Collaborative Security Attack Detection in Software-Defined Vehicular Networks

Size: px
Start display at page:

Download "Collaborative Security Attack Detection in Software-Defined Vehicular Networks"

Transcription

1 Collaborative Security Attack Detection in Software-Defined Vehicular Networks APNOMS 2017 Myeongsu Kim, Insun Jang, Sukjin Choo, Jungwoo Koo, and Sangheon Pack Korea University

2 Contents Introduction Software-defined Vehicular Cloud (SDVC) Collaborative security attack detection mechanism in software-defined vehicular networks Motivation Detection of attacks using multi-class SVM Simulation results Conclusion Reference 2

3 Introduction (1/2) The connected cars offer connectivity on wheels providing comfort and safety Such an advanced technology enables the driver to connect with various online platforms or services The global connected car market has the potential to significantly boost revenues of car manufacturers Machine-to-machine connections and revenue in the automotive sector, [source: Machina Research, 2013] 3

4 Introduction (2/2) In CES 2016, Qualcomm (with Audi) announced a Snapdragon 820 automotive processor for the connected cars Qualcomm is providing the foundation for the next generation of infotainment platforms for automotive E.g., Snapdragon LTE modem, IEEE ac, Bluetooth 4.1 [source: 4

5 Software-defined Vehicular Cloud The resources of vehicles in VANETs are most likely not utilized (or under-utilized) for vehicular services Computing, storage, and communication resource Software-defined Vehicular Cloud (SDVC) [1] 5

6 SDVC: Control plane Certificate authority (CA) Assigns the public key and private key pairs along with the vehicle s certificate VC Controller Collects global information of vehicles E.g., vehicle ID, velocity, GPS location, and resource Abstracts the vehicle s resources and maintains global view of vehicles Performs resource distribution (i.e., VC formation) using V2X communications 6

7 Vehicle SDVC: Data plane Registers local information of vehicles to the VC controller through the nearest RSU Updates local information of vehicle to the VC controller periodically Shares the resource via V2X communication Type: Resource requester (RR), resource provider (RP) Road side unit (RSU) Collects local information of vehicles Forwarders information to the VC controller 7

8 SDVC: Operation Vehicle (RR) RSU1 VC Controller RSU2 Vehicle (RP) (2) Information Register Message (1) Information Update Message (3) Information Collection <Up-to-date Information> (4) Service Provisioning Request Message (5) VC Formation (6) Service Confirmation Response Message (7) Data Transmission 8

9 Collaborative security attack detection mechanism in software-defined vehicular networks Motivation Detection of attacks using multi-class SVM 9

10 Collaborative security attack detection: Motivation (1/2) Security issues have been investigated in VANETs research [2] In traditional VANETs, a public key infrastructure (PKI) is commonly adopted by IEEE [3] A certificate revocation list (CRL) is issued by the certificate authority (CA) periodically There is no standard mechanism proposed for CRL The PKI can only ensure fundamental security requirements in VANETs Authentication and message integrity 10

11 Collaborative security attack detection: Motivation (2/2) There are a number of attacks in VANETs [4][5] Safety applications are very important in nature as these are directly related to drivers and their lives The purpose of attacks is to create problem for drivers, and as a result services are not accessible E.g., Sybil attack, denial of service (DoS) attack Attackers are moving and modifying their attack patterns continuously Collaborative security attack detection mechanism uses multi-class support vector machine (MC-SVM) to detect various types of attacks dynamically 11

12 Collaborative security attack detection: Overview Control plane Certificate authority (CA) Issuing the certificate VC controller Information collection VC formation Generating pseudonym Conducting multi-class SVM Data plane Road segment unit (RSU) Vehicle 12

13 Collaborative security attack detection: Operation 13

14 Detection of attacks using MC-SVM: Example Certificate Authority (CA) 3 Multi-class SVM Training VC Controller Flow ID Multi-class SVM Training Data PDR PMR RTS Flow Information Chan nel Inter val Size Types of Attacks Normal Flooding Attack 4 SVM classifier RSU 1 2 Collection of Flow Information 5 Detection of Attack 4 SVM classifier RSU 2 DoS Attack Attacker Vehicle 1 Flow Information Vehicle Vehicular Cloud (VC) Wired communication Wireless communication 14

15 Detection of attacks using MC-SVM: Modeling Multi-class SVM features Packet drop rate (PDR) The Number of Packets Dropped PDR = The Total Number of Packets Transmitted Packet modification rate (PMR) The Number of Packets Modified PMR = The Total Number of Incoming Packets RTS flooding rate IEEE p RTS packet Wireless channel status [0, 1] Busy status of channel in a specific period of time Packet interval, packet size Average packet interval and size in the flow MC-SVM Learning Output The types of attacks 15

16 Simulation results: Topology MC-SVM simulator based on Matlab 2015a Dataset: KDD Cup 1999 (by MIT Lincoln Labs) * The objective is to survey and evaluate research in IDS Attacks: DoS, Probing, R2L, U2R + Normal (# 86,678 dump (10%)) Comparison scheme SVM-Nearest Neighbor, SVM-Individual Simulation parameters Random Generation [*] 16

17 Simulation results: KDD Cup 1999 dataset features KDD Cup 1999 dataset features Basic features (1-9) [DoS, Probing attack] duration, protocol, service, flag, src_byte, dst_byte, land, wrong_fragment, urgen Content features (10-28) [R2L, U2L attack] count, srv_count, serror_rate, srv_serror_rate, KDD Cup 1999 features MC-SVM kernel function 17

18 Confusion matrix Test dataset: # 300 Simulation results: Confusion matrix 18

19 Simulation results: Effect of vehicle density (1/2) The number of vehicles: [10, 20, 30, 40, 50] MC-SVM dataset: #30,000 (Learning), # 20,000 (Test) Vehicle: Random (# 100 1,000) Precision Recall %p %p %p %p 19

20 Simulation results: Effect of vehicle density (2/2) The number of vehicles: [10, 20, 30, 40, 50] MC-SVM dataset: #30,000 (Learning), # 20,000 (Test) Vehicle: Random (# 100 1,000) Accuracy %p %p 20

21 Simulation results: Effect of alpha (1/2) The variation of alpha (%): [10, 20, 30, 40, 50] MC-SVM dataset: #30,000 (Learning), # 20,000 (Test) Vehicle: Random (# 100 1,000) Precision Recall %p %p %p %p 21

22 Simulation results: Effect of alpha (2/2) The variation of alpha (%): [10, 20, 30, 40, 50] MC-SVM dataset: #30,000 (Learning), # 20,000 (Test) Vehicle: Random (# 100 1,000) Accuracy %p %p 22

23 Conclusion We proposed collaborative security attack detection mechanism in software-defined vehicular networks we use multi-class support vector machine (MC- SVM) to detect various types of attacks The simulation results show that the proposed mechanism achieves a good performance to detect the types of attacks High precision, recall, and accuracy In our future works, we will extend MC-SVM model to minimize the network bandwidth usage 23

24 Reference [1] S. Choo, I. Jang, M. Kim, and S. Pack, The Software-Defined Vehicular Cloud: A New Level of Sharing the Road, IEEE Vehicular Technology Magazine (VTM), vol. 12, no.2, pp , June [2] F. Qu, Z. Wu, F. -Y. Wang, and W. Cho, A Security and Privacy Review of VANETs, IEEE Transactions On Intelligent Transportation Systems, vol. 16, no. 6, pp , Dec [3] N. Tiwari, On the Security of Pairing-free Certificateless Digital Signature Schemes Using ECC, ICT Express, vol. 1, no. 2, pp , Sept [4] M. Azees, P. Vijayakumar, and L. J. Deborah, Comprehensive Survey of Security Service in Vehicular Ad-hoc Networks, IET Intelligent Transport Systems, vol. 10, no. 6, pp , Aug [5] L. Barish, D. Shehada, E. Salahat, and C. Y. Yeun, Recent Advances in VANET Security: A Survey, in Proc. IEEE Vehicular Technology Conference (VTC) Fall, [6] W. Li, A. Joshi, and T. Finin, SVM-CASE: An SVM-based Context Aware Security Framework for Vehicular Ad-hoc Networks, in Proc. IEEE VTC Fall, Sept

25 Q & A 25

26 Backup 26

27 MC-SVM: Modeling Let, D = x 1, y 1, x 2, y 2,, x i, y i,, x n, y n, where x i R D, y i 0,1,2,, m, i = 1,2,, n. The decision boundary should be classify all points correctly y i w T x i + b 1, 1 i n. The decision boundary can be found by solving the following constrained optimization problem min (w,b) 1 2 w 2 subject to y i w T x i + b 1, 1 i n. 27

28 MC-SVM: Modeling The decision boundary should be as far away from the data of both as classes possible The goal is to maximize the margin, m 28

29 MC-SVM: Modeling Converts to convex optimization problem using slack variable, n 1 min (w,b) 2 w 2 + C i=1 subject to y i w T x i + b 1 ξ i, ξ i 0, 1 i n. Transforms dual problem using Lagrange multiplier formula, max α n n L α = α i 1 2 α i α j y i y j K(x i, y j ) i=1 i=1 j=1 n subject to α i y i = 0, 0 α i C, 1 i n. i=1 Transforms x i to a higher dimensional space using kernel function to consider non-linear case 29 n ξ i

30 Kernel function Linear kernel function MC-SVM: Modeling K x i, x j = x j, x i Polynomial kernel function with degree d K x i, x j = (x T i x j + 1) d Gaussian radial basis kernel function with σ K x i, x j = ex p x i x j 2 /2σ 2 Sigmoid kernel function with k and θ K x i, x j = tanh kx i T x j + θ 30

31 Non-linear SVM MC-SVM: Modeling 31

32 MC-SVM: Modeling Solution (Using Sequential minimal optimization algorithm) α = α 1, α 2,, α i,, α n T SVM classifier function (i.e., decision function) n b = α i y i K(x i, y j ) i=1 n f(x) = sgn( α i y i K(x i, x ) + b ) i=1 MC-SVM can be solved by extending the binary-svm model One-versus-all (OVA) One-versus-one (OVO) 32

33 Confusion matrix N=165 Actual Positive(+) Actual Negative(-) Predict Positive(+) TP 100 FP Predict Negative(-) FN 5 TN True Positive (TP): Actual: pos. -> Predict: pos. True Negative (TN): Actual: neg. -> Predict: neg. False Positive (FP): Actual: neg. -> Predict: pos. (Type I error) False Negative (FN): Actual: pos. -> Predict: neg. (Type II error) 33

34 Confusion matrix N=165 Actual Positive(+) Actual Negative(-) Predict Positive(+) TP 100 FP Predict Negative(-) FN 5 TN Precision: Predict: When it predicts pos. -> how often is it correct? TP/(TP+FP) = 100/(110) = 0.91 Recall: Actual: pos. -> how often does it predict pos.? TP/(TP+FN) = 100/(100+5) =0.95 (Recall) Accuracy: How often is the classifier correct? (TP+TN)/Total = (100+50)/165 =

35 KDD Cup 1999 dataset: Features Basic Content 35

36 KDD Cup 1999 dataset: Features Content 36

37 KDD Cup 1999 dataset: Mapping table 37

38 KDD Cup 1999 dataset: Mapping table 38

39 Accuracy Simulation results: Percentage of attack 39

40 Simulation results: RoC RoC (Receiver Operating Characteristics) 40

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Support Vector Machines (a brief introduction) Adrian Bevan.

Support Vector Machines (a brief introduction) Adrian Bevan. Support Vector Machines (a brief introduction) Adrian Bevan email: a.j.bevan@qmul.ac.uk Outline! Overview:! Introduce the problem and review the various aspects that underpin the SVM concept.! Hard margin

More information

Mitigating the Effects of Position-Based Routing Attacks in Vehicular Ad Hoc Networks

Mitigating the Effects of Position-Based Routing Attacks in Vehicular Ad Hoc Networks Mitigating the Effects of Position-Based Routing Attacks in Vehicular Ad Hoc Networks Nizar Alsharif, Albert Wasef, and Xuemin (Sherman) Shen Department of Electrical and Computer Engineering, University

More information

12 Classification using Support Vector Machines

12 Classification using Support Vector Machines 160 Bioinformatics I, WS 14/15, D. Huson, January 28, 2015 12 Classification using Support Vector Machines This lecture is based on the following sources, which are all recommended reading: F. Markowetz.

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 18.9 Goals (Naïve Bayes classifiers) Support vector machines 1 Support Vector Machines (SVMs) SVMs are probably the most popular off-the-shelf classifier! Software

More information

Introduction to VANET

Introduction to VANET VANET Introduction to VANET -Vehicles connected to each others through an ad hoc formation form a wireless network called Vehicular Ad Hoc Network. -Vehicular ad hoc networks (VANETs) are a subgroup of

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

SVM-CASE: An SVM-based Context Aware Security Framework for Vehicular Ad-hoc Networks

SVM-CASE: An SVM-based Context Aware Security Framework for Vehicular Ad-hoc Networks SVM-CASE: An SVM-based Context Aware Security Framework for Vehicular Ad-hoc Networks Wenjia Li Department of Computer Science New York Institute of Technology New York, New York 123 Email: wli2@nyit.edu

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

Performance Measures

Performance Measures 1 Performance Measures Classification F-Measure: (careful: similar but not the same F-measure as the F-measure we saw for clustering!) Tradeoff between classifying correctly all datapoints of the same

More information

A Two-phase Distributed Training Algorithm for Linear SVM in WSN

A Two-phase Distributed Training Algorithm for Linear SVM in WSN Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 015) Barcelona, Spain July 13-14, 015 Paper o. 30 A wo-phase Distributed raining Algorithm for Linear

More information

Chakra Chennubhotla and David Koes

Chakra Chennubhotla and David Koes MSCBIO/CMPBIO 2065: Support Vector Machines Chakra Chennubhotla and David Koes Nov 15, 2017 Sources mmds.org chapter 12 Bishop s book Ch. 7 Notes from Toronto, Mark Schmidt (UBC) 2 SVM SVMs and Logistic

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 8.9 (SVMs) Goals Finish Backpropagation Support vector machines Backpropagation. Begin with randomly initialized weights 2. Apply the neural network to each training

More information

Statistics 202: Statistical Aspects of Data Mining

Statistics 202: Statistical Aspects of Data Mining Statistics 202: Statistical Aspects of Data Mining Professor Rajan Patel Lecture 9 = More of Chapter 5 Agenda: 1) Lecture over more of Chapter 5 1 Introduction to Data Mining by Tan, Steinbach, Kumar Chapter

More information

Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network

Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network Efficient Authentication and Congestion Control for Vehicular Ad Hoc Network Deivanai.P 1, K.Sudha 2, K.Radha 3 Department of CSE, Muthayammal Engineering College, Rasipuram, India 1 Assistant Professor,

More information

Analysis of TCP Segment Header Based Attack Using Proposed Model

Analysis of TCP Segment Header Based Attack Using Proposed Model Chapter 4 Analysis of TCP Segment Header Based Attack Using Proposed Model 4.0 Introduction Though TCP has been extensively used for the wired network but is being used for mobile Adhoc network in the

More information

Intelligent Transportation Systems. Wireless Access for Vehicular Environments (WAVE) Engin Karabulut Kocaeli Üniversitesi,2014

Intelligent Transportation Systems. Wireless Access for Vehicular Environments (WAVE) Engin Karabulut Kocaeli Üniversitesi,2014 Intelligent Transportation Systems Wireless Access for Vehicular Environments (WAVE) Engin Karabulut Kocaeli Üniversitesi,2014 Outline Wireless Access for Vehicular Environments (WAVE) IEEE 802.11p IEEE

More information

Overview of Challenges in VANET

Overview of Challenges in VANET Overview of Challenges in VANET Er.Gurpreet Singh Department of Computer Science, Baba Farid College, Bathinda(Punjab), India ABSTRACT VANET are becoming active area of research and development because

More information

COOPERATIVE DATA SHARING WITH SECURITY IN VEHICULAR AD-HOC NETWORKS

COOPERATIVE DATA SHARING WITH SECURITY IN VEHICULAR AD-HOC NETWORKS COOPERATIVE DATA SHARING WITH SECURITY IN VEHICULAR AD-HOC NETWORKS Deepa B 1 and Dr. S A Kulkarni 2 1 IV Sem M. Tech, Dept of CSE, KLS Gogte Institute of Technology, Belagavi deepa.bangarshetru@gmail.com

More information

A Network Intrusion Detection System Architecture Based on Snort and. Computational Intelligence

A Network Intrusion Detection System Architecture Based on Snort and. Computational Intelligence 2nd International Conference on Electronics, Network and Computer Engineering (ICENCE 206) A Network Intrusion Detection System Architecture Based on Snort and Computational Intelligence Tao Liu, a, Da

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

Privacy in Vehicular Ad-hoc Networks. Nikolaos Alexiou, LCN, EE KTH

Privacy in Vehicular Ad-hoc Networks. Nikolaos Alexiou, LCN, EE KTH Privacy in Vehicular Ad-hoc Networks Nikolaos Alexiou, LCN, EE KTH alexiou@kth.se 2/10/2012 Outline Introduction VANETs: an overview VANET privacy - Anonymity - Location Privacy - VPKI Privacy Attacks

More information

IEEE networking projects

IEEE networking projects IEEE 2018-18 networking projects An Enhanced Available Bandwidth Estimation technique for an End-to-End Network Path. This paper presents a unique probing scheme, a rate adjustment algorithm, and a modified

More information

PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET

PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET PERFORMANCE EVALUATION OF DSDV, AODV ROUTING PROTOCOLS IN VANET K. Venkateswarlu 1, G. Murali 2 1 M. Tech, CSE, JNTUA College of Engineering (Pulivendula), Andhra Pradesh, India 2 Asst.Prof (HOD), CSE,

More information

PhD Thesis Defense Performance Improvements in Software-defined and Virtualized Wireless Networks

PhD Thesis Defense Performance Improvements in Software-defined and Virtualized Wireless Networks PhD Thesis Defense Performance Improvements in Software-defined and Virtualized Wireless Networks Chengchao Liang Supervisor: Prof. F. Richard Yu Department of Systems and Computer Engineering Carleton

More information

A Surveying on Road Safety Using Vehicular Communication Networks

A Surveying on Road Safety Using Vehicular Communication Networks Journal of Computer Applications ISSN: 0974 1925, Volume-5, Issue EICA2012-4, February 10, 2012 A Surveying on Road Safety Using Vehicular Communication Networks Padmavathi K Asst. Professor, Department

More information

SCALABLE VEHICULAR AD-HOC NETWORKS DISTRIBUTED SOFTWARE-DEFINED NETWORKING

SCALABLE VEHICULAR AD-HOC NETWORKS DISTRIBUTED SOFTWARE-DEFINED NETWORKING SCALABLE VEHICULAR AD-HOC NETWORKS DISTRIBUTED SOFTWARE-DEFINED NETWORKING AHMED SAYED-HASSAN AGENDA Current networking solutions for V2X Problem definition Motivations for a scalabe networking solution

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Support vector machines

Support vector machines Support vector machines Cavan Reilly October 24, 2018 Table of contents K-nearest neighbor classification Support vector machines K-nearest neighbor classification Suppose we have a collection of measurements

More information

Machine Learning for. Artem Lind & Aleskandr Tkachenko

Machine Learning for. Artem Lind & Aleskandr Tkachenko Machine Learning for Object Recognition Artem Lind & Aleskandr Tkachenko Outline Problem overview Classification demo Examples of learning algorithms Probabilistic modeling Bayes classifier Maximum margin

More information

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization

More on Learning. Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization More on Learning Neural Nets Support Vectors Machines Unsupervised Learning (Clustering) K-Means Expectation-Maximization Neural Net Learning Motivated by studies of the brain. A network of artificial

More information

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs Behavioral Data Mining Lecture 10 Kernel methods and SVMs Outline SVMs as large-margin linear classifiers Kernel methods SVM algorithms SVMs as large-margin classifiers margin The separating plane maximizes

More information

Analysis of FRAUD network ACTIONS; rules and models for detecting fraud activities. Eren Golge

Analysis of FRAUD network ACTIONS; rules and models for detecting fraud activities. Eren Golge Analysis of FRAUD network ACTIONS; rules and models for detecting fraud activities Eren Golge FRAUD? HACKERS!! DoS: Denial of service R2L: Unauth. Access U2R: Root access to Local Machine. Probing: Survallience....

More information

Support Vector Machines

Support Vector Machines Support Vector Machines SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions 6. Dealing

More information

OPENWAVE ENGINE / WSU - A PLATFORM FOR C2C-CC

OPENWAVE ENGINE / WSU - A PLATFORM FOR C2C-CC OPENWAVE ENGINE / WSU - A PLATFORM FOR C2C-CC Robert Lasowski, Tim Leinmüller + and Markus Strassberger Cirquent GmbH, robert.lasowski@cirquent.de + DENSO AUTOMOTIVE Deutschland GmbH, Technical Research

More information

A Time-series Clustering Approach for Sybil Attack Detection in Vehicular Ad hoc Networks

A Time-series Clustering Approach for Sybil Attack Detection in Vehicular Ad hoc Networks A Time-series Clustering Approach for Sybil Attack Detection in Vehicular Ad hoc Networks Neelanjana Dutta Department of Computer Science Missouri University of Science and Technology Rolla, Missouri 65409

More information

Detection of DDoS Attack on the Client Side Using Support Vector Machine

Detection of DDoS Attack on the Client Side Using Support Vector Machine Detection of DDoS Attack on the Client Side Using Support Vector Machine Donghoon Kim * and Ki Young Lee** *Department of Information and Telecommunication Engineering, Incheon National University, Incheon,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Chapter 9 Chapter 9 1 / 50 1 91 Maximal margin classifier 2 92 Support vector classifiers 3 93 Support vector machines 4 94 SVMs with more than two classes 5 95 Relationshiop to

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

EFFICIENT DATA TRANSMISSION AND SECURE COMMUNICATION IN VANETS USING NODE-PRIORITY AND CERTIFICATE REVOCATION MECHANISM

EFFICIENT DATA TRANSMISSION AND SECURE COMMUNICATION IN VANETS USING NODE-PRIORITY AND CERTIFICATE REVOCATION MECHANISM EFFICIENT DATA TRANSMISSION AND SECURE COMMUNICATION IN VANETS USING NODE-PRIORITY AND CERTIFICATE REVOCATION MECHANISM D.Yamini 1, J. Jayavel 2 1 III-M.tech(IT), Department of Information technology,

More information

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels

Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels Training-Free, Generic Object Detection Using Locally Adaptive Regression Kernels IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIENCE, VOL.32, NO.9, SEPTEMBER 2010 Hae Jong Seo, Student Member,

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

CHAPTER 5 CONTRIBUTORY ANALYSIS OF NSL-KDD CUP DATA SET

CHAPTER 5 CONTRIBUTORY ANALYSIS OF NSL-KDD CUP DATA SET CHAPTER 5 CONTRIBUTORY ANALYSIS OF NSL-KDD CUP DATA SET 5 CONTRIBUTORY ANALYSIS OF NSL-KDD CUP DATA SET An IDS monitors the network bustle through incoming and outgoing data to assess the conduct of data

More information

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem

Data Mining Classification: Alternative Techniques. Imbalanced Class Problem Data Mining Classification: Alternative Techniques Imbalanced Class Problem Introduction to Data Mining, 2 nd Edition by Tan, Steinbach, Karpatne, Kumar Class Imbalance Problem Lots of classification problems

More information

VeMAC: A Novel Multichannel MAC Protocol for Vehicular Ad Hoc Networks

VeMAC: A Novel Multichannel MAC Protocol for Vehicular Ad Hoc Networks This paper was presented as part of the Mobility Management in the Networks of the Future World (MobiWorld) Workshop at VeMAC: A Novel Multichannel MAC Protocol for Vehicular Ad Hoc Networks Hassan Aboubakr

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

FUZZY KERNEL C-MEANS ALGORITHM FOR INTRUSION DETECTION SYSTEMS

FUZZY KERNEL C-MEANS ALGORITHM FOR INTRUSION DETECTION SYSTEMS FUZZY KERNEL C-MEANS ALGORITHM FOR INTRUSION DETECTION SYSTEMS 1 ZUHERMAN RUSTAM, 2 AINI SURI TALITA 1 Senior Lecturer, Department of Mathematics, Faculty of Mathematics and Natural Sciences, University

More information

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES

GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES GENDER CLASSIFICATION USING SUPPORT VECTOR MACHINES Ashwin Swaminathan ashwins@umd.edu ENEE633: Statistical and Neural Pattern Recognition Instructor : Prof. Rama Chellappa Project 2, Part (a) 1. INTRODUCTION

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [ Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials] slide 1

More information

Advanced Machine Learning Practical 3: Classification (SVM, RVM & AdaBoost)

Advanced Machine Learning Practical 3: Classification (SVM, RVM & AdaBoost) Advanced Machine Learning Practical : Classification (SVM, RVM & AdaBoost) Professor: Aude Billard Assistants: Nadia Figueroa, Ilaria Lauzana and Brice Platerrier E-mails: aude.billard@epfl.ch, nadia.figueroafernandez@epfl.ch

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Protection Against DDOS Using Secure Code Propagation In The VANETs

Protection Against DDOS Using Secure Code Propagation In The VANETs Protection Against DDOS Using Secure Code Propagation In The VANETs Mandeep Kaur, Manish Mahajan Mandeepcheema6@gmail.com,cgccoe.hodcse@gmail.com ABSTRACT--VANETs are the vehicular networks used to connect

More information

Module 4. Non-linear machine learning econometrics: Support Vector Machine

Module 4. Non-linear machine learning econometrics: Support Vector Machine Module 4. Non-linear machine learning econometrics: Support Vector Machine THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Introduction When the assumption of linearity

More information

Security of vehicular communications. Vehicular communication (VC) systems

Security of vehicular communications. Vehicular communication (VC) systems Security of vehicular communications vehicular safety communications design constraints attacker classes desired security services a security architecture Vehicular communication (VC) systems motivations:

More information

Cyber-physical intrusion detection on a robotic vehicle

Cyber-physical intrusion detection on a robotic vehicle WIFS 2015 The 7th IEEE International Workshop on Information Forensics and Security Rome, Italy, 16-19 November, 2015 Cyber-physical intrusion detection on a robotic vehicle Tuan Vuong, George Loukas and

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions

More information

MEASURING CLASSIFIER PERFORMANCE

MEASURING CLASSIFIER PERFORMANCE MEASURING CLASSIFIER PERFORMANCE ERROR COUNTING Error types in a two-class problem False positives (type I error): True label is -1, predicted label is +1. False negative (type II error): True label is

More information

A data-driven approach for sensor data reconstruction for bridge monitoring

A data-driven approach for sensor data reconstruction for bridge monitoring A data-driven approach for sensor data reconstruction for bridge monitoring * Kincho H. Law 1), Seongwoon Jeong 2), Max Ferguson 3) 1),2),3) Dept. of Civil and Environ. Eng., Stanford University, Stanford,

More information

Enhanced Management of Certificate Caching and Revocation Lists in VANET

Enhanced Management of Certificate Caching and Revocation Lists in VANET Enhanced Management of Certificate Caching and Revocation Lists in VANET Sadiq H. Abdulhussain Computer Engineering Department College of Engineering University of Baghdad ABSTRACT Vehicular network security

More information

Classification by Support Vector Machines

Classification by Support Vector Machines Classification by Support Vector Machines Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Practical DNA Microarray Analysis 2003 1 Overview I II III

More information

Perceptron Learning Algorithm (PLA)

Perceptron Learning Algorithm (PLA) Review: Lecture 4 Perceptron Learning Algorithm (PLA) Learning algorithm for linear threshold functions (LTF) (iterative) Energy function: PLA implements a stochastic gradient algorithm Novikoff s theorem

More information

Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks

Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks Sybil Attack Detection with Reduced Bandwidth overhead in Urban Vehicular Networks D.Balamahalakshmi Department of Computer Science and Engineering, V.S.B Engineering College, Karur, Tamilnadu, India 1

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Vehicle Connectivity in Intelligent Transport Systems: Today and Future Prof. Dr. Ece Güran Schmidt - Middle East Technical University

Vehicle Connectivity in Intelligent Transport Systems: Today and Future Prof. Dr. Ece Güran Schmidt - Middle East Technical University Vehicle Connectivity in Intelligent Transport Systems: Today and Future Prof. Dr. Ece Güran Schmidt - Middle East Technical University OUTLINE Intelligent Transportation Systems (ITS) Vehicle connectivity

More information

The Comparative Study of Machine Learning Algorithms in Text Data Classification*

The Comparative Study of Machine Learning Algorithms in Text Data Classification* The Comparative Study of Machine Learning Algorithms in Text Data Classification* Wang Xin School of Science, Beijing Information Science and Technology University Beijing, China Abstract Classification

More information

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017 Data Analysis 3 Support Vector Machines Jan Platoš October 30, 2017 Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava Table of

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

PMAP: Precipitate Message Authentication Protocol for Vehicular Ad Hoc Networks

PMAP: Precipitate Message Authentication Protocol for Vehicular Ad Hoc Networks PMAP: Precipitate Message Authentication Protocol for Vehicular Ad Hoc Networks J.Sahana, PG Scholar Department of Computer Science and Engineering Sree Sowdambika College of Engineering Aruppukottai,

More information

CHAPTER V KDD CUP 99 DATASET. With the widespread use of computer networks, the number of attacks has grown

CHAPTER V KDD CUP 99 DATASET. With the widespread use of computer networks, the number of attacks has grown CHAPTER V KDD CUP 99 DATASET With the widespread use of computer networks, the number of attacks has grown extensively, and many new hacking tools and intrusive methods have appeared. Using an intrusion

More information

Classification Trees with Logistic Regression Functions for Network Based Intrusion Detection System

Classification Trees with Logistic Regression Functions for Network Based Intrusion Detection System IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 3, Ver. IV (May - June 2017), PP 48-52 www.iosrjournals.org Classification Trees with Logistic Regression

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

Skin and Face Detection

Skin and Face Detection Skin and Face Detection Linda Shapiro EE/CSE 576 1 What s Coming 1. Review of Bakic flesh detector 2. Fleck and Forsyth flesh detector 3. Details of Rowley face detector 4. Review of the basic AdaBoost

More information

Boolean Classification

Boolean Classification EE04 Spring 08 S. Lall and S. Boyd Boolean Classification Sanjay Lall and Stephen Boyd EE04 Stanford University Boolean classification Boolean classification I supervised learning is called boolean classification

More information

Evaluating Classifiers

Evaluating Classifiers Evaluating Classifiers Reading for this topic: T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7 (linked from class website) Evaluating Classifiers What we want: Classifier that best predicts

More information

EXPEDITE MESSAGE AUTHENTICATION PROTOCOL FOR VANETs USING DATA AGGREGATION

EXPEDITE MESSAGE AUTHENTICATION PROTOCOL FOR VANETs USING DATA AGGREGATION EXPEDITE MESSAGE AUTHENTICATION PROTOCOL FOR VANETs USING DATA AGGREGATION Shaiba Wahab Dept. Of Computer Science and Engineering M.E.A. Engineering College Perinthalmanna, Kerala Jemsheer Ahmed P Dept.

More information

Clustering will not be satisfactory if:

Clustering will not be satisfactory if: Clustering will not be satisfactory if: -- in the input space the clusters are not linearly separable; -- the distance measure is not adequate; -- the assumptions limit the shape or the number of the clusters.

More information

Classification by Support Vector Machines

Classification by Support Vector Machines Classification by Support Vector Machines Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Practical DNA Microarray Analysis 2003 1 Overview I II III

More information

Reliable and Efficient flooding Algorithm for Broadcasting in VANET

Reliable and Efficient flooding Algorithm for Broadcasting in VANET Reliable and Efficient flooding Algorithm for Broadcasting in VANET Vinod Kumar*, Meenakshi Bansal Mtech Student YCOE,Talwandi Sabo(india), A.P. YCOE, Talwandi Sabo(india) Vinod_Sharma85@rediffmail.com,

More information

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS

CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS CHAPTER 4 CLASSIFICATION WITH RADIAL BASIS AND PROBABILISTIC NEURAL NETWORKS 4.1 Introduction Optical character recognition is one of

More information

LESSONS LEARNED: SECURITY AND PRIVACY IN SAFETY PILOT MODEL DEPLOYMENT

LESSONS LEARNED: SECURITY AND PRIVACY IN SAFETY PILOT MODEL DEPLOYMENT LESSONS LEARNED: SECURITY AND PRIVACY IN SAFETY PILOT MODEL DEPLOYMENT André Weimerskirch, Scott Bogard, Debby Bezzina University of Michigan Transportation Research Institute 2901 Baxter Road Ann Arbor,

More information

A Reconfigurable Multiclass Support Vector Machine Architecture for Real-Time Embedded Systems Classification

A Reconfigurable Multiclass Support Vector Machine Architecture for Real-Time Embedded Systems Classification A Reconfigurable Multiclass Support Vector Machine Architecture for Real-Time Embedded Systems Classification Jason Kane, Robert Hernandez, and Qing Yang University of Rhode Island 1 Overview Background

More information

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks

Literature Review on Characteristic Analysis of Efficient and Reliable Broadcast in Vehicular Networks International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 3 (2013), pp. 205-210 International Research Publication House http://www.irphouse.com Literature Review

More information

CS4491/CS 7265 BIG DATA ANALYTICS

CS4491/CS 7265 BIG DATA ANALYTICS CS4491/CS 7265 BIG DATA ANALYTICS EVALUATION * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Dr. Mingon Kang Computer Science, Kennesaw State University Evaluation for

More information

ISSN Vol.03,Issue.36 November-2014, Pages:

ISSN Vol.03,Issue.36 November-2014, Pages: ISSN 2319-8885 Vol.03,Issue.36 November-2014, Pages:7151-7157 www.ijsetr.com Implementation of Expedite Message Authentication Protocol for Vehicular Ad-Hoc Networks SHAIK PATTA ABDUL KHAYUM 1, C. MD GULZAR

More information

WeVe: When Smart Wearables Meet Intelligent Vehicles

WeVe: When Smart Wearables Meet Intelligent Vehicles WeVe: When Smart Wearables Meet Intelligent Vehicles Jiajia Liu School of Cyber Engineering, Xidian University, Xi an, China Smart wearables and intelligent vehicles constitute indispensable parts of Internet

More information

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks First Author A.Sandeep Kumar Narasaraopeta Engineering College, Andhra Pradesh, India. Second Author Dr S.N.Tirumala Rao (Ph.d)

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

LTE and IEEE802.p for vehicular networking: a performance evaluation

LTE and IEEE802.p for vehicular networking: a performance evaluation LTE and IEEE802.p for vehicular networking: a performance evaluation Zeeshan Hameed Mir* Fethi Filali EURASIP Journal on Wireless Communications and Networking 1 Presenter Renato Iida v2 Outline Introduction

More information

COOPERATIVE ITS SECURITY STANDARDIZATION AND ACTIVITIES ON EUROPEAN C ITS TRUST MODEL AND POLICY

COOPERATIVE ITS SECURITY STANDARDIZATION AND ACTIVITIES ON EUROPEAN C ITS TRUST MODEL AND POLICY COOPERATIVE ITS SECURITY STANDARDIZATION AND ACTIVITIES ON EUROPEAN C ITS TRUST MODEL AND POLICY ETSI IoT Security WORKSHOP, 13 15 June 2016 Brigitte LONC, RENAULT ETSI TC ITS WG 5 Chairman ETSI 2016.

More information

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar..

.. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. .. Spring 2017 CSC 566 Advanced Data Mining Alexander Dekhtyar.. Machine Learning: Support Vector Machines: Linear Kernel Support Vector Machines Extending Perceptron Classifiers. There are two ways to

More information

Context-Aware Vehicular Cyber-Physical Systems with Cloud Support: Architecture, Challenges, and Solutions

Context-Aware Vehicular Cyber-Physical Systems with Cloud Support: Architecture, Challenges, and Solutions Context-Aware Vehicular Cyber-Physical Systems with Cloud Support: Architecture, Challenges, and Solutions Siran Pavankumar(149344152) siranpavankumar@gmail.com Computer Science Department Seoul National

More information

Reliability Evaluation Using Monte Carlo Simulation and Support Vector Machine

Reliability Evaluation Using Monte Carlo Simulation and Support Vector Machine Reliability Evaluation Using Monte Carlo Simulation and Support Vector Machine C.M. Rocco C. M. Sanseverino Rocco S., J. and A. J.A. Moreno Moreno Universidad Central, Facultad de Ingeniería, Apartado

More information

A Secure Routing Protocol for Wireless Adhoc Network Creation

A Secure Routing Protocol for Wireless Adhoc Network Creation Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 6, June 2014, pg.88

More information

Data Imbalance Problem solving for SMOTE Based Oversampling: Study on Fault Detection Prediction Model in Semiconductor Manufacturing Process

Data Imbalance Problem solving for SMOTE Based Oversampling: Study on Fault Detection Prediction Model in Semiconductor Manufacturing Process Vol.133 (Information Technology and Computer Science 2016), pp.79-84 http://dx.doi.org/10.14257/astl.2016. Data Imbalance Problem solving for SMOTE Based Oversampling: Study on Fault Detection Prediction

More information

A Practical Guide to Support Vector Classification

A Practical Guide to Support Vector Classification Support Vector Machines 1 A Practical Guide to Support Vector Classification Chih-Jen Lin Department of Computer Science National Taiwan University Talk at University of Freiburg, July 15, 2003 Support

More information