Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Data Compression. Media Signal Processing, Presentation 2. Presented By: Jahanzeb Farooq Michael Osadebey"

Transcription

1 Data Compression Media Signal Processing, Presentation 2 Presented By: Jahanzeb Farooq Michael Osadebey

2 What is Data Compression? Definition -Reducing the amount of data required to represent a source of information (while preserving the original content as much as possible). Objectives 1- Reduce the amount of data storage space required. 2- Reduce length of data transmission time over the network.

3 Categories of Data Compression Lossy Data Compression -The original message can never be recovered exactly as it was before it was compressed. -Not good for critical data, when we cannot afford to loss even a single bit. -Used mostly in sound, video, image compressions where the losses can be tolerated. -A threshold level is used for truncation. (for example In a sound file, very high and low frequencies, which the human ear can not hear, may be truncated from the file) -Examples: JPG, MPEG -Lossy techniques are much more effective at compression than lossless methods. The higher the compression ratio, the more noise added to the data.

4 Categories of Data Compression Lossless Data Compression -The original message can be exactly decoded. -Repeated patterns in a message are found and encoded in an efficient manner. -Also referred to as redundancy reduction. -Must required for textual data, executable code, word processing files, tabulated numbers. -Popular algorithms: LZW(Lempel-Ziv-Welch), RLE(Run Length Encoding), Huffman coding, Arithmetic Coding, Delta Encoding. -GIF images (an example of lossless image compression)

5 Applications: Why We Need Data Compression? The two most important points are: 1-Data storage -Modern data processing applications require storage of large volumes of data. -Compressing a file to half of its original size is equivalent to doubling the capacity of the storage medium. 2-Data transmission -Modern communication networks require massive transfer of data over communication channels. -Compressing the amount of data to be transmitted is equivalent to increasing the capacity of the communication channel. -Smaller a file the faster it can be transferred over the channel.

6 Applications Applications -Wide range of applications. We can say Data Compression is used almost everywhere. Types -Image Compression -(e.g JPG images) -Audio Compression -(e.g MP3 s audio) -Video Compression -(e.g DVD s) -General Data Compression -(e.g ZIP files)

7 Data Compression Algorithms 1-Huffman coding 2-Run Length Encoding 3-Lempel-Ziv-Welch Encoding 4-Arithmatic coding 5-Delta Encoding Some others... 6-Adaptive Huffman coding 7-Wavelet compression 8-Discrete Cosine Transform

8 Huffman Coding -The characters in a data file are converted to a binary code. -The most common characters in the input file(characters with higher probability) are assigned short binary codes and -least common characters(with lower probabilities) are assigned longer binary codes. -Codes can be of different lengths

9 Lempel-Ziv-Welch -Uses a dictionary or code table. -Done by constructing a "dictionary" of words or parts of words in a message, and then using pointers to the words in the dictionary. -LZW to compress text, executable code, and similar data files to about one-half their original size. Higher compressions of 1:5 can also be achievable. Example: The string "ain" can be stored in the dictionary and then pointed to when it repeats.

10 Lempel-Ziv-Welch

11 Lempel-Ziv-Welch

12 Run Length Encoding -Coding data with frequently repeated characters. -It is called run-length because a run is made for repeated bits and coded in lesser bits by only stating how many bits were there. Example: -A file with 0 as repeating character. -Two characters in the compressed file replace each run of zeros. -For the first 3 repeating 0 s in original file, the first encdoed stream in compressed file is showing that 0 was repating 3 times.

13 Arithmetic Coding -Message is encoded as a real number in an interval from 0 to 1. -Shows better performance than Huffman coding. Disadvantages -The whole codeword must be received to start decoding. -If there is a corrupt bit in the codeword, the entire message could become corrupt. -Limited number of symbols to encode within a codeword.

14 Arithmetic Coding Symbol Probability Interval A 0.2 (0.0, 0.2) B 0.3 (0.2, 0.5) C 0.1 (0.5, 0.6) D 0.4 (0.6, 1.0) Symbol New A Interval A (0.0, 0.04) B (0.04, 0.1) C (0.1, 0.102) D (0.102, 0.2) Symbol New B Interval A (0.102, ) B (0.1216, 0.151) C (0.151, ) D (0.1608, 0.2) Symbol New D Interval A (0.1608, ) B ( , ) C (0.1804, ) D ( , 0.2)

CS 335 Graphics and Multimedia. Image Compression

CS 335 Graphics and Multimedia. Image Compression CS 335 Graphics and Multimedia Image Compression CCITT Image Storage and Compression Group 3: Huffman-type encoding for binary (bilevel) data: FAX Group 4: Entropy encoding without error checks of group

More information

Topic 5 Image Compression

Topic 5 Image Compression Topic 5 Image Compression Introduction Data Compression: The process of reducing the amount of data required to represent a given quantity of information. Purpose of Image Compression: the reduction of

More information

So, what is data compression, and why do we need it?

So, what is data compression, and why do we need it? In the last decade we have been witnessing a revolution in the way we communicate 2 The major contributors in this revolution are: Internet; The explosive development of mobile communications; and The

More information

EE67I Multimedia Communication Systems Lecture 4

EE67I Multimedia Communication Systems Lecture 4 EE67I Multimedia Communication Systems Lecture 4 Lossless Compression Basics of Information Theory Compression is either lossless, in which no information is lost, or lossy in which information is lost.

More information

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression

IMAGE COMPRESSION. Image Compression. Why? Reducing transportation times Reducing file size. A two way event - compression and decompression IMAGE COMPRESSION Image Compression Why? Reducing transportation times Reducing file size A two way event - compression and decompression 1 Compression categories Compression = Image coding Still-image

More information

A Comprehensive Review of Data Compression Techniques

A Comprehensive Review of Data Compression Techniques Volume-6, Issue-2, March-April 2016 International Journal of Engineering and Management Research Page Number: 684-688 A Comprehensive Review of Data Compression Techniques Palwinder Singh 1, Amarbir Singh

More information

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION

15 Data Compression 2014/9/21. Objectives After studying this chapter, the student should be able to: 15-1 LOSSLESS COMPRESSION 15 Data Compression Data compression implies sending or storing a smaller number of bits. Although many methods are used for this purpose, in general these methods can be divided into two broad categories:

More information

Compression; Error detection & correction

Compression; Error detection & correction Compression; Error detection & correction compression: squeeze out redundancy to use less memory or use less network bandwidth encode the same information in fewer bits some bits carry no information some

More information

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University

ECE 499/599 Data Compression & Information Theory. Thinh Nguyen Oregon State University ECE 499/599 Data Compression & Information Theory Thinh Nguyen Oregon State University Adminstrivia Office Hours TTh: 2-3 PM Kelley Engineering Center 3115 Class homepage http://www.eecs.orst.edu/~thinhq/teaching/ece499/spring06/spring06.html

More information

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding

Perceptual Coding. Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Perceptual Coding Lossless vs. lossy compression Perceptual models Selecting info to eliminate Quantization and entropy encoding Part II wrap up 6.082 Fall 2006 Perceptual Coding, Slide 1 Lossless vs.

More information

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I

IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I IMAGE PROCESSING (RRY025) LECTURE 13 IMAGE COMPRESSION - I 1 Need For Compression 2D data sets are much larger than 1D. TV and movie data sets are effectively 3D (2-space, 1-time). Need Compression for

More information

Engineering Mathematics II Lecture 16 Compression

Engineering Mathematics II Lecture 16 Compression 010.141 Engineering Mathematics II Lecture 16 Compression Bob McKay School of Computer Science and Engineering College of Engineering Seoul National University 1 Lossless Compression Outline Huffman &

More information

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year

Image compression. Stefano Ferrari. Università degli Studi di Milano Methods for Image Processing. academic year Image compression Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Data and information The representation of images in a raw

More information

IMAGE COMPRESSION TECHNIQUES

IMAGE COMPRESSION TECHNIQUES IMAGE COMPRESSION TECHNIQUES A.VASANTHAKUMARI, M.Sc., M.Phil., ASSISTANT PROFESSOR OF COMPUTER SCIENCE, JOSEPH ARTS AND SCIENCE COLLEGE, TIRUNAVALUR, VILLUPURAM (DT), TAMIL NADU, INDIA ABSTRACT A picture

More information

Multimedia Systems. Part 20. Mahdi Vasighi

Multimedia Systems. Part 20. Mahdi Vasighi Multimedia Systems Part 2 Mahdi Vasighi www.iasbs.ac.ir/~vasighi Department of Computer Science and Information Technology, Institute for dvanced Studies in asic Sciences, Zanjan, Iran rithmetic Coding

More information

Image coding and compression

Image coding and compression Image coding and compression Robin Strand Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Today Information and Data Redundancy Image Quality Compression Coding

More information

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1

IMAGE COMPRESSION- I. Week VIII Feb /25/2003 Image Compression-I 1 IMAGE COMPRESSION- I Week VIII Feb 25 02/25/2003 Image Compression-I 1 Reading.. Chapter 8 Sections 8.1, 8.2 8.3 (selected topics) 8.4 (Huffman, run-length, loss-less predictive) 8.5 (lossy predictive,

More information

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code

Entropy Coding. - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic Code Entropy Coding } different probabilities for the appearing of single symbols are used - to shorten the average code length by assigning shorter codes to more probable symbols => Morse-, Huffman-, Arithmetic

More information

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding

Fundamentals of Multimedia. Lecture 5 Lossless Data Compression Variable Length Coding Fundamentals of Multimedia Lecture 5 Lossless Data Compression Variable Length Coding Mahmoud El-Gayyar elgayyar@ci.suez.edu.eg Mahmoud El-Gayyar / Fundamentals of Multimedia 1 Data Compression Compression

More information

Lempel-Ziv-Welch (LZW) Compression Algorithm

Lempel-Ziv-Welch (LZW) Compression Algorithm Lempel-Ziv-Welch (LZW) Compression lgorithm Introduction to the LZW lgorithm Example 1: Encoding using LZW Example 2: Decoding using LZW LZW: Concluding Notes Introduction to LZW s mentioned earlier, static

More information

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding

ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding ITCT Lecture 8.2: Dictionary Codes and Lempel-Ziv Coding Huffman codes require us to have a fairly reasonable idea of how source symbol probabilities are distributed. There are a number of applications

More information

Compressing Data. Konstantin Tretyakov

Compressing Data. Konstantin Tretyakov Compressing Data Konstantin Tretyakov (kt@ut.ee) MTAT.03.238 Advanced April 26, 2012 Claude Elwood Shannon (1916-2001) C. E. Shannon. A mathematical theory of communication. 1948 C. E. Shannon. The mathematical

More information

Data Storage. Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J.

Data Storage. Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J. Data Storage Slides derived from those available on the web site of the book: Computer Science: An Overview, 11 th Edition, by J. Glenn Brookshear Copyright 2012 Pearson Education, Inc. Data Storage Bits

More information

Compression; Error detection & correction

Compression; Error detection & correction Compression; Error detection & correction compression: squeeze out redundancy to use less memory or use less network bandwidth encode the same information in fewer bits some bits carry no information some

More information

EE-575 INFORMATION THEORY - SEM 092

EE-575 INFORMATION THEORY - SEM 092 EE-575 INFORMATION THEORY - SEM 092 Project Report on Lempel Ziv compression technique. Department of Electrical Engineering Prepared By: Mohammed Akber Ali Student ID # g200806120. ------------------------------------------------------------------------------------------------------------------------------------------

More information

Lecture 5: Compression I. This Week s Schedule

Lecture 5: Compression I. This Week s Schedule Lecture 5: Compression I Reading: book chapter 6, section 3 &5 chapter 7, section 1, 2, 3, 4, 8 Today: This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT

More information

DigiPoints Volume 1. Student Workbook. Module 8 Digital Compression

DigiPoints Volume 1. Student Workbook. Module 8 Digital Compression Digital Compression Page 8.1 DigiPoints Volume 1 Module 8 Digital Compression Summary This module describes the techniques by which digital signals are compressed in order to make it possible to carry

More information

VIDEO SIGNALS. Lossless coding

VIDEO SIGNALS. Lossless coding VIDEO SIGNALS Lossless coding LOSSLESS CODING The goal of lossless image compression is to represent an image signal with the smallest possible number of bits without loss of any information, thereby speeding

More information

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW

A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - REVIEW A COMPRESSION TECHNIQUES IN DIGITAL IMAGE PROCESSING - ABSTRACT: REVIEW M.JEYAPRATHA 1, B.POORNA VENNILA 2 Department of Computer Application, Nadar Saraswathi College of Arts and Science, Theni, Tamil

More information

Digital Image Processing

Digital Image Processing Lecture 9+10 Image Compression Lecturer: Ha Dai Duong Faculty of Information Technology 1. Introduction Image compression To Solve the problem of reduncing the amount of data required to represent a digital

More information

Lecture Coding Theory. Source Coding. Image and Video Compression. Images: Wikipedia

Lecture Coding Theory. Source Coding. Image and Video Compression. Images: Wikipedia Lecture Coding Theory Source Coding Image and Video Compression Images: Wikipedia Entropy Coding: Unary Coding Golomb Coding Static Huffman Coding Adaptive Huffman Coding Arithmetic Coding Run Length Encoding

More information

Bits and Bit Patterns

Bits and Bit Patterns Bits and Bit Patterns Bit: Binary Digit (0 or 1) Bit Patterns are used to represent information. Numbers Text characters Images Sound And others 0-1 Boolean Operations Boolean Operation: An operation that

More information

Compression. storage medium/ communications network. For the purpose of this lecture, we observe the following constraints:

Compression. storage medium/ communications network. For the purpose of this lecture, we observe the following constraints: CS231 Algorithms Handout # 31 Prof. Lyn Turbak November 20, 2001 Wellesley College Compression The Big Picture We want to be able to store and retrieve data, as well as communicate it with others. In general,

More information

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression

Data Compression. An overview of Compression. Multimedia Systems and Applications. Binary Image Compression. Binary Image Compression An overview of Compression Multimedia Systems and Applications Data Compression Compression becomes necessary in multimedia because it requires large amounts of storage space and bandwidth Types of Compression

More information

Chapter 1. Digital Data Representation and Communication. Part 2

Chapter 1. Digital Data Representation and Communication. Part 2 Chapter 1. Digital Data Representation and Communication Part 2 Compression Digital media files are usually very large, and they need to be made smaller compressed Without compression Won t have storage

More information

Course Syllabus. Website Multimedia Systems, Overview

Course Syllabus. Website   Multimedia Systems, Overview Course Syllabus Website http://ce.sharif.edu/courses/93-94/2/ce342-1/ Page 1 Course Syllabus Textbook Z-N. Li, M.S. Drew, Fundamentals of Multimedia, Pearson Prentice Hall Upper Saddle River, NJ, 2004.*

More information

DCT Based, Lossy Still Image Compression

DCT Based, Lossy Still Image Compression DCT Based, Lossy Still Image Compression NOT a JPEG artifact! Lenna, Playboy Nov. 1972 Lena Soderberg, Boston, 1997 Nimrod Peleg Update: April. 2009 http://www.lenna.org/ Image Compression: List of Topics

More information

Intro. To Multimedia Engineering Lossless Compression

Intro. To Multimedia Engineering Lossless Compression Intro. To Multimedia Engineering Lossless Compression Kyoungro Yoon yoonk@konkuk.ac.kr 1/43 Contents Introduction Basics of Information Theory Run-Length Coding Variable-Length Coding (VLC) Dictionary-based

More information

Image Compression - An Overview Jagroop Singh 1

Image Compression - An Overview Jagroop Singh 1 www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issues 8 Aug 2016, Page No. 17535-17539 Image Compression - An Overview Jagroop Singh 1 1 Faculty DAV Institute

More information

Mahdi Amiri. February Sharif University of Technology

Mahdi Amiri. February Sharif University of Technology Course Presentation Multimedia Systems Overview of the Course Mahdi Amiri February 2014 Sharif University of Technology Course Syllabus Website http://ce.sharif.edu/courses/92-93/2/ce342-1/ Page 1 Course

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on B. Lee s lecture notes. 1 Outline Compression basics Entropy and information theory basics

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 26 Source Coding (Part 1) Hello everyone, we will start a new module today

More information

Simple variant of coding with a variable number of symbols and fixlength codewords.

Simple variant of coding with a variable number of symbols and fixlength codewords. Dictionary coding Simple variant of coding with a variable number of symbols and fixlength codewords. Create a dictionary containing 2 b different symbol sequences and code them with codewords of length

More information

Lossless Compression Algorithms

Lossless Compression Algorithms Multimedia Data Compression Part I Chapter 7 Lossless Compression Algorithms 1 Chapter 7 Lossless Compression Algorithms 1. Introduction 2. Basics of Information Theory 3. Lossless Compression Algorithms

More information

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding.

Figure 1. Generic Encoder. Window. Spectral Analysis. Psychoacoustic Model. Quantize. Pack Data into Frames. Additional Coding. Introduction to Digital Audio Compression B. Cavagnolo and J. Bier Berkeley Design Technology, Inc. 2107 Dwight Way, Second Floor Berkeley, CA 94704 (510) 665-1600 info@bdti.com http://www.bdti.com INTRODUCTION

More information

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay

Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Digital Communication Prof. Bikash Kumar Dey Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 29 Source Coding (Part-4) We have already had 3 classes on source coding

More information

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2

Department of electronics and telecommunication, J.D.I.E.T.Yavatmal, India 2 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY LOSSLESS METHOD OF IMAGE COMPRESSION USING HUFFMAN CODING TECHNIQUES Trupti S Bobade *, Anushri S. sastikar 1 Department of electronics

More information

VC 12/13 T16 Video Compression

VC 12/13 T16 Video Compression VC 12/13 T16 Video Compression Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline The need for compression Types of redundancy

More information

Dictionary techniques

Dictionary techniques Dictionary techniques The final concept that we will mention in this chapter is about dictionary techniques. Many modern compression algorithms rely on the modified versions of various dictionary techniques.

More information

Introduction to Data Compression

Introduction to Data Compression Introduction to Data Compression Guillaume Tochon guillaume.tochon@lrde.epita.fr LRDE, EPITA Guillaume Tochon (LRDE) CODO - Introduction 1 / 9 Data compression: whatizit? Guillaume Tochon (LRDE) CODO -

More information

Image Coding and Compression

Image Coding and Compression Lecture 17, Image Coding and Compression GW Chapter 8.1 8.3.1, 8.4 8.4.3, 8.5.1 8.5.2, 8.6 Suggested problem: Own problem Calculate the Huffman code of this image > Show all steps in the coding procedure,

More information

13.6 FLEXIBILITY AND ADAPTABILITY OF NOAA S LOW RATE INFORMATION TRANSMISSION SYSTEM

13.6 FLEXIBILITY AND ADAPTABILITY OF NOAA S LOW RATE INFORMATION TRANSMISSION SYSTEM 13.6 FLEXIBILITY AND ADAPTABILITY OF NOAA S LOW RATE INFORMATION TRANSMISSION SYSTEM Jeffrey A. Manning, Science and Technology Corporation, Suitland, MD * Raymond Luczak, Computer Sciences Corporation,

More information

Image Compression. CS 6640 School of Computing University of Utah

Image Compression. CS 6640 School of Computing University of Utah Image Compression CS 6640 School of Computing University of Utah Compression What Reduce the amount of information (bits) needed to represent image Why Transmission Storage Preprocessing Redundant & Irrelevant

More information

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security

An Advanced Text Encryption & Compression System Based on ASCII Values & Arithmetic Encoding to Improve Data Security Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

Data Representation. Types of data: Numbers Text Audio Images & Graphics Video

Data Representation. Types of data: Numbers Text Audio Images & Graphics Video Data Representation Data Representation Types of data: Numbers Text Audio Images & Graphics Video Analog vs Digital data How is data represented? What is a signal? Transmission of data Analog vs Digital

More information

Image Coding and Data Compression

Image Coding and Data Compression Image Coding and Data Compression Biomedical Images are of high spatial resolution and fine gray-scale quantisiation Digital mammograms: 4,096x4,096 pixels with 12bit/pixel 32MB per image Volume data (CT

More information

Chapter 1. Data Storage Pearson Addison-Wesley. All rights reserved

Chapter 1. Data Storage Pearson Addison-Wesley. All rights reserved Chapter 1 Data Storage 2007 Pearson Addison-Wesley. All rights reserved Chapter 1: Data Storage 1.1 Bits and Their Storage 1.2 Main Memory 1.3 Mass Storage 1.4 Representing Information as Bit Patterns

More information

Ch. 2: Compression Basics Multimedia Systems

Ch. 2: Compression Basics Multimedia Systems Ch. 2: Compression Basics Multimedia Systems Prof. Ben Lee School of Electrical Engineering and Computer Science Oregon State University Outline Why compression? Classification Entropy and Information

More information

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc.

Keywords Data compression, Lossless data compression technique, Huffman Coding, Arithmetic coding etc. Volume 6, Issue 2, February 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Comparative

More information

Huffman Coding and Position based Coding Scheme for Image Compression: An Experimental Analysis

Huffman Coding and Position based Coding Scheme for Image Compression: An Experimental Analysis Huffman Coding and Position based Coding Scheme for Image Compression: An Experimental Analysis Jayavrinda Vrindavanam Ph D student, Dept of E&C, NIT, Durgapur Saravanan Chandran Asst. Professor Head,

More information

Analysis of Parallelization Effects on Textual Data Compression

Analysis of Parallelization Effects on Textual Data Compression Analysis of Parallelization Effects on Textual Data GORAN MARTINOVIC, CASLAV LIVADA, DRAGO ZAGAR Faculty of Electrical Engineering Josip Juraj Strossmayer University of Osijek Kneza Trpimira 2b, 31000

More information

Data Compression Fundamentals

Data Compression Fundamentals 1 Data Compression Fundamentals Touradj Ebrahimi Touradj.Ebrahimi@epfl.ch 2 Several classifications of compression methods are possible Based on data type :» Generic data compression» Audio compression»

More information

Fundamentals of Video Compression. Video Compression

Fundamentals of Video Compression. Video Compression Fundamentals of Video Compression Introduction to Digital Video Basic Compression Techniques Still Image Compression Techniques - JPEG Video Compression Introduction to Digital Video Video is a stream

More information

Image Compression for Mobile Devices using Prediction and Direct Coding Approach

Image Compression for Mobile Devices using Prediction and Direct Coding Approach Image Compression for Mobile Devices using Prediction and Direct Coding Approach Joshua Rajah Devadason M.E. scholar, CIT Coimbatore, India Mr. T. Ramraj Assistant Professor, CIT Coimbatore, India Abstract

More information

Removing Spatial Redundancy from Image by Using Variable Vertex Chain Code

Removing Spatial Redundancy from Image by Using Variable Vertex Chain Code EUROPEAN ACADEMIC RESEARCH Vol. II, Issue 1/ April 2014 ISSN 2286-4822 www.euacademic.org Impact Factor: 3.1 (UIF) DRJI Value: 5.9 (B+) Removing Spatial Redundancy from Image by Using Variable Vertex Chain

More information

2014 Summer School on MPEG/VCEG Video. Video Coding Concept

2014 Summer School on MPEG/VCEG Video. Video Coding Concept 2014 Summer School on MPEG/VCEG Video 1 Video Coding Concept Outline 2 Introduction Capture and representation of digital video Fundamentals of video coding Summary Outline 3 Introduction Capture and representation

More information

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm International Journal of Engineering Research and General Science Volume 3, Issue 4, July-August, 15 ISSN 91-2730 A Image Comparative Study using DCT, Fast Fourier, Wavelet Transforms and Huffman Algorithm

More information

WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION

WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION WIRE/WIRELESS SENSOR NETWORKS USING K-RLE ALGORITHM FOR A LOW POWER DATA COMPRESSION V.KRISHNAN1, MR. R.TRINADH 2 1 M. Tech Student, 2 M. Tech., Assistant Professor, Dept. Of E.C.E, SIR C.R. Reddy college

More information

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201

Source Coding Basics and Speech Coding. Yao Wang Polytechnic University, Brooklyn, NY11201 Source Coding Basics and Speech Coding Yao Wang Polytechnic University, Brooklyn, NY1121 http://eeweb.poly.edu/~yao Outline Why do we need to compress speech signals Basic components in a source coding

More information

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation

An Effective Approach to Improve Storage Efficiency Using Variable bit Representation Volume 114 No. 12 2017, 145-154 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu An Effective Approach to Improve Storage Efficiency Using Variable

More information

AUDIO COMPRESSION USING WAVELET TRANSFORM

AUDIO COMPRESSION USING WAVELET TRANSFORM AUDIO COMPRESSION USING WAVELET TRANSFORM Swapnil T. Dumbre Department of electronics, Amrutvahini College of Engineering,Sangamner,India Sheetal S. Gundal Department of electronics, Amrutvahini College

More information

yintroduction to compression ytext compression yimage compression ysource encoders and destination decoders

yintroduction to compression ytext compression yimage compression ysource encoders and destination decoders In this lecture... Compression and Standards Gail Reynard yintroduction to compression ytext compression Huffman LZW yimage compression GIF TIFF JPEG The Need for Compression ymultimedia data volume >

More information

Repetition 1st lecture

Repetition 1st lecture Repetition 1st lecture Human Senses in Relation to Technical Parameters Multimedia - what is it? Human senses (overview) Historical remarks Color models RGB Y, Cr, Cb Data rates Text, Graphic Picture,

More information

Lecture 6: Compression II. This Week s Schedule

Lecture 6: Compression II. This Week s Schedule Lecture 6: Compression II Reading: book chapter 8, Section 1, 2, 3, 4 Monday This Week s Schedule The concept behind compression Rate distortion theory Image compression via DCT Today Speech compression

More information

5: Music Compression. Music Coding. Mark Handley

5: Music Compression. Music Coding. Mark Handley 5: Music Compression Mark Handley Music Coding LPC-based codecs model the sound source to achieve good compression. Works well for voice. Terrible for music. What if you can t model the source? Model the

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY ACADEMIC YEAR / ODD SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY ACADEMIC YEAR / ODD SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY ACADEMIC YEAR 2011-2012 / ODD SEMESTER QUESTION BANK SUB.CODE / NAME YEAR / SEM : IT1301 INFORMATION CODING TECHNIQUES : III / V UNIT -

More information

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression

A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression A Comparative Study of Entropy Encoding Techniques for Lossless Text Data Compression P. RATNA TEJASWI 1 P. DEEPTHI 2 V.PALLAVI 3 D. GOLDIE VAL DIVYA 4 Abstract: Data compression is the art of reducing

More information

ELL 788 Computational Perception & Cognition July November 2015

ELL 788 Computational Perception & Cognition July November 2015 ELL 788 Computational Perception & Cognition July November 2015 Module 11 Audio Engineering: Perceptual coding Coding and decoding Signal (analog) Encoder Code (Digital) Code (Digital) Decoder Signal (analog)

More information

Digital Audio Basics

Digital Audio Basics CSC 170 Introduction to Computers and Their Applications Lecture #2 Digital Audio Basics Digital Audio Basics Digital audio is music, speech, and other sounds represented in binary format for use in digital

More information

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106

CHAPTER 6. 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform. 6.3 Wavelet Transform based compression technique 106 CHAPTER 6 6 Huffman Coding Based Image Compression Using Complex Wavelet Transform Page No 6.1 Introduction 103 6.2 Compression Techniques 104 103 6.2.1 Lossless compression 105 6.2.2 Lossy compression

More information

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson

Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson Welcome Back to Fundamentals of Multimedia (MR412) Fall, 2012 Lecture 10 (Chapter 7) ZHU Yongxin, Winson zhuyongxin@sjtu.edu.cn 2 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information

More information

Noise Reduction in Data Communication Using Compression Technique

Noise Reduction in Data Communication Using Compression Technique Digital Technologies, 2016, Vol. 2, No. 1, 9-13 Available online at http://pubs.sciepub.com/dt/2/1/2 Science and Education Publishing DOI:10.12691/dt-2-1-2 Noise Reduction in Data Communication Using Compression

More information

DEFLATE COMPRESSION ALGORITHM

DEFLATE COMPRESSION ALGORITHM DEFLATE COMPRESSION ALGORITHM Savan Oswal 1, Anjali Singh 2, Kirthi Kumari 3 B.E Student, Department of Information Technology, KJ'S Trinity College Of Engineering and Research, Pune, India 1,2.3 Abstract

More information

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM

HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM HARDWARE IMPLEMENTATION OF LOSSLESS LZMA DATA COMPRESSION ALGORITHM Parekar P. M. 1, Thakare S. S. 2 1,2 Department of Electronics and Telecommunication Engineering, Amravati University Government College

More information

Perceptual coding. A psychoacoustic model is used to identify those signals that are influenced by both these effects.

Perceptual coding. A psychoacoustic model is used to identify those signals that are influenced by both these effects. Perceptual coding Both LPC and CELP are used primarily for telephony applications and hence the compression of a speech signal. Perceptual encoders, however, have been designed for the compression of general

More information

Image Compression Technique

Image Compression Technique Volume 2 Issue 2 June 2014 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Shabbir Ahmad Department of Computer Science and Engineering Bhagwant University, Ajmer

More information

CIS 121 Data Structures and Algorithms with Java Spring 2018

CIS 121 Data Structures and Algorithms with Java Spring 2018 CIS 121 Data Structures and Algorithms with Java Spring 2018 Homework 6 Compression Due: Monday, March 12, 11:59pm online 2 Required Problems (45 points), Qualitative Questions (10 points), and Style and

More information

CS/COE 1501

CS/COE 1501 CS/COE 1501 www.cs.pitt.edu/~lipschultz/cs1501/ Compression What is compression? Represent the same data using less storage space Can get more use out a disk of a given size Can get more use out of memory

More information

Final Review. Image Processing CSE 166 Lecture 18

Final Review. Image Processing CSE 166 Lecture 18 Final Review Image Processing CSE 166 Lecture 18 Topics covered Basis vectors Matrix based transforms Wavelet transform Image compression Image watermarking Morphological image processing Segmentation

More information

Chapter 7 Lossless Compression Algorithms

Chapter 7 Lossless Compression Algorithms Chapter 7 Lossless Compression Algorithms 7.1 Introduction 7.2 Basics of Information Theory 7.3 Run-Length Coding 7.4 Variable-Length Coding (VLC) 7.5 Dictionary-based Coding 7.6 Arithmetic Coding 7.7

More information

Lossless compression II

Lossless compression II Lossless II D 44 R 52 B 81 C 84 D 86 R 82 A 85 A 87 A 83 R 88 A 8A B 89 A 8B Symbol Probability Range a 0.2 [0.0, 0.2) e 0.3 [0.2, 0.5) i 0.1 [0.5, 0.6) o 0.2 [0.6, 0.8) u 0.1 [0.8, 0.9)! 0.1 [0.9, 1.0)

More information

Linked Structures Songs, Games, Movies Part IV. Fall 2013 Carola Wenk

Linked Structures Songs, Games, Movies Part IV. Fall 2013 Carola Wenk Linked Structures Songs, Games, Movies Part IV Fall 23 Carola Wenk Storing Text We ve been focusing on numbers. What about text? Animal, Bird, Cat, Car, Chase, Camp, Canal We can compare the lexicographic

More information

Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs

Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs Using Arithmetic Coding for Reduction of Resulting Simulation Data Size on Massively Parallel GPGPUs Ana Balevic, Lars Rockstroh, Marek Wroblewski, and Sven Simon Institute for Parallel and Distributed

More information

Both LPC and CELP are used primarily for telephony applications and hence the compression of a speech signal.

Both LPC and CELP are used primarily for telephony applications and hence the compression of a speech signal. Perceptual coding Both LPC and CELP are used primarily for telephony applications and hence the compression of a speech signal. Perceptual encoders, however, have been designed for the compression of general

More information

compression and coding ii

compression and coding ii compression and coding ii Ole-Johan Skrede 03.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides

More information

Overview. Last Lecture. This Lecture. Next Lecture. Data Transmission. Data Compression Source: Lecture notes

Overview. Last Lecture. This Lecture. Next Lecture. Data Transmission. Data Compression Source: Lecture notes Overview Last Lecture Data Transmission This Lecture Data Compression Source: Lecture notes Next Lecture Data Integrity 1 Source : Sections 10.1, 10.3 Lecture 4 Data Compression 1 Data Compression Decreases

More information

SSIM based image quality assessment for vector quantization based lossy image compression using LZW coding

SSIM based image quality assessment for vector quantization based lossy image compression using LZW coding Available online at www.ganpatuniversity.ac.in University Journal of Research ISSN (Online) 0000 0000, ISSN (Print) 0000 0000 SSIM based image quality assessment for vector quantization based lossy image

More information

Optimized Compression and Decompression Software

Optimized Compression and Decompression Software 2015 IJSRSET Volume 1 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Optimized Compression and Decompression Software Mohd Shafaat Hussain, Manoj Yadav

More information

End-to-End Data. Presentation Formatting. Difficulties. Outline Formatting Compression

End-to-End Data. Presentation Formatting. Difficulties. Outline Formatting Compression End-to-End Data Outline Formatting Compression Spring 2009 CSE30264 1 Presentation Formatting Marshalling (encoding) application data into messages Unmarshalling (decoding) messages into application data

More information