Deep-Q: Traffic-driven QoS Inference using Deep Generative Network

Size: px
Start display at page:

Download "Deep-Q: Traffic-driven QoS Inference using Deep Generative Network"

Transcription

1 Deep-Q: Traffic-driven QoS Inference using Deep Generative Network Shihan Xiao, Dongdong He, Zhibo Gong Network Technology Lab, Huawei Technologies Co., Ltd., Beijing, China 1

2 Background What is a QoS Model? Traffic QoS Model Delay, jitter, packet loss Network

3 Background Why is it important? Online QoS Monitoring SLA guarantee & anomaly detection Delay Monitoring Path A Path B A QoS model helps reduce most of the cost! Path C Monitor Require high cost on real-time active QoS measurements!

4 Background Why is it important? Online QoS Monitoring SLA guarantee & anomaly detection Delay Monitoring Path A Path B Path C Monitor Offline Traffic Analysis Delay Inference Path A Path B Path C Traffic trace Inference + Network A QoS model can do QoS inference without QoS measurements

5 Background Why is it important? Online QoS Monitoring SLA guarantee & anomaly detection Delay Monitoring Path A Path B Path C Monitor Offline Traffic Analysis Delay Inference Path A Path B Path C Traffic trace Inference + Network Path A Path C What if Analysis Delay Prediction Predict How QoS will change if a flow switches from Path A to C?

6 Traditional Methods 1. Network simulator Traffic NS2, NS3, OMNeT++ Network Simulator Delay, jitter, packet loss Network Slow and Inaccurate 6

7 Traditional Methods 2. Mathematical modeling Traffic Simplified assumptions Queuing Theory Delay, jitter, packet loss Network Large human-analysis cost & Inaccurate 7

8 Traditional Methods 2. Mathematical modeling Traffic Simplified assumptions Queuing Theory Delay, jitter, packet loss Network Large human-analysis cost & Inaccurate A fast, accurate & low-cost QoS model is helpful! 8

9 Key Observations Observation 1: Traffic load per link is much easier to collect & wellsupported by existing tools (e.g., SNMP) than QoS values per path 9

10 Node index Key Observations Observation 1: Traffic load per link is much easier to collect & wellsupported by existing tools (e.g., SNMP) than QoS values per path Observation 2: Traffic load is the key factor of QoS changes Traffic: collected link load matrixes Delay, jitter, packet loss QoS Model Node index 10

11 Key Observations Observation 3: Different traffic loads lead to different QoS distributions 40 traffic loads (per 20 min) Testbed measurement Measured delay samples 11

12 Key Observations Target Problem: Given a set of traffic load matrixes during time T, what are the distributions of QoS values (delay, jitter, loss...) of each network path during T? Different traffic loads lead to different QoS distributions 12

13 Solution of Deep-Q Why deep learning helps? Low human-analysis cost Fast inference Data-driven VS. Human-engineered model Delay model Loss model Packets Running time of Hours! Network Simulator QoS values Auto Training Delay/Jitter/Loss Running time of Milliseconds! Traffic load matrix QoS values 13

14 Probability Key Technology: Deep Generative Network State-of-the-art DGNs in deep learning Image domain GAN(Generative Adversarial Network) & VAE(Variational Autoencoder) So what is the difference? Network domain Input: this small bird has a pink breast and crown, and black primaries and secondaries infer Input: number 2 infer Input: traffic load matrixes infer Source: ICML2016, Generative Adversarial Text to Image Synthesis (Conditional) GAN Example Source: NIPS2014, Semi-supervised Learning with Deep Generative Models (Conditional) VAE Example Deep-Q Delay (us) 14

15 Key Technology: Deep Generative Network Differences Application: text label to images Image domain (GAN & VAE) Network domain (Deep-Q) Application: traffic load matrixes to QoS values Input Output Input Output Discrete Label Image samples Traffic statistics QoS values Discrete & Low/high Dimensional Discrete & High Dimensional Continuous & High Dimensional Continuous & Low Dimensional Target: the generated image samples satisfy real image distribution and match the label class Target: the generated QoS values satisfy real QoS distribution and match the traffic statistics Deep-Q requires a high accuracy on the output distribution, but GAN & VAE do not apply! 15

16 Deep-Q Solution 1. Handle the continuous high-dimensional input Extract traffic features from a sequence of high-dimensional traffic load matrixes LSTM (Long Short Term Memory) module: a state-of-the-art deep learning method to learn features from a data sequence Micro-load matrixes during time t M t M t M n t M t LSTM Cell Hidden State LSTM Cell Hidden State LSTM Cell Hidden State LSTM Cell Traffic features 16

17 Cumulative Probability Deep-Q Solution 2. Handle the continuous low-dimensional output Challenge: high accuracy is required for QoS distribution inference Solution: a new metric Cinfer loss to accurately quantify the QoS distribution error X: Inferred QoS distribution Y: Target QoS distribution CDF (Cumulative Distribution Function) CDF curve of X CDF curve of Y Height Difference Delay (ms) 17

18 Deep-Q Solution Deep-Q: A stable & accurate inference engine Built upon VAE (Stable) and augmented with Cinfer Loss (Accurate) A simple example of learning ability: Target distribution Inferred distribution VAE: Stable but Inaccurate GAN: More accurate but unstable Deep-Q: Stable & Accurate L2 Loss of VAE KL Loss of GAN Cinfer Loss of Deep-Q 18

19 Cumulative Probability Cumulative Probability Deep-Q Solution Cinfer-Loss computation for training The exact computation is NP-hard The approximation must be fully differentiable to compute gradients for training Step 1: Discretization From integral to a discrete sum of bins Discretization Delay (ms) Delay (ms) 19

20 Cumulative Probability Deep-Q Solution Cinfer-Loss computation for training The exact computation is NP-hard The approximation must be fully differentiable to compute gradients for training Step 2: Bin Height Computation required to be differentiable An intuitive method: Calculate the located bin index of each sample & Count the sample number per bin Ceil function is non-differentiable & difficult to approximate! Delay (ms) 20

21 Cumulative Probability Deep-Q Solution Cinfer-Loss computation for training The exact computation is NP-hard The approximation must be fully differentiable to compute gradients for training Step 2: Bin Height Computation required to be differentiable A differentiable method with some math tricks (borrowed from deep learning) Step 1): Use Sign function Step 2): Approximate Sign function with tanh Delay (ms) Approximation error< 10 5 in experiments 21

22 Deep-Q Solution Put it all together Sampling from N(0,1) Network QoS (delay,jitter, loss) VAE Encoder Z VAE Decoder Network QoS (delay,jitter, loss) X Traffic load matrix along time X Space-time Traffic Features Inference phase of Deep-Q Training phase of Deep-Q Automatic feature engineering & QoS modeling:end-to-end training using Cinfer Loss Collect traffic data Underlay network 22

23 Experiment Setup Testbed Topology Experiment topology of data center network Experiment topology of overlay IP network NEU200 Probe NEU200 Probe CPE CPE NEU200 Probe NEU200 Probe Traffic traces: WIDE backbone network [1] Training set: 24 hours of traffic traces on April 12, 2017 Test set: 24 hours of traffic traces on April 13, 2017 r0 AS-1 r1 Internet r2 AS-2 r3 Neural network: TensorFlow implementation with 2 hidden layers r4 [1] Traffic traces are public available at 23

24 Experiment Results Delay Inference in Datacenter Topology Traffic Real delay Distribution error of inference Mean error of inference 90-percentile error of inference 99-percentile error of inference Queuing theory Deep learning 1. Deep learning methods achieve on average 3x higher accuracy over Queuing theory 2. Deep-Q achieves the lowest errors and most stable performance over all cases 24

25 Experiment Results Packet Loss Inference in Overlay IP Topology Queuing theory Deep learning 1. Deep learning methods achieve on average 3x higher accuracy over Queuing theory 2. Deep-Q achieves the lowest errors and most stable performance over all cases Deep-Q inference speed < 10ms for network scale < 200 nodes 25

26 Conclusion Deep-Q: an accurate, fast and low-cost QoS inference engine Automation: LSTM module for auto traffic feature extraction High stability: an extended VAE inference structure with the encoder and decoder High accuracy: a new metric Cinfer loss to accurately quantify the QoS distribution error Future vision: Learn device-level QoS models (routers/switches) scalable network-level QoS models Learn high-level application QoE from traffic traces 26

27 27

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Use CVAE in QoS Management

Use CVAE in QoS Management Use CVAE in QoS Management IRTF-NMRG-Session Shen Yan yanshen@huawei.com Motivation CVAE is one of the popular generative models and has achieved a great success in AI area. It can extract the hidden feature

More information

Variational Autoencoders. Sargur N. Srihari

Variational Autoencoders. Sargur N. Srihari Variational Autoencoders Sargur N. srihari@cedar.buffalo.edu Topics 1. Generative Model 2. Standard Autoencoder 3. Variational autoencoders (VAE) 2 Generative Model A variational autoencoder (VAE) is a

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Introduction to Generative Models (and GANs)

Introduction to Generative Models (and GANs) Introduction to Generative Models (and GANs) Haoqiang Fan fhq@megvii.com Nov. 2017 Figures adapted from NIPS 2016 Tutorial Generative Adversarial Networks Generative Models: Learning the Distributions

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin

GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE ADVERSARIAL NETWORKS (GAN) Presented by Omer Stein and Moran Rubin GENERATIVE MODEL Given a training dataset, x, try to estimate the distribution, Pdata(x) Explicitly or Implicitly (GAN) Explicitly

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Replacing Neural Networks with Black-Box ODE Solvers

Replacing Neural Networks with Black-Box ODE Solvers Replacing Neural Networks with Black-Box ODE Solvers Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud University of Toronto, Vector Institute Resnets are Euler integrators Middle layers

More information

MIND: Machine Learning based Network Dynamics. Dr. Yanhui Geng Huawei Noah s Ark Lab, Hong Kong

MIND: Machine Learning based Network Dynamics. Dr. Yanhui Geng Huawei Noah s Ark Lab, Hong Kong MIND: Machine Learning based Network Dynamics Dr. Yanhui Geng Huawei Noah s Ark Lab, Hong Kong Outline Challenges with traditional SDN MIND architecture Experiment results Conclusion Challenges with Traditional

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

GAN Frontiers/Related Methods

GAN Frontiers/Related Methods GAN Frontiers/Related Methods Improving GAN Training Improved Techniques for Training GANs (Salimans, et. al 2016) CSC 2541 (07/10/2016) Robin Swanson (robin@cs.toronto.edu) Training GANs is Difficult

More information

Network simulations and tools. Dmitry Petrov magister.fi or jyu.fi

Network simulations and tools. Dmitry Petrov magister.fi or jyu.fi Network simulations and tools Dmitry Petrov dmitry.petrov@ magister.fi or jyu.fi How may networks be studied? Measurements from real devices / networks Measurements from real devices Protocol analyzers,

More information

Deep Model Adaptation using Domain Adversarial Training

Deep Model Adaptation using Domain Adversarial Training Deep Model Adaptation using Domain Adversarial Training Victor Lempitsky, joint work with Yaroslav Ganin Skolkovo Institute of Science and Technology ( Skoltech ) Moscow region, Russia Deep supervised

More information

Data Driven Networks

Data Driven Networks Data Driven Networks Is it possible for to Learn the control planes of networks and applications? Operators specify what they want, and the system learns how to deliver CAN WE LEARN THE CONTROL PLANE OF

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY

Tutorial on Keras CAP ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Tutorial on Keras CAP 6412 - ADVANCED COMPUTER VISION SPRING 2018 KISHAN S ATHREY Deep learning packages TensorFlow Google PyTorch Facebook AI research Keras Francois Chollet (now at Google) Chainer Company

More information

Variational Autoencoders

Variational Autoencoders red red red red red red red red red red red red red red red red red red red red Tutorial 03/10/2016 Generative modelling Assume that the original dataset is drawn from a distribution P(X ). Attempt to

More information

Accurate and Efficient SLA Compliance Monitoring

Accurate and Efficient SLA Compliance Monitoring Accurate and Efficient SLA Compliance Monitoring Joel Sommers Paul Barford Nick Duffield Amos Ron University of Wisconsin-Madison / Colgate University University of Wisconsin-Madison AT&T Labs- Research

More information

A new approach for supervised power disaggregation by using a deep recurrent LSTM network

A new approach for supervised power disaggregation by using a deep recurrent LSTM network A new approach for supervised power disaggregation by using a deep recurrent LSTM network GlobalSIP 2015, 14th Dec. Lukas Mauch and Bin Yang Institute of Signal Processing and System Theory University

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Exploring the Structure of Data at Scale. Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019

Exploring the Structure of Data at Scale. Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019 Exploring the Structure of Data at Scale Rudy Agovic, PhD CEO & Chief Data Scientist at Reliancy January 16, 2019 Outline Why exploration of large datasets matters Challenges in working with large data

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Data Driven Networks. Sachin Katti

Data Driven Networks. Sachin Katti Data Driven Networks Sachin Katti Is it possible for to Learn the control planes of networks and applications? Operators specify what they want, and the system learns how to deliver CAN WE LEARN THE CONTROL

More information

Presented by: B. Dasarathy OMG Real-Time and Embedded Systems Workshop, Reston, VA, July 2004

Presented by: B. Dasarathy OMG Real-Time and Embedded Systems Workshop, Reston, VA, July 2004 * This work is supported by DARPA Contract NBCH-C-03-0132. Network QoS Assurance through Admission Control* by B. Coan, B. Dasarathy, S. Gadgil, K. Parmeswaran, I. Sebuktekin and R. Vaidyanathan, Telcordia

More information

Pixel-level Generative Model

Pixel-level Generative Model Pixel-level Generative Model Generative Image Modeling Using Spatial LSTMs (2015NIPS) L. Theis and M. Bethge University of Tübingen, Germany Pixel Recurrent Neural Networks (2016ICML) A. van den Oord,

More information

Autoencoding Beyond Pixels Using a Learned Similarity Metric

Autoencoding Beyond Pixels Using a Learned Similarity Metric Autoencoding Beyond Pixels Using a Learned Similarity Metric International Conference on Machine Learning, 2016 Anders Boesen Lindbo Larsen, Hugo Larochelle, Søren Kaae Sønderby, Ole Winther Technical

More information

Early detection of Crossfire attacks using deep learning

Early detection of Crossfire attacks using deep learning Early detection of Crossfire attacks using deep learning Saurabh Misra, Mengxuan Tan, Mostafa Rezazad, Ngai-Man Cheung Singapore University of Technology and Design Content The Crossfire Attack A brief

More information

MoonRiver: Deep Neural Network in C++

MoonRiver: Deep Neural Network in C++ MoonRiver: Deep Neural Network in C++ Chung-Yi Weng Computer Science & Engineering University of Washington chungyi@cs.washington.edu Abstract Artificial intelligence resurges with its dramatic improvement

More information

Lecture #17: Autoencoders and Random Forests with R. Mat Kallada Introduction to Data Mining with R

Lecture #17: Autoencoders and Random Forests with R. Mat Kallada Introduction to Data Mining with R Lecture #17: Autoencoders and Random Forests with R Mat Kallada Introduction to Data Mining with R Assignment 4 Posted last Sunday Due next Monday! Autoencoders in R Firstly, what is an autoencoder? Autoencoders

More information

Automated Website Fingerprinting through Deep Learning

Automated Website Fingerprinting through Deep Learning Automated Website Fingerprinting through Deep Learning Vera Rimmer 1, Davy Preuveneers 1, Marc Juarez 2, Tom Van Goethem 1 and Wouter Joosen 1 NDSS 2018 Feb 19th (San Diego, USA) 1 2 Website Fingerprinting

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

On Minimizing Packet Loss Rate and Delay for Mesh-based P2P Streaming Services

On Minimizing Packet Loss Rate and Delay for Mesh-based P2P Streaming Services On Minimizing Packet Loss Rate and Delay for Mesh-based P2P Streaming Services Zhiyong Liu, CATR Prof. Zhili Sun, UniS Dr. Dan He, UniS Denian Shi, CATR Agenda Introduction Background Problem Statement

More information

Measurement in ISP Backbones Capacity Planning and SLA Monitoring. NANOG 26 - October 2002 Tony Tauber Genuity Network Architecture

Measurement in ISP Backbones Capacity Planning and SLA Monitoring. NANOG 26 - October 2002 Tony Tauber Genuity Network Architecture Measurement in ISP Backbones Capacity Planning and SLA Monitoring NANOG 26 - October 2002 Tony Tauber Genuity Network Architecture Different approaches meeting in the middle Analytical Models Numbers from

More information

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013

NetSpeed ORION: A New Approach to Design On-chip Interconnects. August 26 th, 2013 NetSpeed ORION: A New Approach to Design On-chip Interconnects August 26 th, 2013 INTERCONNECTS BECOMING INCREASINGLY IMPORTANT Growing number of IP cores Average SoCs today have 100+ IPs Mixing and matching

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Performance investigation and comparison between virtual networks and physical networks based on Sea-Cloud Innovation Environment

Performance investigation and comparison between virtual networks and physical networks based on Sea-Cloud Innovation Environment Performance investigation and comparison between virtual networks and physical networks based on Sea-Cloud Innovation Environment Website: http://scie.ac.cn E-mail: scie@cstnet.cn CANS 2015, Chengdu, Sep

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, 10.2.1) Properties of RNNs (10.2.2, 8.2.6) Using

More information

Better Quality, Lower Delay: Improving Realtime Video by Co-designing the Codec and the Transport

Better Quality, Lower Delay: Improving Realtime Video by Co-designing the Codec and the Transport Better Quality, Lower Delay: Improving Realtime Video by Co-designing the Codec and the Transport Sadjad Fouladi, Emre Orbay, John Emmons, Riad Wahby, Keith Winstein Stanford University Outline Introduction

More information

Control of jitter buffer size using machine learning

Control of jitter buffer size using machine learning Technical Disclosure Commons Defensive Publications Series December 06, 2017 Control of jitter buffer size using machine learning Ivo Creusen Oliver Walter Henrik Lundin Follow this and additional works

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Classification III Dan Klein UC Berkeley 1 Classification 2 Linear Models: Perceptron The perceptron algorithm Iteratively processes the training set, reacting to training errors

More information

Configuring Cisco IOS IP SLAs Operations

Configuring Cisco IOS IP SLAs Operations CHAPTER 39 This chapter describes how to use Cisco IOS IP Service Level Agreements (SLAs) on the switch. Cisco IP SLAs is a part of Cisco IOS software that allows Cisco customers to analyze IP service

More information

Lecture 9. Quality of Service in ad hoc wireless networks

Lecture 9. Quality of Service in ad hoc wireless networks Lecture 9 Quality of Service in ad hoc wireless networks Yevgeni Koucheryavy Department of Communications Engineering Tampere University of Technology yk@cs.tut.fi Lectured by Jakub Jakubiak QoS statement

More information

Phase-Functioned Neural Networks for Motion Learning

Phase-Functioned Neural Networks for Motion Learning Phase-Functioned Neural Networks for Motion Learning TAMS University of Hamburg 03.01.2018 Sebastian Starke University of Edinburgh School of Informatics Institue of Perception, Action and Behaviour Sebastian.Starke@ed.ac.uk

More information

Pricing Intra-Datacenter Networks with

Pricing Intra-Datacenter Networks with Pricing Intra-Datacenter Networks with Over-Committed Bandwidth Guarantee Jian Guo 1, Fangming Liu 1, Tao Wang 1, and John C.S. Lui 2 1 Cloud Datacenter & Green Computing/Communications Research Group

More information

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting

Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting Yaguang Li Joint work with Rose Yu, Cyrus Shahabi, Yan Liu Page 1 Introduction Traffic congesting is wasteful of time,

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

A Quick Guide on Training a neural network using Keras.

A Quick Guide on Training a neural network using Keras. A Quick Guide on Training a neural network using Keras. TensorFlow and Keras Keras Open source High level, less flexible Easy to learn Perfect for quick implementations Starts by François Chollet from

More information

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao

Introduction to GAN. Generative Adversarial Networks. Junheng(Jeff) Hao Introduction to GAN Generative Adversarial Networks Junheng(Jeff) Hao Adversarial Training is the coolest thing since sliced bread. -- Yann LeCun Roadmap 1. Generative Modeling 2. GAN 101: What is GAN?

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Model Generalization and the Bias-Variance Trade-Off

Model Generalization and the Bias-Variance Trade-Off Charu C. Aggarwal IBM T J Watson Research Center Yorktown Heights, NY Model Generalization and the Bias-Variance Trade-Off Neural Networks and Deep Learning, Springer, 2018 Chapter 4, Section 4.1-4.2 What

More information

Implicit generative models: dual vs. primal approaches

Implicit generative models: dual vs. primal approaches Implicit generative models: dual vs. primal approaches Ilya Tolstikhin MPI for Intelligent Systems ilya@tue.mpg.de Machine Learning Summer School 2017 Tübingen, Germany Contents 1. Unsupervised generative

More information

Learning to generate with adversarial networks

Learning to generate with adversarial networks Learning to generate with adversarial networks Gilles Louppe June 27, 2016 Problem statement Assume training samples D = {x x p data, x X } ; We want a generative model p model that can draw new samples

More information

Generative Adversarial Text to Image Synthesis

Generative Adversarial Text to Image Synthesis Generative Adversarial Text to Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee Presented by: Jingyao Zhan Contents Introduction Related Work Method

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Vivaldi: A Decentralized Network Coordinate System. Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT. Published at SIGCOMM 04

Vivaldi: A Decentralized Network Coordinate System. Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT. Published at SIGCOMM 04 Vivaldi: A Decentralized Network Coordinate System Authors: Frank Dabek, Russ Cox, Frans Kaashoek, Robert Morris MIT Published at SIGCOMM 04 Presented by: Emmanouel Kyriakakis Key tool: Synthetic Coordinates

More information

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing

Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing Neural Networks for unsupervised learning From Principal Components Analysis to Autoencoders to semantic hashing feature 3 PC 3 Beate Sick Many slides are taken form Hinton s great lecture on NN: https://www.coursera.org/course/neuralnets

More information

Probabilistic Programming with Pyro

Probabilistic Programming with Pyro Probabilistic Programming with Pyro the pyro team Eli Bingham Theo Karaletsos Rohit Singh JP Chen Martin Jankowiak Fritz Obermeyer Neeraj Pradhan Paul Szerlip Noah Goodman Why Pyro? Why probabilistic modeling?

More information

Analysis of Space-Ground Integrated Information Network Architecture and Protocol

Analysis of Space-Ground Integrated Information Network Architecture and Protocol 3rd International Conference on Mechatronics and Industrial Informatics (ICMII 2015) Analysis of Space-Ground Integrated Information Network Architecture and Protocol Yong Zhou 1,a*,Chundong She 2, b,ligang

More information

End-to-End Mechanisms for QoS Support in Wireless Networks

End-to-End Mechanisms for QoS Support in Wireless Networks End-to-End Mechanisms for QoS Support in Wireless Networks R VS Torsten Braun joint work with Matthias Scheidegger, Marco Studer, Ruy de Oliveira Computer Networks and Distributed Systems Institute of

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Deep Learning. Architecture Design for. Sargur N. Srihari

Deep Learning. Architecture Design for. Sargur N. Srihari Architecture Design for Deep Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Realistic Performance Analysis of WSN Protocols Through Trace Based Simulation. Alan Marchiori, Lin Guo, Josh Thomas, Qi Han

Realistic Performance Analysis of WSN Protocols Through Trace Based Simulation. Alan Marchiori, Lin Guo, Josh Thomas, Qi Han Realistic Performance Analysis of WSN Protocols Through Trace Based Simulation Alan Marchiori, Lin Guo, Josh Thomas, Qi Han Existing Approaches to Analyze WSN Performance Build a prototype system NS-2,

More information

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization Slides adapted from Marshall Tappen and Bryan Russell Algorithms in Nature Non-negative matrix factorization Dimensionality Reduction The curse of dimensionality: Too many features makes it difficult to

More information

Deploying MPLS & DiffServ

Deploying MPLS & DiffServ Deploying MPLS & DiffServ Thomas Telkamp Director, Data Architecture & Technology Global Crossing Telecommunications, Inc. telkamp@gblx.net MPLS and DiffServ technologies are getting a lot of attention

More information

Investigating the Use of Synchronized Clocks in TCP Congestion Control

Investigating the Use of Synchronized Clocks in TCP Congestion Control Investigating the Use of Synchronized Clocks in TCP Congestion Control Michele Weigle (UNC-CH) November 16-17, 2001 Univ. of Maryland Symposium The Problem TCP Reno congestion control reacts only to packet

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Modeling Sequences Conditioned on Context with RNNs

Modeling Sequences Conditioned on Context with RNNs Modeling Sequences Conditioned on Context with RNNs Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence

More information

Efficient Algorithms may not be those we think

Efficient Algorithms may not be those we think Efficient Algorithms may not be those we think Yann LeCun, Computational and Biological Learning Lab The Courant Institute of Mathematical Sciences New York University http://yann.lecun.com http://www.cs.nyu.edu/~yann

More information

GAN and Feature Representation. Hung-yi Lee

GAN and Feature Representation. Hung-yi Lee GAN and Feature Representation Hung-yi Lee Outline Generator (Decoder) Discrimi nator + Encoder GAN+Autoencoder x InfoGAN Encoder z Generator Discrimi (Decoder) x nator scalar Discrimi z Generator x scalar

More information

Assessing the Nature of Internet traffic: Methods and Pitfalls

Assessing the Nature of Internet traffic: Methods and Pitfalls Assessing the Nature of Internet traffic: Methods and Pitfalls Wolfgang John Chalmers University of Technology, Sweden together with Min Zhang Beijing Jiaotong University, China Maurizio Dusi Università

More information

Towards a Wireless Lexicon. Philip Levis Computer Systems Lab Stanford University 20.viii.2007

Towards a Wireless Lexicon. Philip Levis Computer Systems Lab Stanford University 20.viii.2007 Towards a Wireless Lexicon Philip Levis Computer Systems Lab Stanford University 20.viii.2007 Low Power Wireless Low cost, numerous devices Wireless sensornets Personal area networks (PANs) Ad-hoc networks

More information

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks

An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks An Efficient Bandwidth Estimation Schemes used in Wireless Mesh Networks First Author A.Sandeep Kumar Narasaraopeta Engineering College, Andhra Pradesh, India. Second Author Dr S.N.Tirumala Rao (Ph.d)

More information

Fast and Accurate Load Balancing for Geo-Distributed Storage Systems

Fast and Accurate Load Balancing for Geo-Distributed Storage Systems Fast and Accurate Load Balancing for Geo-Distributed Storage Systems Kirill L. Bogdanov 1 Waleed Reda 1,2 Gerald Q. Maguire Jr. 1 Dejan Kostic 1 Marco Canini 3 1 KTH Royal Institute of Technology 2 Université

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

A hierarchical network model for network topology design using genetic algorithm

A hierarchical network model for network topology design using genetic algorithm A hierarchical network model for network topology design using genetic algorithm Chunlin Wang 1, Ning Huang 1,a, Shuo Zhang 2, Yue Zhang 1 and Weiqiang Wu 1 1 School of Reliability and Systems Engineering,

More information

CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 22: The Attention Mechanism. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 22: The Attention Mechanism Theo Rekatsinas 1 Why Attention? Consider machine translation: We need to pay attention to the word we are currently translating.

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

A Neuro Probabilistic Language Model Bengio et. al. 2003

A Neuro Probabilistic Language Model Bengio et. al. 2003 A Neuro Probabilistic Language Model Bengio et. al. 2003 Class Discussion Notes Scribe: Olivia Winn February 1, 2016 Opening thoughts (or why this paper is interesting): Word embeddings currently have

More information

Clustering and Unsupervised Anomaly Detection with l 2 Normalized Deep Auto-Encoder Representations

Clustering and Unsupervised Anomaly Detection with l 2 Normalized Deep Auto-Encoder Representations Clustering and Unsupervised Anomaly Detection with l 2 Normalized Deep Auto-Encoder Representations Caglar Aytekin, Xingyang Ni, Francesco Cricri and Emre Aksu Nokia Technologies, Tampere, Finland Corresponding

More information

OverSim. A Flexible Overlay Network Simulation Framework. Ingmar Baumgart, Bernhard Heep, Stephan Krause

OverSim. A Flexible Overlay Network Simulation Framework. Ingmar Baumgart, Bernhard Heep, Stephan Krause OverSim A Flexible Overlay Network Simulation Framework Ingmar Baumgart, Bernhard Heep, IEEE Global Internet Symposium 2007, Anchorage, AK, USA Requirements Overlay Flexibility Scalability Underlay Heterogeneity

More information

19: Inference and learning in Deep Learning

19: Inference and learning in Deep Learning 10-708: Probabilistic Graphical Models 10-708, Spring 2017 19: Inference and learning in Deep Learning Lecturer: Zhiting Hu Scribes: Akash Umakantha, Ryan Williamson 1 Classes of Deep Generative Models

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

Perspectives on Network Calculus No Free Lunch but Still Good Value

Perspectives on Network Calculus No Free Lunch but Still Good Value ACM Sigcomm 2012 Perspectives on Network Calculus No Free Lunch but Still Good Value Florin Ciucu T-Labs / TU Berlin Jens Schmitt TU Kaiserslautern Outline Network Calculus (NC): A Theory for System Performance

More information

Information, Gravity, and Traffic Matrices

Information, Gravity, and Traffic Matrices Information, Gravity, and Traffic Matrices Yin Zhang, Matthew Roughan, Albert Greenberg, Nick Duffield, David Donoho 1 Problem Have link traffic measurements Want to know demands from source to destination

More information

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs

Generative Modeling with Convolutional Neural Networks. Denis Dus Data Scientist at InData Labs Generative Modeling with Convolutional Neural Networks Denis Dus Data Scientist at InData Labs What we will discuss 1. 2. 3. 4. Discriminative vs Generative modeling Convolutional Neural Networks How to

More information

Neural networks for variable star classification

Neural networks for variable star classification Neural networks for variable star classification Vasily Belokurov, IoA, Cambridge Supervised classification Multi-Layer Perceptron (MLP) Neural Networks for Pattern Recognition by C. Bishop Unsupervised

More information

Flat Routing on Curved Spaces

Flat Routing on Curved Spaces Flat Routing on Curved Spaces Dmitri Krioukov (CAIDA/UCSD) dima@caida.org Berkeley April 19 th, 2006 Clean slate: reassess fundamental assumptions Information transmission between nodes in networks that

More information