4: Register Transfer Language and Microoperations Outline Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations

More information

Module 5 - CPU Design

Module 5 - CPU Design Module 5 - CPU Design Lecture 1 - Introduction to CPU The operation or task that must perform by CPU is: Fetch Instruction: The CPU reads an instruction from memory. Interpret Instruction: The instruction

More information

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

More information

Unit II Basic Computer Organization

Unit II Basic Computer Organization 1. Define the term. Internal Organization-The internal organization of a digital system is defined by the sequence of microoperations it performs on data stored in its registers. Program- A program is

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4)

Machine Instructions vs. Micro-instructions. Micro-programmed Control Ch 15. Machine Instructions vs. Micro-instructions (2) Hardwired Control (4) Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Machine Instructions vs. Micro-instructions Memory execution unit CPU control memory

More information

Computer Logic II CCE 2010

Computer Logic II CCE 2010 Computer Logic II CCE 2010 Dr. Owen Casha Computer Logic II 1 The Processing Unit Computer Logic II 2 The Processing Unit In its simplest form, a computer has one unit that executes program instructions.

More information

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control,

Basic Processing Unit: Some Fundamental Concepts, Execution of a. Complete Instruction, Multiple Bus Organization, Hard-wired Control, UNIT - 7 Basic Processing Unit: Some Fundamental Concepts, Execution of a Complete Instruction, Multiple Bus Organization, Hard-wired Control, Microprogrammed Control Page 178 UNIT - 7 BASIC PROCESSING

More information

Micro-programmed Control Ch 15

Micro-programmed Control Ch 15 Micro-programmed Control Ch 15 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to modify Lots of

More information

For Example: P: LOAD 5 R0. The command given here is used to load a data 5 to the register R0.

For Example: P: LOAD 5 R0. The command given here is used to load a data 5 to the register R0. Register Transfer Language Computers are the electronic devices which have several sets of digital hardware which are inter connected to exchange data. Digital hardware comprises of VLSI Chips which are

More information

Processing Unit CS206T

Processing Unit CS206T Processing Unit CS206T Microprocessors The density of elements on processor chips continued to rise More and more elements were placed on each chip so that fewer and fewer chips were needed to construct

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

TYPES OF INTERRUPTS: -

TYPES OF INTERRUPTS: - There are 3 types of interrupts. TYPES OF INTERRUPTS: - External Interrupts. Internal Interrupts. Software interrupts. Hardware Interrupts (1) External interrupts come from I/O devices, from a timing device

More information

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT UNIT - V MEMORY P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents Memory: Introduction, Random-Access memory, Memory decoding, ROM, Programmable Logic Array, Programmable Array Logic, Sequential programmable

More information

Micro-programmed Control Ch 17

Micro-programmed Control Ch 17 Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary 1 Hardwired Control (4) Complex Fast Difficult to design Difficult to

More information

Programmable machines

Programmable machines Page 1 of 9 Programmable machines indicates problems that have been selected for discussion in section, time permitting. Problem 1. Consider the following circuit: The heavy lines represent busses, which

More information

Digital System Design Using Verilog. - Processing Unit Design

Digital System Design Using Verilog. - Processing Unit Design Digital System Design Using Verilog - Processing Unit Design 1.1 CPU BASICS A typical CPU has three major components: (1) Register set, (2) Arithmetic logic unit (ALU), and (3) Control unit (CU) The register

More information

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions

Hardwired Control (4) Micro-programmed Control Ch 17. Micro-programmed Control (3) Machine Instructions vs. Micro-instructions Micro-programmed Control Ch 17 Micro-instructions Micro-programmed Control Unit Sequencing Execution Characteristics Course Summary Hardwired Control (4) Complex Fast Difficult to design Difficult to modify

More information

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15]

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] Code No: 09A50402 R09 Set No. 2 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] 2. (a) Discuss asynchronous serial transfer concept? (b) Explain in

More information

REGISTER TRANSFER AND MICROOPERATIONS

REGISTER TRANSFER AND MICROOPERATIONS REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

Page 521 CPSC 5155 Last Revised July 9, 2011 Copyright 2011 by Edward L. Bosworth, Ph.D. All rights reserved.

Page 521 CPSC 5155 Last Revised July 9, 2011 Copyright 2011 by Edward L. Bosworth, Ph.D. All rights reserved. Chapter 15 Implementation of the Central Processing Unit In this chapter, we continue consideration of the design and implementation of the CPU, more specifically the control unit of the CPU. In previous

More information

BASIC PROCESSING UNIT Control Unit has two major functions: To control the sequencing of information-processing tasks performed by machine Guiding and supervising each unit to make sure that each unit

More information

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit

Lecture1: introduction. Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit Lecture1: introduction Outline: History overview Central processing unite Register set Special purpose address registers Datapath Control unit 1 1. History overview Computer systems have conventionally

More information

TABLE 8-1. Control Signals for Binary Multiplier. Load. MUL0 Q 0 CAQ sr CAQ. Shift_dec. C out. Load LOADQ. CAQ sr CAQ. Shift_dec P P 1.

TABLE 8-1. Control Signals for Binary Multiplier. Load. MUL0 Q 0 CAQ sr CAQ. Shift_dec. C out. Load LOADQ. CAQ sr CAQ. Shift_dec P P 1. T-192 Control Signals for Binary Multiplier TABLE 8-1 Control Signals for Binary Multiplier Block Diagram Module Microoperation Control Signal Name Control Expression Register A: A 0 Initialize IDLE G

More information

Chapter 14 Design of the Central Processing Unit

Chapter 14 Design of the Central Processing Unit Chapter 14 Design of the Central Processing Unit We now focus on the detailed design of the CPU (Central Processing Unit) of the Boz 7. The CPU has two major components: the Control Unit and the ALU (Arithmetic

More information

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri

Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri Programming Level A.R. Hurson Department of Computer Science Missouri University of Science & Technology Rolla, Missouri 65409 hurson@mst.edu A.R. Hurson 1 Programming Level Computer: A computer with a

More information

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations.

Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. CS 320 Ch. 21 Microprogrammed Control Microprogramming is a technique to implement the control system of a CPU using a control store to hold the microoperations. Microprogramming was invented by Maurice

More information

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems.

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems. REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

TYPICAL QUESTIONS & ANSWERS

TYPICAL QUESTIONS & ANSWERS TYPICAL QUESTIONS & ANSWERS PART-I Each Question carries 2 marks. OBJECTIVE TYPE QUESTIONS Choose the correct or best alternative in the following: Q.1 In Reverse Polish notation, expression A*B+C*D is

More information

IAS Computer. Instructions

IAS Computer. Instructions IAS Computer Instructions The IAS computer was designed in the 1940's and built in the early 1950's by John von Neumann at the Princeton Institute for Advanced Studies. It can arguably be called the father

More information

Processing Unit. Unit II

Processing Unit. Unit II Processing Unit Unit II Execution of a complete instruction Add (R3), R1 - Adds the contents of a memory location pointed to by R3 to register R1 and store the result in R1. 1. Fetch the instruction 2.

More information

Advanced Computer Architecture

Advanced Computer Architecture Advanced Computer Architecture Lecture No. 22 Reading Material Vincent P. Heuring&Harry F. Jordan Chapter 5 Computer Systems Design and Architecture 5.3 Summary Microprogramming Working of a General Microcoded

More information

Computer Organization (Autonomous)

Computer Organization (Autonomous) Computer Organization (Autonomous) UNIT I Sections - A & D Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. SYLLABUS Introduction: Types of Computers, Functional units of Basic Computer (Block

More information

Part A Questions 1. What is an ISP? ISP stands for Instruction Set Processor. This unit is simply called as processor which executes machine instruction and coordinates the activities of other units..

More information

REGISTER TRANSFER AND MICROOPERATIONS

REGISTER TRANSFER AND MICROOPERATIONS 1 REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

More information

CS 2461: Computer Architecture I

CS 2461: Computer Architecture I Computer Architecture is... CS 2461: Computer Architecture I Instructor: Prof. Bhagi Narahari Dept. of Computer Science Course URL: www.seas.gwu.edu/~bhagiweb/cs2461/ Instruction Set Architecture Organization

More information

UNIT-II. Part-2: CENTRAL PROCESSING UNIT

UNIT-II. Part-2: CENTRAL PROCESSING UNIT Page1 UNIT-II Part-2: CENTRAL PROCESSING UNIT Stack Organization Instruction Formats Addressing Modes Data Transfer And Manipulation Program Control Reduced Instruction Set Computer (RISC) Introduction:

More information

Midterm Examination # 2 Wednesday, March 18, Duration of examination: 75 minutes

Midterm Examination # 2 Wednesday, March 18, Duration of examination: 75 minutes Page 1 of 8 School of Computer Science 60-265-01 Computer Architecture and Digital Design Winter 2009 Midterm Examination # 2 Wednesday, March 18, 2009 Student Name: First Name Family Name Student ID Number:

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Basic Processing Unit (Chapter 7)

Basic Processing Unit (Chapter 7) Basic Processing Unit (Chapter 7) IN1212-PDS 1 Problem instruction? y Decoder a ALU y f Reg IN1212-PDS 2 Basic cycle Assume an instruction occupies a single word in memory Basic cycle to be implemented:

More information

Chapter 17. Microprogrammed Control. Yonsei University

Chapter 17. Microprogrammed Control. Yonsei University Chapter 17 Microprogrammed Control Contents Basic Concepts Microinstruction Sequencing Microinstruction Execution TI 8800 Applications of Microprogramming 17-2 Introduction Basic Concepts An alternative

More information

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated.

8-1. Fig. 8-1 ASM Chart Elements 2001 Prentice Hall, Inc. M. Morris Mano & Charles R. Kime LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 2e, Updated. 8-1 Name Binary code IDLE 000 Register operation or output R 0 RUN Condition (a) State box (b) Example of state box (c) Decision box IDLE R 0 From decision box START Register operation or output PC 0 (d)

More information

EECS150. Implement of Processor FSMs

EECS150. Implement of Processor FSMs EECS5 Section Controller Implementations Fall Implement of Processor FSMs Classical Finite State Machine Design Divide and Conquer Approach: Time-State Method Partition FSM into multiple communicating

More information

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60

M. Sc (CS) (II Semester) Examination, Subject: Computer System Architecture Paper Code: M.Sc-CS-203. Time: Three Hours] [Maximum Marks: 60 M. Sc (CS) (II Semester) Examination, 2012-13 Subject: Computer System Architecture Paper Code: M.Sc-CS-203 Time: Three Hours] [Maximum Marks: 60 Note: Question Number 1 is compulsory. Answer any four

More information

CC 311- Computer Architecture. The Processor - Control

CC 311- Computer Architecture. The Processor - Control CC 311- Computer Architecture The Processor - Control Control Unit Functions: Instruction code Control Unit Control Signals Select operations to be performed (ALU, read/write, etc.) Control data flow (multiplexor

More information

William Stallings Computer Organization and Architecture

William Stallings Computer Organization and Architecture William Stallings Computer Organization and Architecture Chapter 16 Control Unit Operations Rev. 3.2 (2009-10) by Enrico Nardelli 16-1 Execution of the Instruction Cycle It has many elementary phases,

More information

PSIM: Processor SIMulator (version 4.2)

PSIM: Processor SIMulator (version 4.2) PSIM: Processor SIMulator (version 4.2) by Charles E. Stroud, Professor Dept. of Electrical & Computer Engineering Auburn University July 23, 2003 ABSTRACT A simulator for a basic stored program computer

More information

PESIT Bangalore South Campus

PESIT Bangalore South Campus INTERNAL ASSESSMENT TEST I Date: 30/08/2017 Max Marks: 40 Subject & Code: Computer Organization 15CS34 Semester: III (A & B) Name of the faculty: Mrs.Sharmila Banu.A Time: 8.30 am 10.00 am Answer any FIVE

More information

Chapter 4. MARIE: An Introduction to a Simple Computer 4.8 MARIE 4.8 MARIE A Discussion on Decoding

Chapter 4. MARIE: An Introduction to a Simple Computer 4.8 MARIE 4.8 MARIE A Discussion on Decoding 4.8 MARIE This is the MARIE architecture shown graphically. Chapter 4 MARIE: An Introduction to a Simple Computer 2 4.8 MARIE MARIE s Full Instruction Set A computer s control unit keeps things synchronized,

More information

Chapter 20 - Microprogrammed Control (9 th edition)

Chapter 20 - Microprogrammed Control (9 th edition) Chapter 20 - Microprogrammed Control (9 th edition) Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 20 - Microprogrammed Control 1 / 47 Table of Contents I 1 Motivation 2 Basic Concepts

More information